5 research outputs found

    Using online rubrics to make project grading more standardized and efficient

    Get PDF
    Rubrics make assessing student work standard and efficient, and they help teachers justify to parents and others the grades that they assign to students. This research project investigated the possibility of improving grading efficiency in project-based classes using online rubrics. Two research questions were studied: 1. Would the teachers feel that using a standards-based rubric with predetermined grading criteria be more efficient in assessing their student projects and save them time in grading? 2. Would the use of technology in the grading process be of enough value to the teachers that they would be interested in using a web-based rubric after the study was over? A group of practicing high school teachers and college instructors were asked to use an online rubric to grade student project work. After completing the rubric, teachers were asked to evaluate the use of the rubric for speed and efficiency. Based on analysis of the data provided by the research participants, this research project concluded that grading projects can be done more efficiently saving the teacher time and making grades more standard using a standards-based, web-based rubric to score each project

    An automated marking system for graphical user interfaces

    Get PDF
    This research investigates the feasibility and effectiveness of assessing students programming solutions to Graphical User Interface exercises in an automated fashion. Automated marking systems ease the burden on the staff involved in running a course and allow students to get results and feedback in a timely fashion. Several automated marking systems exist but are currently unable to mark GUIs. The inherent complexity of GUIs and the need for aesthetic analysis has rendered GUIs beyond the scope of most marking systems. The marking approach described in this thesis implements a number of novel concepts. By exploiting language design properties such as the hierarchical relationship between components, it was possible to develop a framework capable of testing and marking students' GUI programs. Introspectively analysing the interface enables the marking system to obtain access to the intrinsic elements contained within the GUI. Once access has been obtained, the tests can be performed on the actual interface components themselves rather than a mere representation. GUI assessment is more than functional testing, aesthetics play a major role in the creation of an interface. Existing aesthetic metrics do not provide the analytical capabilities required due to their failure to include colour. The distractive effects that colours have were quantified and incorporated into the metrics. The results of the dynamic and aesthetic testing show that through the implementation of the novel components detailed, the creation of a GUI marking system is feasible and its marking both consistent and effective. The design enables the system to return results in a timely fashion and the effects that colour has can be seen in the results of basic aesthetic testing

    An automated marking system for graphical user interfaces

    Get PDF
    This research investigates the feasibility and effectiveness of assessing students programming solutions to Graphical User Interface exercises in an automated fashion. Automated marking systems ease the burden on the staff involved in running a course and allow students to get results and feedback in a timely fashion. Several automated marking systems exist but are currently unable to mark GUIs. The inherent complexity of GUIs and the need for aesthetic analysis has rendered GUIs beyond the scope of most marking systems. The marking approach described in this thesis implements a number of novel concepts. By exploiting language design properties such as the hierarchical relationship between components, it was possible to develop a framework capable of testing and marking students' GUI programs. Introspectively analysing the interface enables the marking system to obtain access to the intrinsic elements contained within the GUI. Once access has been obtained, the tests can be performed on the actual interface components themselves rather than a mere representation. GUI assessment is more than functional testing, aesthetics play a major role in the creation of an interface. Existing aesthetic metrics do not provide the analytical capabilities required due to their failure to include colour. The distractive effects that colours have were quantified and incorporated into the metrics. The results of the dynamic and aesthetic testing show that through the implementation of the novel components detailed, the creation of a GUI marking system is feasible and its marking both consistent and effective. The design enables the system to return results in a timely fashion and the effects that colour has can be seen in the results of basic aesthetic testing

    Efficient Use of Teaching Technologies with Programming Education

    Get PDF
    Learning and teaching programming are challenging tasks that can be facilitated by using different teaching technologies. Visualization systems are software systems that can be used to help students in forming proper mental models of executed program code. They provide different visual and textual cues that help student in abstracting the meaning of a program code or an algorithm. Students also need to constantly practice the skill of programming by implementing programming assignments. These can be automatically assessed by other computer programs but parts of the evaluation need to be assessed manually by teachers or teaching assistants.There are a lot of existing tools that provide partial solutions to the practical problems of programming courses: visualizing program code, assessing student programming submissions automatically or rubrics that help keeping manual assessment consistent. Taking these tools into use is not straightforward. To succeed, the teacher needs to find the suitable tools and properly integrate them into the course infrastructure supporting the whole learning process. As many programming courses are mass courses, it is a constant struggle between providing sufficient personal guidance and feedback while retaining a reasonable workload for the teacher.This work answers to the question "How can the teaching of programming be effectively assisted using teaching technologies?" As a solution, different learning taxonomies are presented from Computer Science perspective and applied to visualization examples so the examples could be used to better support deeper knowledge and the whole learning process within a programming course. Then, different parts of the assessment process of programming assignments are studied to find the best practices in supporting the process, especially when multiple graders are being used, to maintain objectivity, consistency and reasonable workload in the grading.The results of the work show that teaching technologies can be a valuable aid for the teacher to support the learning process of the students and to help in the practical organization of the course without hindering the learning results or personalized feedback the students receive from their assignments. This thesis presents new visualization categories that allow deeper cognitive development and examples on how to integrate them efficiently into the course infrastructure. This thesis also presents a survey of computer-assisted assessment tools and assessable features for teachers to use in their programming assignments. Finally, the concept of rubric-based assessment tools is introduced to facilitate the manual assessment part of programming assignments

    Computer Aided Grading with Agar

    No full text
    Abstract — Computer-based grading tools have existed for nearly as long as computing courses. The majority of these tools have focused on completely automatic grading of functional requirements, leaving no room for subjectivity, and generally eschewing human feedback in favor of total automation. We argue that these tools are of little practical use because they severely limit the types of assessments that can be graded, and force the user to adopt to the paradigms of the grading tool, rather than vice versa. We present Agar, a tool designed to compensate for those possible shortcomings, discuss the design of Agar, and discuss unanticipated usage patterns that have already sprung up in our user base. I
    corecore