We give more details about an integrable system in which the Dirac operator
D=d+d^* on a finite simple graph G or Riemannian manifold M is deformed using a
Hamiltonian system D'=[B,h(D)] with B=d-d^* + i b. The deformed operator D(t) =
d(t) + b(t) + d(t)^* defines a new exterior derivative d(t) and a new Dirac
operator C(t) = d(t) + d(t)^* and Laplacian M(t) = d(t) d(t)^* + d(t)* d(t) and
so a new distance on G or a new metric on M.Comment: 32 pages, 8 figure