

Tampereen teknillinen yliopisto. Julkaisu 1301
Tampere University of Technology. Publication 1301

Tuukka Ahoniemi

Efficient Use of Teaching Technologies with
Programming Education

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB222,
at Tampere University of Technology, on the 28th of May 2015, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2015

ISBN 978-952-15-3526-0 (printed)
ISBN 978-952-15-3535-2 (PDF)
ISSN 1459-2045

ABSTRACT

Learning and teaching programming are challenging tasks that can be facilitated

by using di�erent teaching technologies. Visualization systems are software systems

that can be used to help students in forming proper mental models of executed

program code. They provide di�erent visual and textual cues that help student in

abstracting the meaning of a program code or an algorithm. Students also need to

constantly practice the skill of programming by implementing programming assign-

ments. These can be automatically assessed by other computer programs but parts

of the evaluation need to be assessed manually by teachers or teaching assistants.

There are a lot of existing tools that provide partial solutions to the practi-

cal problems of programming courses: visualizing program code, assessing student

programming submissions automatically or rubrics that help keeping manual assess-

ment consistent. Taking these tools into use is not straightforward. To succeed,

the teacher needs to �nd the suitable tools and properly integrate them into the

course infrastructure supporting the whole learning process. As many programming

courses are mass courses, it is a constant struggle between providing su�cient per-

sonal guidance and feedback while retaining a reasonable workload for the teacher.

This work answers to the question "How can the teaching of programming be

e�ectively assisted using teaching technologies?" As a solution, di�erent learning

taxonomies are presented from Computer Science perspective and applied to visual-

ization examples so the examples could be used to better support deeper knowledge

and the whole learning process within a programming course. Then, di�erent parts

of the assessment process of programming assignments are studied to �nd the best

practices in supporting the process, especially when multiple graders are being used,

to maintain objectivity, consistency and reasonable workload in the grading.

The results of the work show that teaching technologies can be a valuable aid

for the teacher to support the learning process of the students and to help in the

practical organization of the course without hindering the learning results or per-

sonalized feedback the students receive from their assignments. This thesis presents

new visualization categories that allow deeper cognitive development and examples

on how to integrate them e�ciently into the course infrastructure. This thesis also

presents a survey of computer-assisted assessment tools and assessable features for

teachers to use in their programming assignments. Finally, the concept of rubric-

based assessment tools is introduced to facilitate the manual assessment part of

programming assignments.

III

IV

PREFACE

My intention and interest around Computer Science Education Research has al-

ways been very practical: to create tools and report �ndings that can be directly

adapted into the classroom. With this thesis I'm summarizing my ten years of work

around solving practical issues I have faced when teaching or training people to

write computer programs. I have been very fortunate to work with something I

really enjoy and even more fortunate by having the greatest people around me.

During these years, many people have helped, in�uenced and inspired me. Firstly,

I would like to express my deepest gratitude to my always-positive supervisor, pro-

fessor Hannu-Matti Järvinen, who has been guiding and mentoring my research for

the past ten years and especially for encouraging and helping me to �nish my work

towards the thesis. I would also like to thank professor Tommi Mikkonen for kindly

guiding me back to un�nished research, providing me the practical opportunity for

�nishing the thesis and giving valuable feedback during the writing process.

I would like to thank professor Mordechai Ben-Ari and professor Tapio Salakoski

for being the pre-examiners of the thesis and providing valuable observations and

feedback for the work.

I want to thank Essi Isohanni (Lahtinen) for having the courage to hire myself,

an enthusiast CS student, as a teaching assistant and introducing me to the world of

CSER. This then quite soon sparked into a magni�cent pirate adventure of several

joint research projects, eventually resulting into this thesis. Also, thank you for the

feedback and suggestions during the writing process of the thesis!

Over the years, I have appreciated being part of the Computer Science Research

community and huge part of this work is done jointly with my colleagues. Especially

I would like to thank Ville Karavirta, Petri Ihantola, Otto Seppälä, Juha Sorva and

Kirsti Ala-Mutka. It has been a pleasure working with you. Also, a big thanks to

Veli-Pekka Eloranta for being an inspiring peer researcher and a great friend!

For the past years, I have worked outside the academia and a special recognition

goes to The Man Himself, Tino Pyssysalo who has enabled and encouraged me to

continue my research along our daily work in Digia.

I also want to thank my parents for encouraging me towards academic research.

Thank you to all my family, in-laws and friends for all the support and cheers. Fi-

nally, and most importantly, I want to thank my dearest Maria, Markus, Tuomas

and Rasmus: Thank you for being so awesome and being there for me!

Tampere, April 2015,

Tuukka Ahoniemi

V

VI

CONTENTS

1. Introduction . 1

1.1 Thesis within Computer Science Education Research 3

1.2 Research Questions . 5

1.3 Organization of the Thesis . 7

2. Introduction to Visualization Systems . 9

2.1 What Are Visualizations? . 9

2.2 Algorithm Visualizations . 11

2.3 Program Visualizations . 13

2.4 Usage and E�ectiveness of Visualizations in Education 19

2.4.1 Early Studies on AV E�ectiveness 19

2.4.2 Integration to Course Infrastructure 19

2.4.3 E�ects in Cognitive Process . 20

2.4.4 How Visualizations Are Used . 22

2.4.5 Teachers' Attitudes towards Visualizations 22

2.5 Summary . 23

3. Towards Deeper Cognitive Levels with Visualizations 25

3.1 Engagement Taxonomy . 25

3.2 Bloom's Taxonomy of Cognitive Development in CS Education 28

3.3 Summary . 31

4. Tools-Assisted Assessment in Programming Courses 33

4.1 Assessment and Programming . 33

4.2 Computer-Assisted Assessment . 36

4.3 Semi-Automatic Assessment . 38

4.4 Rubric-Based Assessment Tools . 40

4.5 Summary . 42

5. Summary of the Included Publications . 45

6. Conclusions . 57

6.1 E�cient Integration of Visualization Systems 57

6.2 Facilitating the Assessment of Programming Assignments 59

6.3 Summary of the Results . 63

6.4 Generalization and Limitations of the Work 65

6.5 Bene�ts of the Work . 66

References . 69

7. Publications reprinted . 79

VII

VIII

LIST OF INCLUDED PUBLICATIONS

(i) Fuller, U., Johnson, C.G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I.,

Jackova, J., Lahtinen, E., Lewis, T., McGee Thompson, D., Riedesel, C., Thomp-

son, E. Developing a Computer Science-Speci�c Learning Taxonomy In: Working

group reports on ITiCSE on Innovation and technology in computer science educa-

tion, June 2007, Dundee, Scotland

(ii) Lahtinen, E., Ahoniemi, T. Visualizations to Support Programming on Di�er-

ent Levels of Cognitive Development In: The Proceedings of The Fifth Koli Calling

Conference on Computer Science Education, pages 87�94, November 2005.

(iii) Ahoniemi, T., Lahtinen, E. Visualizations in Preparing for Programming Exer-

cise Sessions In: The Proceedings of The Fourth Program Visualization Workshop,

June 2006, Florence.

(iv) Lahtinen, E., Ahoniemi, T. Kick-Start Activation to Novice Programmers - A

Visualization-Based Approach In: The Proceedings of PVW 2008 - Fifth Program

Visualization Workshop, July 2008 Madrid, Spain.

(v) Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O. Review of Recent Sys-

tems for Automatic Assessment of Programming Assignments In: The Proceedings

of 10th Koli Calling International Conference on Computing Education Research,

October 2010, Koli, Finland.

(vi) Ahoniemi, T., Lahtinen, E., Reinikainen, T. Improving Pedagogical Feedback

and Objective Grading In: The Proceedings of SIGCSE'08, March 2008, Portland,

Oregon, USA.

(vii) Ahoniemi, T., Karavirta, V. Analyzing the Use of a Rubric-Based Grading Tool

In: The Proceedings of ITiCSE 2009, June 2009, Paris, France.

IX

AUTHOR'S CONTRIBUTION TO THE

PUBLICATIONS

Publication (i) is an article written by a working group of ITiCSE 2007 conference

which the author of this thesis was part of. The author, together with Essi Lahti-

nen, collected empirical data of taxonomy usage and conducted literature reviews

of existing taxonomies prior to the working group meeting. The author, together

with Essi Lahtinen and Charles Riedesel, were responsible for de�ning, designing

and writing about the adaptation of Bloom's Taxonomy of Cognitive Development

into CS education context: the Matrix Taxonomy, and applying the taxonomy iter-

atively. The author of this thesis was also part of the �nalizing writing process for

the whole article.

Publication (ii) presents a theoretical adaptation of Bloom's Taxonomy of Cog-

nitive Development into Program Visualization examples. The original idea for

adapting the taxonomy into the practical examples came from Essi Lahtinen. The

adaptation to new visualization categories, �nding the corresponding features and

creating practical examples were done together by the authors. The publication was

written jointly by the authors, while Essi Lahtinen was the corresponding author of

the publication.

Publication (iii) describes a practical adaptation of the �ndings of publication (i)

in a form of an empirical study around adapting visualizations into programming

exercises. The research setup was planned together by the authors and executed in

practice by the author of this thesis. The writing process was done jointly while the

author of this thesis was the corresponding author of the publication.

Publication (iv) presents an example of adapting visualizations into a completely

new learning situation. The concept for the adaptation along with the example

contents were initialized and based on the material by the course lecturer and co-

author Essi Lahtinen. The author of this thesis did the technical implementation of

adapting the concept contents into the visualization example. The data collection,

analysis and writing process were done jointly by the authors.

Publication (v) is a systematic survey of Computer-Assisted Assessment tools be-

tween years 2005 and 2010. The literature review and the incremental process for

de�ning the criteria for the tools were done jointly by the group of authors. The

writing process was done jointly by all, Petri Ihantola being the corresponding au-

thor of the publication.

X

Publication (vi) introduces the idea and empirical results of the usage of an rubric-

based assessment tool, ALOHA, which was developed by a project group part which

the author of the thesis was. The publication is mainly written by the author of

this thesis while the data analysis was provided by co-author Essi Lahtinen.

Publication (vii) presents a quantitative data analysis of the usage of a rubric-

based assessment tool. The data gathering implementation to the tool, data analysis

and writing process were done jointly by the authors while the author of this thesis

was the corresponding author of the publication.

XI

XII

1. INTRODUCTION

This work is about teaching technologies: Tools that help Computer Science teachers

and students with their everyday problems when trying to teach and learn program-

ming. In general, tools of a teacher could be used to refer to something more ab-

stract, like assessment approaches, a set of group-work methods, presentation tricks,

etc. but in this context, we focus on tools that are computer programs that are used

by the teacher or by the students to assist in the learning process of becoming a

good programmer.

Why are teaching technologies relevant for learning programming? Firstly, learn-

ing programming is a di�cult task where all aid is appreciated. Secondly, using

computer programs to teach people to write computer programs just seems so right

and a natural thing to do. Let us take a closer look to the �rst reason:

Learning programming is a di�cult task.

Programming has been stated to be a modern craftsmanship skill. After all, in

one level it is a very practical skill with best practices applied to solve practical

tasks with a clear output: a functioning computer program. But in order to learn

this skill, one needs more than just to practice the skill.

The famousMcCracken study, or more precisely, A multi-national, multi-institutional

study of assessment of programming skills of �rst-year CS students by McCracken

et al. [67] from 2001 conducted a large evaluation of novice programmers skills. The

results of the study showed that novice students were performing much worse than

the teachers expected. The study was re-visited and re-implemented by a similar

working group in 2013 by Utting et al. [94] now resulting into slightly more positive

results: The students were able to complete the tasks better but most importantly

the teachers had more realistic expectations towards their students' (somewhat bad

or mediocre) performance.

Learning programming requires a good set of theory on the background�more

speci�cally, not even the kind of theory that is slowly gathered through life all the

way from elementary school�but a very speci�c theory without much relevance

to other everyday tasks. General programming concepts are not really naturally

1

1. Introduction

used outside their marginal context, in everyday life, and novice programmers really

struggle in forming correct mental models of these concepts [82].

Crucial part of adopting programming concepts is the ability to abstract to form

schemas, or new chunks of knowledge out of them [82]. The creation of computer

programs requires working in multiple levels of abstraction: �uently drilling down to

technical implementation details of an individual programming language as well as

zooming out in order to understand the big picture, principles and design of a whole

program where the detailed concepts are just part of the implementation details.

Visualization systems can be used to assist in learning programming concepts

through abstraction. These systems try to provide additional, visual cognitive input

for the user about a foreign topic to help construct a correct mental model. They

can help in creating an abstraction of what the lower level implementation details

together form and how they together form something new. For instance, when learn-

ing loop structures the student can use the visualization system to understand that

certain syntactical lower level features of the programming language together create

a new more abstract concept, the loop structure, which itself is then later used as a

tool to solve other problems.

Applying programming concepts into real-life problems is even harder.

Besides adopting a theoretical background one also needs to know how to apply

those skills into practice, to learn good programming strategies and practices. This is

theory on how to apply the practical skills into real problems. In his psychological

overview of learning programming, Winslow [98] states that one of the biggest dif-

ferences between a novice and an expert programmer is that the novice is not able

to apply their existing theoretical programming knowledge into real world prob-

lems. The same result was also emphasized by Lahtinen et al. [56] in their large

international study of novice programmer di�culties. For learning how to apply

the theoretical programming skills into real life problems, it is essential to practice,

practice and practice even more.

Student programming assignments have a vital task in programming courses. It

is the only way for the students to really understand the theory in deeper level, to

gain programming strategies and to gain practice on real problems. For the teacher,

it is the only way to measure whether the student has achieved a step on the way

to the ultimate goal: to become a good programmer.

Assessing programming assignments is more than just checking whether the com-

puter program works correctly. Besides, this itself is not a trivial task either1. The

teacher certainly wants to check this part as well but is also required to look inside

1For instance, consider all the malfunctioning/erronous/crashy software in consumer markets!

2

1. Introduction

the functioning program and the process for creating the program: How has the

student reached the goal? Has he/she used a correct programming strategy? For

this task, someone needs go hands dirty and analyse (read) hundreds of lines of

program code per student per assignment. In addition, programming courses are

often organized as mass courses with hundreds of students with high drop-out rates.

The teacher also needs to somehow keep the students motivated enough to keep

practicing these skills [2].

Tools-assisted assessment applies computer programs to assist in di�erent

parts of the assessment process. Computer-assisted assessment tools can be

used to automatically test the functionality and other features of a program and

rubric-based assessment tools can help the human grader in his task for grading the

hundreds of student programs manually and writing constructive feedback for the

student.

In this thesis, we will examine the usage and e�ectiveness of these di�erent tools

from the perspective of the whole cycle of a programming courses: Adapting visu-

alization tools so that they support the learning process during the course and best

practices in applying tools-assisted assessment.

1.1 Thesis within Computer Science Education Research

From research point of view, this thesis belongs to the discipline Computer Science

Education Research (CSER). Over the few decades when computer science education

has been actively researched it has grown to be an acknowledged research discipline

of its own. In their book, "Computer Science Education Research" [28, Chapter 4],

Sally Fincher and Marian Petre de�ne:

CS education research is inevitably interdisciplinary. The nature of

CS . . . is rooted in mathematically-derived, computational, analytic sci-

ence. However, the circumstances of the classroom, the nature of educa-

tion, and models of teaching and learning, are areas that are amenable

to investigation only through the human sciences.

In a way, CSER as a discipline is somewhere in the middle of pure Computer Science

and pure pedagogical research, and the di�erent research �elds within CSER have

di�erent positions in the line between these two ends. This "line" is rather long

with a lot of diversity between the actual research topics. Fincher and Petre [28]

divide CSER into 10 research �elds:

1. student understanding

2. animation, visualization and simulation

3

1. Introduction

3. teaching methods

4. assessment

5. educational technology

6. transferring professional practice into the classroom

7. incorporating new developments and new technologies

8. transferring from campus-based teaching to distance education

9. recruitment and retention

10. construction of the discipline.

Out from this categorization, this thesis will directly focus on categories 2 and 4.

Category 5, educational technology, is also very related, as the solutions of this work

are technology that improve educational experience. However, in their categorization

Fincher and Petre de�ne this category to be also related to presentation systems and

smart classrooms, and that sort of more physical education environments where as

we will concentrate on software applications. Term-wise this work is exactly about

"technology", and more precisely of "technology that assists in education".

The close relation to usage of technology in education is one of those major

characteristics that distinguishes CSER from other educational �elds. We, the CS

educators, know technology very well and we are supposed to teach that same tech-

nology. So, it is very natural for us to use the same technology that we teach when

doing that. Pears et al. [77] reviewed the literature around CSER for introductory

programming and state that tools were the largest category of publications writ-

ten in the �eld, as comparison to categories curricula, pedagogy and programming

languages.

To yet continue with the placement of the research within the �eld, Pears et

al. [76] in their 2005 ITiCSE Working Group report "Constructing Core Literature

for Computing Education Research" divide the �eld into four areas:

A) studies in teaching, learning and assessment

B) institutions and educational Settings

C) problems and solutions

D) Computing Education Research as a discipline.

4

1. Introduction

In this categorization the work falls into AreasA) andC): This thesis is contributing

technological solutions (teaching technologies) into real-life problems CS educators

are facing but we are also reporting on practical experiences and evaluations on

those teaching technologies.

The di�erent teaching technologies, or tools, used in CS education can also be

divided into subcategories of their own, as presented by Pears et al. [77]:

• visualization tools

• automated assessment tools

• programming support tools

• microworlds.

Out of these, the work focuses on the �rst two. These are explained in detail in

Chapters 2, 3 and 4. Out from the other two tool categories, "Programming sup-

port tools" refer to IDEs (Integrated Development Environments) that have speci�c

programming support features like interactive incremental code execution, visualiza-

tions, and editing and syntax support. A well known example of a such an IDE-based

tool is BlueJ [47]. Similar ideas are overlapped in the �eld of visualization tools,

for instance the interpreter-based VIP tool [97] has also a simple code editor, but

de�nitely falls more into the category visualization tools category instead of an IDE

with visualizations. Microworlds, then, are their own environments where the stu-

dent is supposed to control part of the environment by programming. One example

is Karel the Robot [75] in which the student is controlling a robot in a world of

streets and intersections.

1.2 Research Questions

The one main research question what this thesis is contributing is:

How can the teaching of programming be e�ectively assisted using teach-

ing technologies?

Here, that main question is divided into smaller, more concrete ones that are

directly addressed in the included publications. Out of the di�erent kinds of tools

this work focuses on two major categories: visualization systems and tools-assisted

assessment.

The research on visualization systems is a wide area with a lot of di�erent focus

areas. The di�erent areas are introduced in Section 2.4. In this thesis, the focus for

visualizations will be around the following research question:

5

1. Introduction

• RQ 1: How can visualization systems be well integrated into pro-

gramming courses?

As we will discuss in the Chapters 2 and 3, proper integration of visualiza-

tion system into the course is vital for the success of enhancing learning and

facilitating teacher workload. Proper integration itself includes both consis-

tent usage during the course over time and learning materials but also having

visualizations that engage di�erent cognitive levels.

Thus, we will divide RQ 1 into the following concrete questions that are

addressed by the publications of this thesis.

� RQ 1.1 How can program visualization examples support also deeper

learning?

� RQ 1.2 How to integrate visualization tools into student homework as-

signments?

� RQ 1.3 With proper integration from both cognitive and practical per-

spective, are visualization systems helping to learn programming?

The second larger research question is then focused around the assessment process

of programming courses. As we will discuss in Chapter 4, assessment plays a major

role in guiding the student activities and focus. As teacher workload is the practical

limiting factor of ideal assessment we will seek aid from di�erent kinds of tools. Our

research question for assessment is:

• RQ 2: How can the assessment process be assisted with teaching

technologies?

We will look into a process called semi-automatic assessment that integrates

both computer-assisted assessment and manual assessment. Both of these can

be facilitated with tools and this thesis will study the following the following

concrete questions:

� RQ 2.1What kind of teaching technologies there are in terms of features

for the computer-assisted assessment of programming assignments?

� RQ 2.2 How can manual assessment be assisted with rubric-based as-

sessment tools?

� RQ 2.3 Are rubric-based assessment tools e�ective and being used as

they ideally should be?

6

1. Introduction

To answer these questions this work presents surveys of di�erent teaching tech-

nologies and related literature that are addressing the problems in the �eld as well

as empirical quantitative data analyses on their e�ectiveness. We will present adap-

tations and extensions of existing learning taxonomies into practical use and to val-

idate our results, we have collected empirical data and present statistical analyses

on their usage. The individual research methods used for these tests are described

in the corresponding publications that are part of this thesis.

1.3 Organization of the Thesis

This thesis is a combination of seven peer-reviewed academic publications and an

introduction part explaining the problems that are addressed, summarizing the sur-

rounding research �eld, the contribution of the included publications' to the research

question and relevant conclusions.

After this introductory chapter, an overview of visualization systems is given in

Chapter 2. Chapter 3 discusses what is deeper learning in terms of CS education and

how visualizations can support that. Chapter 4 describes the assessment process of

programming assignment and the use of tools in facilitating it.

After these introductions, Chapter 5 summarizes each of the included publications

of this thesis. Chapter 6 gathers the results of the thesis from the publications

into one place addressing the research questions, summarizes the conclusions and

discusses the limitations, generalizability and bene�ts of the work.

At the end of thesis, the original included publications are reprinted.

7

1. Introduction

8

2. INTRODUCTION TO VISUALIZATION

SYSTEMS

In this chapter, we will give an overview of the existing usage of software visual-

ization in programming education and their e�ective usage in teaching introductory

programming. We will start with looking into what visualizations are, continue with

algorithm visualization systems and then move on to program visualization systems

and their e�ective integration into programming courses.

2.1 What Are Visualizations?

As visualization is a term that is naturally associated with something visual and

related to drawing pictures, it is necessary here to clarify the term from the perspec-

tive of Computer Science Education Research. While containing visual elements, the

visual appearance is not necessarily the purposeful output of a visualization but the

focus is more on creating a certain mental model, or a mental picture through mul-

tiple forms of sensory input [93]. In all, with visualizations, we are talking about

a pedagogically enhancing combination of visual, textual and possible even audio

cues that help student create a correct mental model of the behaviour of computer

program or certain part or aspect of it.

The general term that is used to refer to all kinds of visualization aids describing

a computer program is Software Visualization (SV). A software visualization is

something which can assist all kinds of software developers in writing, analysing,

testing, debugging and optimizing code but can also be used as a pedagogical aid

in the CSER context [28]. To give common terminology for software visualization,

Price et al. [79, 93] de�ne a widely-adopted Taxonomy of Software Visualization

that divides SV into two subcategories, and their respective subcategories:

• Algorithm Visualization (AV), further split into Static Algorithm Visual-

ization and Algorithm Animation (AA). The �rst ones refer to any static

visualizations of a given algorithm, for instance �owcharts, where as AA refers

to dynamic visualization of an algorithm by means of a video or, more rele-

vant to this context, an algorithm animation system, a speci�c software. An

example of an AV system is the MatrixPro, shown in Figure 2.1 a bit later in

this chapter.

9

2. Introduction to Visualization Systems

• Program Visualization (PV). While the purpose of AV is to visualize a

principle and behaviour of an algorithm in an implementation-independent

way, animating the �ow of the data structures and the idea of the algorithm

in a higher level, PV is used to visualize the implementation details of a given

programming task, such as an algorithm written in one language [53]. A PV

tool would animate the individual expressions, function calls and the state of

memory allocations of the implementation. PV can be used in the teaching

of very introductory programming to demonstrate even the simplest program-

ming concepts such as conditional or loop structures. An visual example of a

PV tool would be Jeliot 3, shown in Figure 2.3 a bit later in this chapter.

The creation of a visualization tool usually originates from the need of an in-

dividual instructor and the educational needs focus either on algorithms or basic

programming. As the abstraction level of teaching those subjects is di�erent, it can

easily guide the creation of the tool to one way or the other. The exclusive division

between AV and PV tools has become slightly arti�cial and blurred as many tools

are capable of doing the both [50]. The di�erence, based on which the division is

done, comes from one or more of the following features:

• Is the visualization focusing on the data structure and its changes during the

algorithm (AV) or showing lower-level structures such as memory contents and

function call stacks (PV).

• Is the code that is visualized pseudo-code of an algorithm (AV) or an in-

dividual programming language (PV). Certainly AV tools can also show the

implementation in an individual language and PV tools can operate in multiple

languages.

• Is the tool used in the introductory programming course (PV) or on an algo-

rithms course (AV)

• Is the research around the tool focusing on AV or PV, or more simpler, How

do the authors de�ne the tool themselves?

Stasko et al. [93] de�ne the following roles for people creating and using software

visualizations: A programmer is the person who has written the piece of code, or

algorithm, that will be visualized. Programmers may or may not know that their

code will be visualized. A SV software developer has written the software that allows

programs or algorithms to be visualized. A separate role from this is the visualizer

or animator that takes the code, the SV system and speci�es how the visualization

is to be connected or applied to the code. Finally, the user or viewer will view the

visualization or interact and navigate through it.

10

2. Introduction to Visualization Systems

Each of these roles have di�erent interests and expectations from an algorithm

animation system. Users, or viewers of the animation are interested in the user

interface and user interaction of the tool. Visualizers require features that facilitate

e�ortless and �exible animation creation to match personal preferences or experi-

ence levels. SV software developers may then be interested in responding to those

requirements coming from visualizers or users by updating or extending the tool

easily. [84]

The above-mentioned roles can be overlapping and the same person can act in

multiple roles. The typical use case with programming learning situations is that

the student acts as the user of the visualization and the course instructor is left

with the rest of the roles [43]. Especially in the context of algorithm animations

it is possible that student engagement is enhanced by having the student also take

the role of visualizer, creating visualizations for other students to view. This will be

discussed more in the Chapter 3 where we will look into the Engagement Taxonomy

and ways of enhancing deeper cognitive levels through visualizations.

2.2 Algorithm Visualizations

Let us begin with an overview of tools around Algorithm Visualizations, especially

focusing on Algorithm Animations with a tool, as that is where the research in the

area historically originates from.

Most of the historical overviews on research or theses in this area start by men-

tioning "Sorting Out Sorting" [11], a 30-minute teaching �lm from 1981 about

nine sorting algorithms. This thesis is not an exception because of the following.

"Sorting Out Sorting" is worth starting with because, �rstly, it clearly addresses

the problems teachers have when teaching algorithms or program behaviour using

traditional, more analogue tools like blackboard, or nowadays, whiteboards and slide

presentations: As programs are temporal, executing over time, their behaviour can

be better represented using animations of their state and state changes than with

static images. Especially algorithms1 include a lot of repetition.

Secondly, "Sorting Out Sorting" also shows that with well-designed visual cues

a successful visualization can also be a video, or rather a movie in this case, not

necessarily a separate software tool. However, we will get back into the importance

of student engagement later in Chapter 3. And �nally, besides being a fun piece

of work, the video is still being used and at a time, over 30 years ago, created a

good basis and inspired instructors to get interested in ways of visualizing program

behaviour.

1Algorithms do not refer only to sorting algorithms that often are taught in more advanced CS
courses but usually any problem solved with a computer program involves an algorithm of some
sort.

11

2. Introduction to Visualization Systems

Figure 2.1: The MatrixPro Algorithm Visualization tool, demonstrating the behaviour of
a Red-Black Tree.

The early research around algorithm visualizations often mentions at least the

visualization systems BALSA [20], which provided multiple dynamic views into

the algorithm and highlighted interesting events through a separate animator, Zeus

[19], that used also colors and sound, and Tango [92] with its X Windows-based

follow-up XTango [90], that introduced the path-transition paradigm for smooth

animation.

As for the more recent tools that often appear in relevant literature and are

based on previous research on the �eld, one good example is ANIMAL [84], that

was especially designed to provide relevant features to support multiple of the vi-

sualization roles, de�ned by Stasko et al.[93]. In practice, ANIMAL was designed

to have a good, interactive and customisable user interface for the users, visualizers

had multiple approaches for creating graphical representations (GUI, scripting using

ANIMALSCRIPT [83] or an API) and developers were able to extend the system,

for instance with new programming languages, without touching the core system

code.

12

2. Introduction to Visualization Systems

There has also been a lot of research around the TRAKLA22 framework [66]

which has been widely adapted into use by various Finnish CS faculties. TRAKLA2

is using theMatrix [49] algorithm animation and simulation engine, later succeeded

byMatrixPro3 [45] for the graphical representation. An algorithm visualization ex-

ample of a Red-Black Tree within MatrixPro is shown in Figure 2.1. The TRAKLA2

framework itself lets teachers create interactive exercises from generated values that

can be automatically assessed by the system for their algorithms curricula. The

learner can also examine the model solution of an exercise. Using the system stu-

dents can learn and practice algorithms as well as complete and submit exercises

as part of their coursework. So instead of just being an AV tool, TRAKLA2 is a

coursework framework (utilizing the MatrixPro AV tool) that can be easily adopted

and integrated into the whole algorithms course as an e�ective study mean.

Over the years, a plethora of di�erent algorithm visualizations and animations

have been created, but they lack centralized distribution and coordination. In gen-

eral, the quality of them has been unfortunately often poor and mostly concentrating

on the easier topics [86, 87]. A good place to look for an overview of the up-to-date

status of algorithm visualizations and search for individual examples, tools or re-

search is the AlgoViz portal4, that has been centralizing AV related resources

under one portal for quite a few years.

2.3 Program Visualizations

As Algorithm Visualizations concentrate on visualizing general algorithm behaviour

in a higher-abstraction level without going into implementation details in a speci�c

language, Program Visualizations connotate connections within a program in a lower

level, concentrating e.g. on the variables, data structures and function call stacks

of the program. Program Visualizations itself contain di�erent kind of approaches,

de�ned by Price et al [79] and adapted by Sorva [89]:

• Static program visualizations that represent program code with dependencies

and code evolution.

• Dynamic program visualizations, illustrating program runtime behaviour, con-

taining Program animation, where program visualizes what happens during a

program execution, like a Visual Debugger.

• Visual Programming, where programs are speci�ed using graphics rather than

visualizing a program written in a non-visual language. As a separation to

2http://www.cse.hut.�/en/research/SVG/TRAKLA2/
3http://www.cse.hut.�/en/research/SVG/MatrixPro/
4http://www.algoviz.org

13

2. Introduction to Visualization Systems

Figure 2.2: Di�erent types of Software Visualizations, based on the version of Sorva [89]
which is adapted from the original categorization of Stasko et al [93]. Proportions are not
here relevant and intersections have been simpli�ed.

other parts of SV, the purpose is to de�ne new programs instead of making

existing programs easier to understand.

• Visual Program Simulation (VPS). A pedagogical approach developed by Sorva

[89] for immersing students in the dynamics of program execution by visual-

izing a notional machine, and engaging the student during an activity. The

main di�erence to a visual debugger is that where a visual debugger �nds au-

tomatically what is happening and illustrates that to the user, VPS leaves the

user to de�ne what is going on in the program execution.

The whole wide �eld of visualizations systems is illustrated in Figure 2.2. The

PV systems used in education are mainly dynamic program visualizations and type

of visual debuggers that have been improved by the teachers to be used in pedagogy

[89]. The main purpose of the PV tool is to provide additional visual assistance to

the learner to understand the program code better.

One of the most known and widely-researched PV tool is Jeliot5. The stages,

evolution and research around Jeliot are described in an article by Ben-Ari et al

[15]. Jeliot-family is based on the very early Eliot system [58] that was intended

5http://www.cs.joensuu.�/jeliot

14

2. Introduction to Visualization Systems

to visualize algorithms written with C programs. Jeliot is speci�cally designed for

learning elementary programming pioneering in automatic animation so that the

student or teacher does not explicitly need to build the visualization of a given

source code. This is speci�cally important for PV where the purpose is to visualize

large number of smaller programs where as algorithm animations typically focus only

on a limited number of existing algorithms. The creation of algorithm visualization

examples can take more time, and be based on separate scripting languages as the

examples are reused multiple times.

The latest evolution of the Jeliot-family is Jeliot 3 [69]. It is based on a full

Java interpreter which makes the tool almost fully compliant with full Java lan-

guage. The main user interface of Jeliot 3 is shown in Figure 2.3. On the left side

of the screen, the animated code is being highlighted as executed with the VCR-like

controls in the bottom. The right side Theater automatically animates the data

structures, evaluated expressions and executed methods visualizing the call tree of

the functions. One of the main principles of the Jeliot animations are around con-

sistent and complete animations: each evaluation of expression and subexpression

is displayed.

VIP6, or Visual InterPreter, is a program visualization tool developed and re-

searched in the Edge-group7 of Tampere University of Technology (TUT). The orig-

inal implementation was developed by Antti Virtanen as part as his Master's Thesis

[96] in 2004 and then further improved in two parts, �rst re-creating the underlying

interpreter engine (CLIP) [64, 65] and then re-creating the actual visualization tool

[40] in 2009.

VIP was designed to facilitate the learning of introductory programming in basic

imperative C++ in Tampere University of Technology. Instead of showing static,

more or less hard-coded visualizations of a C++ example, it was based on a real

programming language interpreter, thus making it visualize whatever was written

in the program code, same way Jeliot 3 does with Java. This enabled the instructor

to easily create material by just providing simple imperative C++ examples to the

tool [97]. Making an interpreter for the full (or even close to full) C++ standard

supporting for instance object-oriented programming was not feasible and especially

not needed in the very �rst programming courses. That is why VIP works with a

subset of C++, namely C�. The language allows the basic usage of imperative C++

within the tool, for instance data types, loop-structures, and functions.

VIP provides multiple simultaneous views to a program code. The main user

interface of VIP is shown in Figure 2.4. Besides the code window, the user interface

presents a panel for guiding the execution of the program, a variable view with

6http://www.cs.tut.�/�vip
7Edge is a Development Group for programming Education, http://www.cs.tut.�/�edge

15

2. Introduction to Visualization Systems

Figure 2.3: The main user interface of Jeliot 3, taken from [15].

Figure 2.4: The main user interface of VIP.

16

2. Introduction to Visualization Systems

Figure 2.5: The visualization view of ViLLE PV tool.

current values and the function call stack, output view, a separate evaluation view

and a view for additional textual explanation of the current execution step. The

code itself is given for the interpreter as a normal C++ source �le but with specially

annotated additional comment lines to provide the textual cues for the execution.

The student can also jump into the a separate code editing window to modify the

visualized code himself.

A widely-adopted PV tool and learning environment of recent years is ViLLE8

[81], developed at the University of Turku. Originally the purpose of ViLLE was

to become a PV tool to facilitate the everyday work of teacher by providing a way

to visualize elementary programming concepts without direct dependency to an

individual programming language so that the student can see the same example in

di�erent programming languages. The main visualization view of ViLLE is shown

in Figure 2.5. Since past ten years, the tool has grown to a full learning environment

that can automatically assess student exercises [41], promotes collaborative learning

[80], provides multifaceted ways for collecting research data, and supports virtual

badges and gami�cation features. Besides adult education ViLLE has been adapted

successfully to high school and lower-level education.

8https://ville.cs.utu.�/

17

2. Introduction to Visualization Systems

One of the latest evolutions of PV tools is UUhistle9 (pronounced 'whistle')

that is a PV system speci�cally designed to enable also usage as Visual Program

Simulation (VPS). The tool and VPS are thoroughly described in the thesis written

by Sorva [89]. UUhistle visualizes a notional machine for the Python programming

language, supporting a suitable subset of the whole language. It visualizes pro-

gram code execution, expression evaluation, the call stack and the state of memory.

UUhistle can be used as a regular PV tool for learning Python through its collection

of prede�ned examples or any custom content. The tool can also ask interruptive

questions about the execution of the program engaging the student and the teacher

can create full exercises using these features.

Figure 2.6: The UUhistle PV tool, here running a Visual Program Simulation example.
The user is supposed to simulate the given program code himself using the interactive
visualization GUI. Here, he has just dragged a parameter value into the topmost frame
and is just about to name the new variable using the context menu. This example and
screenshot are taken from [89].

What makes UUhistle advanced compared to other PV tools is the ability to turn

examples into Visual Program Simulation exercises. In a VPS exercise the user is

engaged so that the user is given the program code for which he is supposed to

simulate the execution himself by interacting with the visualization components.

An example screenshot of a VPS exercise in UUhistle is shown in Figure 2.6.

9http://www.UUhistle.org

18

2. Introduction to Visualization Systems

2.4 Usage and E�ectiveness of Visualizations in Education

The e�ectiveness of visualization systems has been widely studied in di�erent use

cases over the years with very varying results. The main focus areas of relevant

research over the time can be divided roughly into:

• early studies on AV e�ectiveness

• integration to course infrastructure

• e�ects in cognitive process of the student

• how visualizations are used

• teacher's attitudes towards visualizations.

We will now look into the most notable �ndings in existing research of these areas

to create a validated basis for our further assumptions.

2.4.1 Early Studies on AV E�ectiveness

In the light of earlier, slightly disappointing and mixed studies about Algorithm

Visualization e�ectiveness (e.g. one of the very �rst studies by Stasko et al. [91]),

Kehoe et al. [46] conducted a study where they evaluated the usage of AV utilized

more in a "homework" learning scenario rather than isolated "�nal exam" scenario.

They concluded that the pedagogical value was better in open homework sessions

as students need human explanation to accompany the animations. They also dis-

covered that the use of AV enhanced the motivation making the algorithms less

intimidating and thus enhancing student interaction with the materials and facili-

tating learning.

A good overview of earlier research on the topic is presented by Hundhausen

et al. [33] through their systematic meta-study of 24 experimental studies of the

e�ectiveness of algorithm visualization systems. Their most signi�cant �nding is that

an greater impact on e�ectiveness is based on how students use the tool instead of

what is shown them by the AV tool.

2.4.2 Integration to Course Infrastructure

Ben-Bassat Levy et al.[60] created the Jeliot 2000 (later succeeded by Jeliot3 tool

[69]) and evaluated its use in a programming course for 10th grade students with

a teaching setup where two parallel 10th-grade student groups were taught basic

programming with same materials except that one class was also using the PV tool.

In their study, consisting of pre- and post-tests as well as interviews they found out

19

2. Introduction to Visualization Systems

that the already-well-performing students do not need visualizations, however they

were not harmed by its use either, the poorly performing ones can be overwhelmed

by the tool, but majority of the students in between gain a lot from the usage of tool.

Besides scoring better, the group that used the PV tool also showed problem-solving

techniques adopted from the tool as well as the right terminology that is important

from socio-linguistic approach to learning. An important conclusion of the study was

that "[the PV tool] must be integrated into the classroom and assignments, rather

than used as a one-time teaching aid."

Proper integration to course materials and to the whole �ow of the course is a key

factor in the success of adopting a program visualization tool into a course. Instead

of just covering all the topics they should cover all the di�erent learning situations

and cognitive levels related to the subject [51]. In one of our own studies [55] around

the usage of PV in a programming course we achieved positive results on students'

voluntarily use of the tool when the PV tool was used throughout the whole course

setting in a consistent way .

Similar kind of results were also found by Kaila et al [42] where they examined

the use of their ViLLE PV tool during three consecutive years of the same high

school programming course. During the �rst two years, students were introduced

to ViLLE only in the beginning of the course. On the third year, ViLLE was used

consistently throughout the whole course. The students on the third year performed

statistically signi�cantly better than in the �rst two years leaving the researchers

conclude that the success was, at least partially, due proper, consistent integration

of the PV tool to the course set-up.

2.4.3 E�ects in Cognitive Process

Ebel and Ben-Ari [23] state that quite many studies in the e�ectiveness of visual-

ization tools in pedagogical aspect have "a weak point in that they represent what

the student says, which is not necessarily indicative of his or her real mental state".

As in order to bypass the student-link in the studies they conducted a research on

the students' attention because it correlates with learning e�ectiveness. This was

done by unnoticeable video taping of lessons where PV was used and observing the

student behaviour in class. More precisely, a certain kind of behaviour was mea-

sured, the amount of ERUA (Episodes of Recognizable Unattentive Attide), such

as teasing the teacher or other students, throwing erasers etc. When the amount

of ERUA was the smallest the students were most attentive and thus learning the

most.

To magnify the results results of the study of Ebel and Ben-Ari [23], the group of

students was part of special education because of emotional di�culties and learning

disabilities like ADHD. With this kind of group the amount of ERUA is typically

20

2. Introduction to Visualization Systems

not small, but, in this case, during classes when PV was used, the amount of ERUA

did not only lessen but ceased completely. For generalization of the results outside

special education the authors state that "The best students do not need it [PV]

and the worst are not helped. � [S]ince improved attention and behaviour can be

obtained [within special population] through the use of PV, even in a normal class

students .. are likely to be helped."

As PV tools often have multiple simultaneous presentations in adjacent views,

eye-tracking is one way to empirically study what the learner is actually focusing

when interacting with the tool. Bednarik has conducted a series of studies around

e�ectiveness of visualizations using eye-tracking mechanisms, some of them con-

cluded in his doctoral dissertation [13]. In one of these studies, Bednarik et al. [14]

conducted empirical eye-tracking experiments on students using the Jeliot 3 system.

They investigated how experts use the tool in comparison to novice students. Their

results show that experts read the code �rst and used the animations only to test

their hypotheses, while novice students relied on the visualizations without reading

the code �rst, interacting much more with the tool. Analysing the gaze patterns

of the students they also conclude that visualization tools could be designed to be

more adaptive in order to reduce the cognitive load of the user as the user becomes

more experienced with the topic.

Nevalainen and Sajaniemi [74] present a model of the cognitive phenomena that

takes place when using a PV tool. Using multiple experiments, for instance eye-

tracking, they studied where students paid attention on the tool and their short-

term and long-term mental models on a given subject, in this case the di�erent roles

of variables in an application. Their results showed that students were spending

surprisingly small amount of time watching the visuals or animations and relying

mostly on the textual cues present on the screen. As a conclusion they emphasize

proper design of the PV tool user interface: in absence of step-by-step animation of

the program behaviour the students focused even more on program code and textual

cues instead of the static visualizations.

In her studies around visual programming and the use of graphical notations,

Marian Petre [78] discusses the importance of secondary notation: the use of layout

and perceptual cues to guide the structure of the visual representation. She found

out that expert programmers had generally better and more coherent strategies in

navigating through problems, mainly using the text to guide how they approached

the graphics and being able to grasp on those secondary notations in order to struc-

ture and approach the graphics. The same way, the experts would create visual-

izations in more organized and easily-approachable way. However, she also points

out that even though secondary notation is important, the less skilled programmers,

that often bene�t of visualizations, would not be able to fully bene�t of it because of

21

2. Introduction to Visualization Systems

poorer readership skills. Re�ecting these results into the bene�cial use of program

visualizations we can state that automated visualization systems can sometimes

create possible issues by providing 'bad' secondary notation because of automation,

for instance, laying out visual items in an un-organized way, mis-cueing and possi-

bly causing confusion. So especially with higher-level visualizations examples, the

teacher needs to pay attention into having examples that are not only functioning

correctly but also 'look' logically correct. As an expert programmer, the teacher

grasps these relationships rather naturally.

2.4.4 How Visualizations Are Used

Lahtinen et al. [57] conducted a large international survey for 335 novice students

and their teachers who had used visualizations as extra material in their program-

ming courses. The purpose of the study was to examine the di�erent student groups'

attitudes towards PV and the use cases where voluntary use of PV systems were

most helpful for the students. The students had mostly used visualizations while

self-studying but in general found them most useful when the teacher presented

them. The study identi�ed two use cases where PV was perceived most useful:

Moderately successful students were able to bene�t of PV during their independent

work where as less successful students found PV useful when the instructor guided

the use for instance during a lecture or exercise session. Based on the results the

authors remind teachers to focus on the way visualizations are presented and how

their usage is guided for the students.

Isohanni and Knobelsdorf [35] conducted a thorough qualitative, student-oriented,

research on how TUT students use VIP. Instead of trying to measure the learning

outcome they focused on identifying the working patterns the students followed

when solving problems with the tool, and how that correlates with what was taught

to them about the tool usage. Besides dynamically interacting and debugging the

issue with the tool students also used the tool only to encounter an issue in the code

and then performing the actual analysis either statically with whatever was already

visible in the screen. Some even abandoned the tool at this point to continue with

more traditional, analogue methods.

2.4.5 Teachers' Attitudes towards Visualizations

From a wide survey to CS educators on their use of visualizations by Naps et al [73],

they got an overwhelming result with nearly all (97%) respondents being convinced

that visualization can make a di�erence in helping learners better learn concepts.

However, the major doubts towards visualizations were related to the time required

from the teacher. Also problems with practical, consistent use of visualizations were

22

2. Introduction to Visualization Systems

observed or as the authors nicely phrase this:"even though [many computing educa-

tors] use visualizations, the visualizations are not really woven into the instructional

fabric of the course."

Ben-Bassat Levy and Ben-Ari [59] conducted a phenomenographical study on

teachers' attitutes towards the Jeliot PV tool. Their outcome space (i.e. the result

of a phenomenography) has four di�erent categories:

• dissonant (interesting tool but reluctance to use it)

• rejection (not found useful)

• by-the-book (possibly useful tool, but may not suitable for teacher's case)

• internalization (useful tool).

Ben-Bassat Levy and Ben-Ari [59] state that the negative categories of their

outcome space could be the result of two matters: First, tool has not been properly

integrated into the curriculum through other learning materials. Second, centrality:

The teachers might feel the tool is threatening their position in the course in some

way, e.g. "I'm an experienced teacher and do not need such a tool to help me in

teaching".

In a recent study by Isohanni and Järvinen [34] conducted a survey for that was

answered by 255 programming teachers from 33 countries to �nd out how much vi-

sualizations are used, how they are being used, and what are possible reasons for not

using them. Nearly half of the courses did not use visualizations at all and regular

use of visualizations was found to even more rare, only around 20 per cent of pro-

gramming courses utilize SV regularly. Also, on contrary to the recommendations

they are mostly used by only the teacher and not by the students. The main reason

for using visualizations in the survey was that they found the tools educationally

e�ective. Other reasons for using mention the easy-of-use and the possibility to

create own visualization examples with the tools. The main reason for not using

visualizations was that teachers preferred using their own visualizations, e.g. draw-

ing pictures on the black board. Also for more advanced courses, the teachers did

not necessarily believe in the educational e�ectiveness of visualizations or that there

would have been visualizations available for their topic.

2.5 Summary

To summarize the existing research presented in the above sections, we can conclude

the following about visualization systems in programming education:

• Visualization systems in educational usage are usually divided into Algorithm

Visualizations and Program Visualizations [79]. Even though focusing on dif-

ferent abstraction levels, they share the same purpose and mainly focus on

23

2. Introduction to Visualization Systems

same larger issues: enhancing the cognitive process of the student when learn-

ing programming and facilitating the course infrastructure.

• There are a lot of existing tools and individual visualizations available, but

a common centralized organization is missing and the quality of the existing

examples varies a lot [33, 86, 87].

• Looking at the situation over time, these tools have, however, become more ad-

vanced, emphasizing better engaging and developers of these tools have taken

the �ndings of previous research into account10. Also, a lot of international

collaboration between academics exist in the �eld, trying to make it more

coherent. [87]

• There are a lot of studies where visualizations have improved the learning

outcome of students, but also studies where no signi�cant di�erence has been

observed [33]. Nevertheless the use of visualizations has at least contributed

positively on student motivation and time spent on studying [55]. Visualiza-

tions also improve students vocabulary and terminology on the subject, and

especially when used collaboratively, they engage students into discussions of

better quality [60].

• It is important that the visualization tool is well-designed so that it does not

distract the student but provides relevant information, guiding animations,

su�cient textual cues and especially engages the student [74, 43]

• Teachers' attitudes towards visualization systems vary from very positive to

not even knowing about them. As knowledge and experience from using them

increases their attitudes become more positive. [34, 59]

• Visualizations work better when they are used consistently during the course,

not only over time but also over various means of teaching and learning [51,

42, 60, 59]

Clearly, one of the key factors for successfully using visualization systems is in

the proper integration of the system to the whole learning process. It is important

how and when the students use the tool and how they engage with the tool. The

next chapter will discuss the importance of engagement in visualization examples

so that they can enhance deeper cognitive development and thus helping in e�cient

integration to programming courses.

10This is of course tautologically implied to only the tools that have own research around them-
selves. Of course, there can be an army of non-researched tools completely developed in a void of
their own, disregarding everything ever written about good SV tool design.

24

3. TOWARDS DEEPER COGNITIVE LEVELS

WITH VISUALIZATIONS

As discovered in the existing research introduced in Chapter 2, successful adapta-

tion of visualizations into a course requires proper integration to the �ow of the

whole course. Besides integrating to materials and di�erent learning situations it

also means integration to di�erent stages of learning. Instead of just introducing

new concepts, visualizations can also be used to deepen the understanding of a

subject when engaged more with the visualizations. This chapter introduces two

di�erent learning taxonomies that give us tools to talk about deeper learning: the

Engagement Taxonomy and Bloom's Taxonomy of Cognitive Development.

3.1 Engagement Taxonomy

We will start with an introduction to the Engagement Taxonomy that is a taxonomy

speci�cally describing the level of engagement of a visualization system in relation

to its pedagogical e�ectiveness.

Hundhausen et al. [32] discovered an important relation between learning and

student engagement when using a visualization system. In their study, the students

were supposed to use an Algorithm Visualization system to construct and present

their own visualizations. The assessment of e�ectiveness was based on Social Con-

structivism and instead of controlled experiment through learning outcomes ethno-

graphic �eld study consisting of multiple �eld techniques was conducted. The study

showed that the AV software was actually distracting the students from concentrat-

ing on the relevant activities as, in this case, their focus shifted away from learning

the algorithm towards learning how to program graphics. However, when the stu-

dents were creating the algorithms using low-tech art crafts in a "storyboard" way

for presenting and teaching the subject to others, the students got more participated

into the course and their presentations stimulated more relevant discussions about

algorithm concepts. This indicated that student engagement has an important role

on the e�ectiveness of visualizations: Instead of being a knowledge conveyor the AV

technology became a conversation mediator contributing positively on the learning

experience.

An ITiCSE Working Group in 2002, led by Tom Naps and Guido Rössling, con-

ducted a large study on the use of visualizations amongst CS educators. In their

25

3. Towards Deeper Cognitive Levels with Visualizations

Table 3.1: Levels of the Engagement Taxonomy [73].

Form of Explanation
engagement
1. No viewing There is no visualization.
2. Viewing Basic requisite - there is a visualization to view, at least. Either

passively (e.g. just watch a video in a class room) or actively
(have controls to the visualization).

3. Responding Student is required to answer questions concerning the execu-
tion of the visualization, e.g. "What will be happen next in the
visualization?", "Is the algorithm free of bugs?"

4. Changing Modifying the visualizations. Student can change the input
data set of the algorithm.

5. Constructing Students construct their own visualizations of the algorithms.
6. Presenting Presenting a visualization to an audience for feedback and dis-

cussion. These may or may not be created by the students
themselves.

report [73], they present results of the study and propose actions on increasing the

e�ectiveness of visualizations.

By the survey responses and literature studies the working group states that "such

[visualization] technology, no matter how well it is designed, is of little educational

value unless it engages learners in an active learning activity." As a result they sug-

gest a new taxonomy of learner engagement, called the Engagement Taxonomy

(ET), presented here in Table 3.1.

In a way the taxonomy is hierarchical, with levels building on top of each others,

but not necessarily requiring that. The levels can also be achieved individually, with

the exception that Viewing is a a requisite for the last four levels.

As the Engagement Taxonomy is originally designed for Algorithm Visualiza-

tions it is well adapted and spread by AV tool designers, for instance, [44]. The

same underlying principles around ET can and have well been applied into pro-

gram visualizations as well. Here we present some of the follow-up work around

visualizations systems, based on ET.

A system called JHAVÉ [72], developed by Tom Naps, is not so much an AV

system of its own but an environment to support existing AV systems by improving

engagement in their usage as suggested by the Engagement Taxonomy. Existing AV

engines can be plugged into it and JHAVÉ provides for instance controls for inter-

acting with the animation engine, additional information and pseudo-code windows

(containing HTML), input generators and "stop-and-think" questions that facilitate

the responding category of ET. The slightly unorthodox experiment about starting

programming with visualization aids, described in publication (iv) of this thesis

has been implemented using the JHAVÉ environment.

26

3. Towards Deeper Cognitive Levels with Visualizations

Myller et al. [71] used visualization tools in collaborative learning and analysed

visualization tools from that perspective. An empirical study showed ET to corre-

late with the learning outcomes also in collaborative use. The collaborative use of

visualizations together with engaging visualizations has also been found e�cient by

Rajala et al. [80] and Korhonen et al. [48] as collaboration and discussion increase

when the level of engagement increases. Also, the higher the level the engagement,

the higher level of abstraction in the discussions: making the students grasp larger

mental models instead of implementational details.

In a later study by Myller et al. [70] Engagement Taxonomy was extended into

Extended Engagement Taxonomy to better explain use of visualizations also

in collaborative learning. The new levels of the taxonomy, in addition to the ones

in Table 3.1) are:Controlled viewing (viewing with controls), Entering input (for

the program to be visualized), Modifying (the visualization input or program code

before viewing) and Reviewing (for suggestions and comments, on the visualization,

the program or algorithm itself).

In his doctoral thesis Juha Sorva [89] integrates the aspect of engagement from

Engagement Taxonomy to the dimension of content creation, or content ownership,

within the taxonomy in a new taxonomy he calls 2DET, a two-dimensional engage-

ment taxonomy. He states that the level constructing in the original Engagement

Taxonomy is crowded and the order of the levels is not clear as it depends on the

content that is been engaged by the student. He admits that Extended Engagement

Taxonomy provides help but �nds it better distinguishing between the two separate

dimensions: direct engagement and content ownership. Direct engagement is con-

cerned with the engagement the learner has with the visualization itself (very much

like ET) and content ownership is concerned with an indirect form of engagement

coming from the content of the visualization (given content, own cases, modi�ed

content and own content). The taxonomy is presented in Figure 3.1.

Figure 3.1: The two-dimensional engagement taxonomy, 2DET, by Sorva, taken from [89].

27

3. Towards Deeper Cognitive Levels with Visualizations

Altogether Engagement Taxonomy (and its extended form) have provided a great

basis for the use of visualization tools to be better understood and the tools to be

developed further, supporting higher levels of engagement.

3.2 Bloom's Taxonomy of Cognitive Development in CS Ed-

ucation

To get a tool for discussing levels of cognitive development, we will look closer

into the Bloom's Taxonomy of Cognitive Development. It is a general taxonomy of

cognitive skills, developed in the 1950's by Benjamin Bloom et al. [18]. It describes

the levels of cognitive development when learning a subject. This taxonomy of

cognitive domain is often referred just as the Bloom's taxonomy and has been rather

widely used in Computer Science Education Research as a tool to discuss on di�erent

levels of learning, as a measurement of the depth of understanding.

Bloom's taxonomy has six categories, all building hierarchically on top of each

other: 1. Knowledge, 2. Comprehension, 3. Application, 4. Analysis, 5. Synthesis,

6. Evaluation.

So, for instance in a basic programming course where loop structures are studied,

the student having reached only the level 2, Comprehension, would understand that

there are di�erent loop structures (for, while, do-while) but would still struggle

when writing a code using those. A student in level 3, Application, would be able

to write a functioning loop structure when instructed to do so. Another student,

having reached level 4, Analysis, would be already able to debug a falsely working

loop-structure. In level 5, Synthesis, a student would be capable of constructing

larger solutions to new problems on his own where loop structures would be used

as a tool for the solution, and on level 6, he would be able to evaluate and compare

the suitability and applicable use of loop structures in existing larger solutions.

Traditionally the levels are approached linearly, but the correct order and the

possibility of having some of the levels laid out parallel without dependencies to

all previous levels has also been discussed [38, 21]. A re-evaluation of the original

taxonomy by Anderson et al. [7] even discussed whether the three top-most levels

(Analysis, Synthesis and Evaluation) could be slightly parallel, and at least the last

two levels would change order. The same revision also renamed the categories with

verbs (Remember, Understand, Apply, Analyze, Evaluate, Create). The revised ver-

sion also adds a second dimension to the taxonomy, describing the type of knowledge

elements: A. Factual knowledge, B. Conceptual knowledge, C. Procedural knowl-

edge, and D. Metacognitive knowledge. The original and the revised taxonomies are

shown in Figure 3.2.

28

3. Towards Deeper Cognitive Levels with Visualizations

Figure 3.2: The original Bloom's taxonomy [18] and a later revision [7], without the second
dimension (knowledge type).

SOLO Taxonomy (Structure of the Observed Learning Outcome) [17, Chap-

ter 5] is a learning taxonomy that makes no reference to the cognitive level of the

learner but focuses on the content of learner's response to what is being assessed.

It examines the responses structural relationships within the content. Hierarchical

levels of the SOLO taxonomy are 1) Prestructural (answer is not related to topic

at all), 2) Unistructural (simple meaning, naming, focusing on one issue of a larger

task), 3) Multistructural (disorganised collection of items), 4) Relational (un-

derstanding, using a concept that integrates the data and how to apply the concept

into a familiar problem), and 5) Extended abstract (relating to existing principle

so that new problems can be solved).

SOLO taxonomy is a generic learning taxonomy but for instance Lister et al. [63]

have applied it into teaching programming, to novice programmers' test answers by

relating SOLO to code reading problems. They state that besides focusing teacher

assessment on the �rst three levels of SOLO (prestructural, unistructural and mul-

tistructural), the teachers also need to test students' abilities in providing relational

answers�being able "to see the forest, not just the trees".

Meerbaum-Salant et al. [68] conducted a study around visual programming

and wanted to have a uni�ed, strictly hierarchical taxonomy suitable for program-

ming tasks that would scale also for smaller programming tasks that are often

used in teaching. They combined Bloom's taxonomy and SOLO taxonomy into

a new taxonomy so that their taxonomy contains three super-categories de�ned

by SOLO (unistructural, multistructural and relational) and each of these contain

29

3. Towards Deeper Cognitive Levels with Visualizations

sub-categories de�ned by Bloom's (understanding, applying and creating). The

combined taxonomy is shown in Figure 3.3. Highest level in the taxonomy would

be relational creating, and lowest level unistructural understanding.

Figure 3.3: A combination of Bloom's taxonomy and SOLO taxonomy, presented by
Meerbaum-Salant et al. [68].

Bloom's taxonomy and its di�erent revisions have been used all around CS curric-

ula, e.g., for designing learning objectives for a course and a way to assess students.

More detailed description of the use cases, especially within the CS curricula are

discussed in detail in the publication (i) of thesis.

Despite being widely adopted, the use of a learning taxonomy is not problematic.

Di�erent teachers understand the level of abstraction of the taxonomy di�erently.

Some teachers apply the hierarchy to individual topics as for others the hierar-

chy represents progress through the subject as a whole, for example in a degree

programme [38]. Individual teachers also have di�erent opinions in how to place

individual programming skills into the taxonomy [38]. Lister and Leaney [62] also

state that based on the size of the assignment, a code writing task, for instance, can

belong to various levels of Bloom's taxonomy.

Lahtinen [52] studied the correspondence of Bloom's taxonomy to programming

students' skills by separately testing di�erent levels of the taxonomy. In her study,

she formulated a test for a programming course of 254 students that would hold

questions ideally measuring a certain Bloom's taxonomy level of one topic. The

study presents a statistical cluster analysis on how students had reached di�erent

cognitive levels of an individual subject. As a conclusion, she found out that the stu-

dents' cognitive skills were not in all cases following the linear hierarchy of Bloom's.

Instead, she found new kinds of student categories, each with a skill-set of their

own like theoretical, practical or memorizing students. For instance the theoretical

students had obtained high theoretical understanding of the subject but were inca-

pable of producing their own code or applying their information to relevant practical

problems where as practical students were able to write program code without the

ability to analyse or evaluate even their own program code.

Partly based on this �nding, publication (i) of this thesis presents a revised

Bloom's taxonomy to better match Computer Science Education, now splitting it

into a two-dimensional matrix by separating practical and theoretical skills in dif-

30

3. Towards Deeper Cognitive Levels with Visualizations

ferent axes. Both publications (i) and (ii) of this thesis discuss the application

of Bloom's taxonomy into the usage of visualization systems to support deeper lev-

els of cognitive development through improved engagement. This does not only

introduce direct bene�t of learning by the tool but also facilitates the consistent

integration of visualization systems into the course setup which then itself improves

the e�ectiveness of visualizations [55].

3.3 Summary

Learning taxonomies can be used as a tool for a teacher to de�ne assessment strate-

gies, examples and assignments that support deeper levels of cognitive development.

Publication (i) of this thesis discusses the suitability and applications of di�er-

ent learning taxonomies to Computer Science Education in general and suggests a

two-dimensional adaptation of Bloom's taxonomy to better explain the speciality of

learning programming: reading and writing code are two separate skills that do not

necessarily require each other.

In the case of visualization examples, examples that support deeper cognitive

development require enhanced engagement as suggested by the Engagement Tax-

onomy and the adapted Bloom's taxonomy presented in publication (ii) of this

thesis. Usage of these more engaging visualization examples does not only empha-

size deeper learning but also allows better integration to the structure of the course

as visualizations can be a continuous part of the learning materials. Publication

(iii) describes a practical example and empirical �ndings of such an approach and

publication (iv) presents an example of integrating engaging visualizations to a

course even without having taught any programming yet.

31

3. Towards Deeper Cognitive Levels with Visualizations

32

4. TOOLS-ASSISTED ASSESSMENT IN

PROGRAMMING COURSES

A big part of organizing successful programming courses is a successful assessment

strategy. As learning programming requires doing programming, the teacher needs

to have the students create enough of their own programs, assess and provide feed-

back of them but also maintain realistic workload for himself. In this chapter we

will look into how all this can be facilitated by di�erent tools.

We will �rst start by looking into the assessment of programming courses in

general and continue with an overview to computer-assisted assessment tools that

can help by assessing student programs automatically. Then we will look into a

semi-automated assessment process for programming courses which combines both

automatic and manual parts. Finally, we will end with an introduction to rubric-

based assessment tools that then facilitate the manual assessment part.

4.1 Assessment and Programming

We will begin by looking into de�ning the di�erent aspects and functions of assess-

ment, especially in the context of assessing programming assignments. On one hand,

the assessed items of a programming course, the programs, are very outcome-based:

the program works or does not work as speci�ed (functionality). On the other hand,

the process of designing, developing, testing and debugging, and the best practices

for doing so, are important to be part of the assessment as well.

According to Gibbs [29] assessment has six main functions:

1. Capturing student time and attention.

2. Generating appropriate student learning activity.

3. Providing timely feedback which students pay attention to.

4. Helping students to internalize the discipline's standards and notions of quality.

5. Marking: generating marks or grades which distinguish between students or

which enable pass/fail decisions to be made.

33

4. Tools-Assisted Assessment in Programming Courses

6. Quality assurance: providing evidence for others outside the course (such as

external examiners) to enable them to judge the appropriateness of standards

on the course.

Functions 3 and 4 are forms of formative assessment which is used to determine

whether a learner has reached su�cient level of knowledge on a subject before the

chance to learn the subject has passed. Based on formative feedback, the student

can then guide his focus and e�orts towards the �nal learning goals of the course.

It is important not only for the student to know his level and what is expected of

him, but also for the teacher to recognize possible misconceptions and adjust the

teaching to address them [4].

Functions 5 and 6 are then forms of summative assessment which is carried out

to determine the level of the work or knowledge to be able to de�ne a grade, usually

taking place at the end of a module or a whole course [4]. These functions are

more expensive to perform but take only take place less frequent than formative

assessment [29].

Sometimes �nal grades can be given based on a norm-referenced grading scheme,

based on a statistical distribution. Lister and Leaney [61] state that this does

not guarantee objective assessment in relation to course objectives. Especially in

programming courses where adjacent courses are strongly based on the knowledge

achieved in the previous courses. The weaker students can pass without actually

being guaranteed to have su�cient competency and the best students are not chal-

lenged enough. As a solution, Lister and Leaney suggest that a criterion-based

grading scheme works much better for programming courses than a traditional norm-

referenced scheme. In pure criteria-referencing, explicit clear criteria for each grade

are communicated to students so they can select prioritize and focus their e�orts:

For lower grades, the students are required to complete tasks that require them to

demonstrate only lower levels of cognition (ability to read and understand programs)

where as stronger students, aiming for best grades are challenged with open-ended

tasks requiring synthesis and evaluation skills [62].

Having clear and transparent grading criteria is related to functions 1 and 2 in

the above-mentioned list. These functions should be supported by both formative

and summative assessment. Gibbs [29] found out that students spend very little of

their time outside class for learning tasks that are not assessed and on the other

hand took continuous formative (and inexpensive to organize) assessment as a clear

learning situation. Gibbs states that, "If it's going to have a profound in�uence on

what, how and how long students study then it might as well be designed to have

educationally sound and positive in�uences rather than leaving the consequences to

chance." One way for e�ectively increasing the amount of formative assessment for

the students is to utilize peer assessment or self-assessment [4].

34

4. Tools-Assisted Assessment in Programming Courses

Proper assessment of computer programs consists of the actual application but

also on its design and the process for creation the application. Assessing the actual

application is very outcome-based: Does the application do what it is supposed to

do? Is it functionally correct, and, if applicable, does it perform its function in given

time and resource constraints. The latter criteria are usually paid more attention in

more advanced courses, for instance with algorithms.

Assessing program design is something that can be approached in di�erent levels

based on the focus of the course but especially on the used programming paradigm.

In an object-oriented programming course, proper design of objects and their inter-

action is usually one of the main assessment criteria where as in an introductory

programming course teaching imperative programming structures the syntactical

and semantical implementation details and program-structure in smaller granular-

ity are weighted more.

Especially in the introductory programming courses, it is necessary to pay at-

tention to the programming process as well. Besides programming concepts, the

students are taught good programming processes and best practices. This contains

topics like "design before implementing", "proper testing, and planning of tests" and

"debugging strategies". Even though the process could be documented by the stu-

dents and the document then assessed, this would not probably lead into objective

assessment of the real process, or thus guiding the students to implement a proper

process either. This can be guided and assessed by requiring the students to return

design documents before the implementation phase, making them design and submit

their own tests for the program [25] and making the whole process incremental with

multiple return phases [1].

Another important aspect in assessing student-submitted programs is su�cient

and personalized feedback. The same result, a properly-functioning program, can

be reached in various di�erent ways�some of them better than the others. In order

to best guide the student forward, the teacher needs to study his program code and

write personalized feedback that resembles that solution that the student has taken.

This naturally takes a lot of time and e�ort.

In all, we can summarize the following about assessment and programming courses:

• Assessment, divided into formative and summative, serves multiple functions

and will guide the learning activities and time allocation of the student.

• Su�cient amount of formative assessment is useful to guide the students

and the instructor and relatively cheap to organize, for instance using self-

assessment or peer-review.

35

4. Tools-Assisted Assessment in Programming Courses

• Assessment of computer programs requires looking into multiple aspects: func-

tionality, program design and the whole development process.

• As same functional program can be reached by di�erent ways the assessment

is personal and unique to some extend and good feedback is then personalized

to match the choices the student made.

4.2 Computer-Assisted Assessment

Testing the functionality or other features of a computer program using another

computer program is a very natural thing to do and thus not a very new idea:

Automated testing tools have existed all-along in professional usage of software

industry for various testing, validation, and veri�cation purposes. As assessment

(a form of veri�cation) is a vital part of programming education, it is natural that

there are systems available for computer-assisted assessment (CAA) in education

as well. In this section, we will look into how the usage of CAA systems can

facilitate the work of a teacher and enhance the learning experience of the student

in a programming course.

The most common purpose for a CAA system is to check the correct function-

ality of student program [22], but there are multiple parts that can be assessed

automatically by a CAA system. Ala-Mutka [6] provides a wide survey of CAA-

systems in use before 2005 and presents a division of features that can be assessed

by a CAA system. The division is presented in Figure 4.1. The CAA systems can

perform both dynamic assessment (run-time tests for a compiled application) and

static assessment (analysing the program source code).

Ala-Mutka [6] divides Dynamic Assessment into measuring functionality (the be-

haviour of the application, for instance, using given test input set and comparing

the result into model solution output), e�ciency (measuring CPU time, dynamic

pro�ling of e�ciency, testing skills (making sure students test their own programs

with their own test sets that are assessed, test coverage) and special features (e.g.

language speci�c features like dynamic memory allocation and memory leaks). The

static assessment is then divided into coding style (good programming practices,

commenting, language speci�c features that are for instance forbidden within the

course), programming errors (recognizing suspicious code fragments through static

analysis, recognizing typical coding errors, code redundancy), software metrics (gen-

eral measurements about the program such as complexity, lines of code, often related

to coding style of good practices), design (use of certain structural choices or a given

interfaced) and special features (eg. plagiarism).

36

4. Tools-Assisted Assessment in Programming Courses

Figure 4.1: Features assessable by a CAA systems, gathered by Ala-Mutka [6].

Douce et al. [22] present a wide literature review on the history of CAA tools

both from the perspective of evolution and from their pedagogical aspects. They

divide the evolution of CAA tools into three generations:

• First Generation � Early Assessment Systems. Starting all the way

from 1960's automated assessment systems have existed as long as educators

have asked students to build their own software. The early systems were

implemented on testing punch cards. The early systems were focusing around

measuring program size, execution time and comparing test results to given

data sets.

• Second Generation � Tool-Oriented Systems. These systems were

heavily based on e�cient use of existing operating system tool sets that were

chained either from command-line or from separate graphical user interfaces.

Many of these systems are based on character-by-character or regular expres-

sion comparison of program output compared to expected output. The systems

could be used directly by students locally or at least within the same UNIX

environment, without remote client-server access to submit and test their ap-

plications. A lot of e�ort was then required to ensure that the tested student

application could not execute harmful code or that the test input data was

not accessible or visible for the student. Some examples of these tools are

ASSYST [37], Ceilidh [16] and BOSS [39].

37

4. Tools-Assisted Assessment in Programming Courses

• Third Generation � Web-Oriented Systems. The third generation of

tools makes use of development in web technology providing an easier way

for students to submit their applications through their web browsers, receive

feedback and the teachers/administrators to manage the submission system

set-up in general. The testing features themselves have evolved into more

sophisticated formats. Examples of these systems include Course Marker

[31] (a successor of Ceilidh, previously called Course Master), later evolutions

of the the BOSS system [39], andWeb-CAT [27] which also emphasizes test-

driven development by letting students submit their own tests to accompany

their program [25].

Carter et al. [21] conducted a wide international study for CS educators in 2003

to �nd out about their usage and attitudes towards CAA. In general the perception

towards CAA was positive: the respondents agreed strongly that CAA reduces

marking time and improves the immediacy of the feedback and to some extend

agreed that CAA improves objectivity of the grading and �exibility for the student.

When looking at the negative aspects, system failures, downtime, data corruption

and plagiarism had widespread concern. They also found out that teachers who

were inexperienced in using CAA found the systems to be too limited to measure

higher-order learning outcomes and that the quality of the immediate feedback was

poor. However, these negative assumptions diminished as a respondent's experience

on CAA improved.

In publication (v) of this thesis we will look closer into the more recent evo-

lution of CAA systems and their features, providing a wide survey of CAA tools

from 2005 to 2010. The work is an updated increment of the earlier survey done by

Ala-Mutka [6], cited in the beginning of this section.

4.3 Semi-Automatic Assessment

As e�ective and valuable as computer-assisted assessment can be, it is not some-

thing that can be taken into use without proper integration to the course logistics

and it is not ideal that CAA systems would completely obsolete the importance of

human assessment, as many of the most important assessable features of a program

are the most di�cult to �nd out with only CAA [36]. As a compromise Ala-Mutka

and Järvinen [5] have de�ned a semi-automatic process for e�cient assessment of

programming courses that has been adopted in the programming courses of Tampere

University of Technology. The process integrates both computer-assisted assessment

and manual assessment to best facilitate good grading, proper and accessible feed-

back in a programming course with realistically limited resources for a large amount

38

4. Tools-Assisted Assessment in Programming Courses

Figure 4.2: Process of Semi-Automatic Assessment.

of students. This section will introduce the process and is based on the article

mentioned above.

The process for semi-automatic assessment is described in Figure 4.2. The student

works with his program code and can directly use the Computer-Assisted Assess-

ment system to submit his work for benchmarking. This can be purely a formative

submission if an incremental assignment with multiple phases is used. Then at least

for the �nal submission phase, the student submits his work to see if he passes a

certain minimum level required by the automated tests. These tests run dynamic

tests for functionality but can also contain static code analysis in the form of a

style or test coverage analyser. Nevertheless, from the system, the student receives

formative feedback to know how his program is working against those tests.

When the student program is ready for the �nal submission, for instance passing

the su�cient limit for functionality, the �nal assessment is done manually by grader

(teacher or teaching assistant). Now, already knowing the student code functions

properly, and seeing the results from the CAA tests, he can focus his time on the

items that were not tested automatically. These include programming style, struc-

tural design and best practices in programming, whatever the focus of the course is.

During his �nal grading, the grader naturally writes feedback for the student and

marks the �nal grade for the work.

Even though the semi-automatic assessment approach is usually chosen because

one has to comply with limited resources, it introduces a lot of positive aspects to the

grading compared to using only the CAA system or grading everything manually:

39

4. Tools-Assisted Assessment in Programming Courses

• The student can receive immediate formative feedback from the CAA system

regardless of the day and hour, without needing to burden the teaching sta�.

• The grader does not need to manually test the functionality or other auto-

matically assessable features of the application but he can focus on the deeper

aspects of the student submission.

• The student work is properly assessed by a real person, providing personal

feedback that will guide the student towards better programming practices,

not just better-functioning applications.

What is left out from Figure 4.2 but addressed by Ala-Mutka and Järvinen [5]

is that the student is naturally supported also during the programming process by

not being left alone to work with computer and de�nitions. The process includes

contact educational situations, tutor appointment hours and electronic discussion

groups with a list of frequently asked questions on the web page.

4.4 Rubric-Based Assessment Tools

Semi-automatic assessment process integrates best of both worlds from computer-

assisted assessment and manual assessment. Manual assessment can too be assisted

using tools. This section introduces rubric-based assessment tools that facilitate the

manual assessment labour, especially when multiple graders are needed and thus

possible problems of objectivity and inter-grader consistency are introduced.

Introductory programming courses in Tampere University of Technology (TUT)

are set-up as mass courses with up to multiple hundreds of students. As program-

ming is best learnt by programming that means a lot of program code is being

reproduced in these courses. It is easy to see that one teacher cannot properly han-

dle the amount of student program code written in the course so that the students

would get any valuable feedback from their work. Teaching Assistants (TAs), that

are for instance senior or post-graduate students, can be used to make the burden

easier. In introductory programming courses in TUT it is common to have over TAs

assessing the student programs of one course.

When multiple graders are used for assessment objectivity and inter-grader

consistency might become issues. The teacher needs to make sure each grade is

given in a consistent way regardless of which of the graders has given the mark, so

that for the student it is irrelevant who of the TAs will end up marking his work.

Also, the graders need to be objective and follow the grading scheme de�ned by the

teacher consistently. The grader must not be biased on who is the (possible fellow

junior) student. Also, if the student has done really overwhelmingly lousy job on

one part of the work but the rest of the work is decent, he is still entitled to the

points of the other parts he deserves based on the objective grading scheme.

40

4. Tools-Assisted Assessment in Programming Courses

Figure 4.3: An example rubric, showing some smaller pieces that could be part of assessing
"Programming Style". The grader goes through each row (criteria) selecting the matching
requirements. The sum of the points is then used to formulate the full grade.

According to Habeshaw et al. [30], the only de�nite way to grade objectively is

by using only objective tests like multiple-choice questions. This is not suitable in

courses where a major part of the learning is based on the student programming

by himself and the assessable item is the program written by the student. As a

suggestion, Habeshaw et al. state that in order to ensure consistency among graders,

the graders need to be properly trained for the job and are required to use marking

schemes to direct their attention to the appropriate things in a student's work. A a

solution for grading programs, Becker [12] suggest creating relatively detailed rubrics

that outline what students must do to meet and exceed the requirements.

A rubric is a two-dimensional grid where each row describes one part of the

assessment, an element of the program, problem or solution, and each column relates

to a level of achievement [12]. The idea is to slice down the assessment of a large

program into small enough pieces that can be graded by anyone (with su�cient

training) completely objectively by just deciding what requirements (column) the

submission meets in the selected row (criterion).

An example part of a rubric, displaying for instance how "Programming Style"

could be split into smaller pieces, is shown in Figure 4.3. The grader goes through

each row, that matches an individual feature to be looked and selects the column

with the criterion that the student's program code meets. The �nal grade is then

formulated based on the points gathered from each of the row. The grade can

be just a range of the cumulative points gathered from the rows or a di�erently

weighted calculation of the di�erent parts. For instance in a situation where it has

been decided (and maybe even communicated to the students) that "Programming

Style" forms 30 per cent of the �nal grade.

The rubrics can be used in a traditional paper format or using a computer-

based grading rubric. Paper format rubrics are not helping the grader to write the

feedback. Even though marking would be easy, the grader would still need to create

41

4. Tools-Assisted Assessment in Programming Courses

the feedback manually to the student. This is something that computer-assisted

rubrics can facilitate easily. When marking one of the rows of the rubric, the tool

can generate a corresponding feedback phrase that can then be customized quickly

to match the exact issue the grader wants to point out. This is a feature we call

semi-automatic phrasing.

Anglin et al [8] conducted an empirical study about the e�ciency and e�ective-

ness of using computer-based rubrics compared to other grading methods. Results

suggested that using computer-assisted rubrics were almost 200 % faster than tradi-

tional hand-writing without rubrics, more than 300 % faster than traditional hand-

writing with rubrics, and nearly 350 % faster than typing the feedback manually

into a Learning Management System. Manual rubrics were slower than manual as-

sessment without rubrics mostly because it took time to create the rubric, so reusing

the rubric would fade out that di�erence. The e�ectiveness of the feedback (how

students felt about the quality of the feedback) did not hinder from the use of a

computer-assisted rubric tool. Similar positive �ndings about student satisfaction

towards feedback and decreased time used for grading were also found by Atkin-

son and Lim [9] in their empirical experiment, where they used rubrics that were

integrated into their learning management system 1.

Edmison et al [24] raise the importance of contextualized feedback in conjunction

with rubrics-based tools. They state that even though many of the computer-assisted

rubric tools increase consistency, objectivity and help in generating customized feed-

back, the feedback is taken out of context from the original student submission.

Especially in some cases, it would be important for the marker to be able to add

comments directly to the context. They present an extension plugin for Moodle that

allows creating rubrics but also creating contextual feedback.

Publications (vi) and (vii) of this thesis present the idea and bene�ts of using a

computer-assisted rubric tool. The publications present empirical studies around the

e�ectiveness of the tool's usage on programming assignment looking into objectivity,

consistency, time usage and time distribution of teaching assistants along with the

quality of the feedback written using semi-automated phrasing. The example tool

that was used is called ALOHA [3], which was used in Tampere University of

Technology from 2005 to 2009. Later, a successor tool called Rubyric [10] was

developed based on the �ndings of these above-mentioned articles.

4.5 Summary

Assessment is a versatile and important part of the learning process both for the

student and for the teacher. Assessing computer programs has its own twists as

1They used BlackBoard 9.1 with Blackboard Rubrics, see http://www.blackboard.com

42

4. Tools-Assisted Assessment in Programming Courses

there are a lot of features, both dynamic and static that need to be taken into

account. On the other hand, the programming courses in general are organized as

mass courses with limited human resources. Luckily, big part of assessment can be

facilitated by automating parts of the assessment.

Using computer-assisted tools in the assessment of computer programs have be-

come a natural part of programming courses and such tools have existed in research

also for the past 50 years. There are plenty of tools available for the teacher to select

the most suitable one for his approach and course setup. A common open format

for assignments has been suggested by Edwards et al. [26] but in general the CAA

tools are very independent of each other.

Even though many things can be automatically assessed by a CAA system, it is

important to manually assess the student programs as well. Semi-automatic assess-

ment provides a good model for taking the best of both worlds. Especially when

using multiple graders for the manual assessment, grading rubrics and rubric-based

tools provide a valuable asset for the teacher to retain the grading objective, con-

sistent and provide feedback of good quality.

43

4. Tools-Assisted Assessment in Programming Courses

44

5. SUMMARY OF THE INCLUDED

PUBLICATIONS

In this chapter, each of the publication is shortly introduced and summarized to

form the big picture of the whole study. The next chapter then compares the results

to the research questions of the thesis.

Publication (i) presents a review on di�erent learning taxonomies that are used

within Computer Science Education and a new adaptation of Bloom's taxonomy to

better �t Computer Science Education.

Publications (ii), (iii) and (iv) discuss the di�erent ways of using Program Visual-

izations (PV) on a programming course. Publication (ii) provides a more theoretical

approach where as (iii) and (iv) introduce practical applications and evaluation on

the used approaches.

The rest of the publications, (v), (vi) and (vii) focus on the process of using semi-

automatic assessment in programming courses. Publication (v) provides a literature

review on the set of existing automatic-assessment tools. Publications (vi) and (vii)

then introduce and evaluate rubric-based assessment tools.

Publication (i), Developing a Computer Science-Speci�c Learning Taxonomy, presents

a literature review of learning taxonomies especially from their adaptivity to Com-

puter Science Education. Additionally, a CS-speci�c adaptation of Bloom's Taxon-

omy of Cognitive Domain is introduced. As the author of this thesis was part of the

group that developed that adaptation, we will focus on Bloom's taxonomy and the

new adaptation.

Bloom's Taxonomy of Cognitive Domain is explained in more detail in section

3.2 of this thesis. The traditional taxonomy by Bloom et al. [18] and it's later

adaptation [7] place the six levels of cognitive development mainly in a hierarchy

depending on each other. Publication (ii) presents a categorization of visualization

examples built to correspond the di�erent levels of Bloom's taxonomy.

What has been discovered when adapting Bloom's taxonomy into practical use in

teaching programming, for instance by Lahtinen [52], is that reading, or interpreting,

and writing, or producing program code are two separate skills and not necessarily

dependant on each other. Based on these �ndings, the CS-speci�c adaptation of

Bloom's taxonomy, namely the Matrix Taxonomy, splits the levels of Bloom's into

45

5. Summary of the Included Publications

Figure 5.1: A graphical presentation of the two-dimensional, CS-speci�c adaptation of
Bloom's taxonomy, the Matrix Taxonomy, taken from publication (i).

Figure 5.2: Undesirable learning paths the students can take when learning programming:
Trial and Error approach, Theoretical Students and Practical Students, taken from pub-

lication (i).

two dimensions, separating theoretical skills (reading) from practical skills (writing).

The result is graphically presented in Figure 5.1.

The idea of the two-dimensional Matrix Taxonomy is that it can now be used

to describe not only levels of student's knowledge on a certain subject but also the

paths, or learning strategies, the di�erent students take when learning programming.

Using the student groups found in the cluster analysis of students' programming

skills by Lahtinen [52], we can for instance identify that Theoretical students have

attained only levels Understand and Analyse without being able to Apply their

knowledge on a simple problem themselves. Figure 5.2 shows some of these wrong

learning paths students sometimes take.

The contribution of this new adapted taxonomy is to provide tools and vocabu-

lary to better describe and communicate the levels of knowledge the students acquire

and teachers to be able to pursue them towards the top-right cell, Create/Evaluate,

46

5. Summary of the Included Publications

which could also be recognized as the level Higher Application of the Bloom's re-

vision de�ned by Johnson and Fuller [38]. One example of later practical usage

for the Matrix Taxonomy is a de�ned process for setting up a programming course

on embedded programming where students are guided to take the correct learning

paths, de�ned by Vanhatupa et al. [95]

Another suggestion of the publication is that as abstraction is an important skill

applied all around programming, the more advanced programming skills also build

on top of the previous skills. This means that these learning taxonomies can be

applied iteratively going from abstraction layer to another. Similarly, it implies that

if a student has not reached su�cient knowledge on a basic skill, or has misconcep-

tions around it, it will certainly cause problems when more abstract, higher-level

topics are taught. Fixing the situation might require returning into the previous

topics. Teachers can use these taxonomies as a tool to make sure their learning

goals are su�cient, the goals are communicated su�ciently, example materials re-

�ect and enhance deeper levels of knowledge and that the teachers are assessing the

right matters. As discussed in Chapter 4, assessment directly guides students' focus

and eventually their learning.

Publication (i) has received quite a lot of attention in the past years within the

research �eld. According to Google Scholar [85] statistics, the publication has been

cited 100 times during 2007�2014.

Publication (ii), Visualizations to Support Programming on Di�erent Levels of

Cognitive Development, introduces a categorization of program visualization exam-

ples based on the Bloom's Taxonomy of Cognitive Domain. The starting point for

the research was the urge to expand the use of program visualizations in introductory

programming courses. Mostly program visualization examples were used with no or

only minor possibilities for student interaction�as sort of click-and-watch examples.

There is nothing wrong with these kind of examples, they are a very e�ortless way

for a teacher to present a new topic or for a student to self-study, e.g., a missed

lecture.

As has been concluded in the publication, without interaction these click-and-

watch visualization examples only support shallow learning, the �rst levels of Bloom's

taxonomy. Thus, they have been placed on category illustrative visualizations. This

also limits the possibilities of using those examples e�ectively throughout the whole

course. If the visualization tool can be used all-around the course and not just here

and there when a new topic is introduced, the students adopt the tool better and

�nd it more bene�cial [51].

47

5. Summary of the Included Publications

Table 5.1: Program visualization examples categories to correspond Bloom's taxonomy.

Bloom's taxonomy level Visualization category
1. Knowledge -
2. Comprehension Illustrative visualizations
3. Application Utilizing visualizations
4. Analysis Problem-solving visualizations
5. Synthesis Productive visualizations
6. Evaluation Discerning visualizations

To support deeper learning and thus reach more use cases in a programming

course the examples need to address other levels of Bloom's taxonomy with more

engagement. For this, Naps et al [73] explored sample tasks and assignments for

algorithm visualizations. Publication (ii) introduces new categories for program

visualization examples, presented here in Table 5.1.

Brie�y the idea behind the categories is that, for example, a student, who is

studying loop structures would be able to practice creating simple loop structures

with an utilizing visualization thus reaching level 3, Application, in Bloom's taxon-

omy. With successfully practising with problem-solving visualizations student could

progress to level 4, Analysis. This could be in practice done for instance with a

debugging visualization, a subcategory of problem-solving visualization, where the

student needs to analyse and �x a broken loop structure.

To assure all the di�erent new visualization categories are actually achievable, the

publication presents practical ideas on how to build these visualizations on each level.

At the time of the publication the PV tools did not really support the new categories

so the publication concentrates on the ideal level, providing more theoretical input

for the people responsible for creating the PV tools. This was done later for instance

with the VIP tool [54].

According to Google Scholar [85] statistics, publication (ii) has been cited 13

times during 2005 and 2014.

Publication (iii), Visualizations in Preparing for Programming Exercise Ses-

sions, is a rather direct continuum for publication (ii). It concentrates on two

matters:

1. How to support integration of program visualizations into an introductory

programming course through exercise sessions?

2. Evaluation of the e�ectiveness of such approach.

The publication presents a research experiment that took place on an introductory

(CS1 level) programming course in Tampere University of Technology. As in earlier

48

5. Summary of the Included Publications

years of the course, the students had illustrative visualizations for their use in the

course web pages. These they could use for self-studying a topic and these were also

occasionally presented in the lectures. However, these were used by only a handful

of students throughout the whole course, and they acted more as an extra material

for the most active students.

Besides lectures, the course contained weekly exercise sessions. For these the

students were required to review the lectures notes of the topic and implement a

very small homework assignment with pen and paper which they were to return for

the teaching assistant in the beginning of the session.

This year, we introduced a visualization-based alternative. Few student groups

got to try (or actually, were forced to try) the preparation for the exercises with

the VIP visualization tool [97]. The students had illustrative visualizations for re-

viewing the lecture notes and then an utilizing visualization and a problem-solving

visualization for the homework assignment. So, the students had visualization tool

support also for deeper levels of the Bloom's taxonomy with engagement involved.

Figure 5.3: Organization of the experiment in publication (iii).

For evaluating the e�ectiveness of our approach we used a target group (using

visualizations) and a reference group (traditional approach with pen and paper). We

evaluated two measures: e�ects on learning results (how well were they prepared for

the topic) and e�ects on studying behaviour (how did they prepare).

To study the learning e�ect we had a small test in the beginning of the exercise

sessions of which the students did not know beforehand. For the studying behaviour

we conducted a survey, mostly concentrating on how much the students spent time

for the preparation. The target group also had an extra survey about the use of

visualizations. The whole organization of the experiment is presented in Figure 5.3.

The experiment was done twice, in adjacent weeks.

The study showed that visualizations were statistically improving the students'

learning outcomes if the student was new to the topic or having di�culties in the

course. This background information was collected in the survey. If we compare all

49

5. Summary of the Included Publications

students in the groups, the di�erence is not statistically relevant, but the students

who already know the topic are not really the target audience for this approach.

Another positive outcome of the study rose from the survey: Visualizations had

a huge impact on the studying behaviour of the students. The target group used

much more time on the preparation.

With the two results combined (better learning outcomes, more time spent on

preparation) one can clearly conclude that the approach was well bene�cial. How-

ever, it can not be concluded that "Students did learn better when using visualiza-

tions because they would be pedagogically more e�cient" as the students did spend

more time on preparation.

What can be concluded on the basis of the study is that "Students did learn

better when using visualizations, either because of the e�ectiveness of visualizations

or because the students just spent more time studying with them." Both of the reasons

were supported by the open answers in the visualization survey�students enjoyed

using the tool but also felt they could understand the topic better with the tool.

According to Google Scholar [85] statistics, publication (iii) has been cited 11

times during 2007�2014.

Publication (iv), Kick-Start Activation to Novice Programmers - A Visualization-

Based Approach, introduces an experiment where a visualization tool was used in

the very �rst lecture of the �rst introductory programming course, to present what is

programming. The publication itself is not only on visualizations but on activating

novice programmers with their misconceptions. From the viewpoint of this thesis,

the publication presents a novel way of using engaging visualizations.

The publication presents an approach, a di�erent way to start an introductory

programming course named a kick-start activation. In this approach the deep struc-

ture of programming is presented with visualizing algorithms in �ow-charts and

pseudo-code before the surface structure is at all touched upon. The idea is to di-

rectly "throw the students to the deep end" with the assistance of a visualization

tool.

In this study, it was impossible to use a traditional program visualization tool as

these work on program code level and now the students knew nothing about any

existing program code. Algorithm animations, on the other hand, quite often work

without any existing program code as algorithms are expressed for instance with

pseudo-code. So, an algorithm animation tool called JHAVE [72] was then taken

into use and modi�ed so that it would animate the example kick-start algorithm

(hyphenating Finnish words). The algorithm itself was presented with a pseudo-

code and a �ow-chart. The visualization was then used in the lectures and the

50

5. Summary of the Included Publications

students had the possibility for accessing it during/after the lecture.

As the visualization example resembled more of an algorithm animation than a

program visualization, the Engagement Taxonomy (see section 3.1) could have been

applied for improving the example. The example was controllable by the students

which makes the example reach level Change of the Engagement Taxonomy. To

attain the level Response also, the �ow of the program was interrupted with pop-up

questions querying about the next behaviour of the algorithm.

A small evaluation was performed with a quantitative survey after the lecture

where it was used. In general, the students found the visualization based approach

useful and somewhat interesting. The most important positive �nding was that

especially the students who had no previous programming experience found the

approach useful for learning.

According to Google Scholar [85] statistics, publication (iv) has been cited 7 times

during 2009�2014.

Publication (v), Review of Recent Systems for Automatic Assessment of Pro-

gramming Assignments, is a survey and a systematic literature review of the recent

(2005�2010) development of computer-assisted assessment (CAA) tools for program-

ming exercises. Idea of the publication was to update the previous large study done

in 2005, A Survey of Automated Assessment Approaches for Programming Assign-

ments by Kirsti Ala-Mutka [6].

Even though some literature reviews had been conducted since Ala-Mutka's study

a systematic collection of trends and improvements in the rapidly evolving area of

CAA tools was not done. For that gap, publication (iv) addresses the following

research questions:

1. What are the features of CAA systems reported in the literature during 2005�

2010?

2. What future directions are indicated?

To answer the questions, a large amount of publications about CAA of program-

ming assignments were collected and studied from ACM Digital Library and IEEE

Xplore. These publications were then read and categorized in order to get two

results:

• A categorization of di�erent major features that CAA tools support.

• List of those CAA tools (that have been lately introduced for academia).1

1Old and the most known tools were not focused here as the research was a continuum study.

51

5. Summary of the Included Publications

Table 5.2: Major features where CAA tools di�erentiate from each other, described in
publication (v).

Feature category Examples
Variety of programming
languages

One language (Java, C++/C, etc.) vs. language inde-
pendency

Integration to an existing
LMS

Integrating to Moodle mostly

Ways to de�ne tests for
student code

Using industrial solutions like XCode, spesialized solu-
tions like output comparison or scripting

Resubmission policies Limiting the # or submissions, time penalties, etc.
Possibility for manual as-
sessment

Teacher can change the grade manually

Sandboxing Di�erent security solutions
Distribution and avail-
ability

In-house vs. Open Source

Other, more special fea-
tures.

GUI testing, concurrency, SQL, Web Applications, etc.

Table 5.2 presents the major features which the CAA tools support in di�erent

ways. Detailed explanations and the di�erent observed possibilities for the categories

are explained in detail in the publication.

Purpose of the categorization is to provide practical input for two parties:

• Teachers can use the list of features for comparing di�erent tools when he/she

needs to select a suitable tool for a programming course.

• Tool implementers can use the list for �nding possible solutions to problems

they would want to solve with their tools.

For the future directions, the publication concluded to expect more novel research

to emerge from the following trends: Integrating CAA into LMSs (Learning Man-

agement Systems), Security issues of CAA and CAA of Web Applications. What is

also emphasized in the publication is the possibility of using existing open source

systems like Web-CAT [27], which is customizable and extensible with possible new

features the teacher might need. The situation seems not to have changed since

previous studies: the CAA tools are usually developed in-house to suit just the one

purpose and the wheel gets re-invented here and there all the time.

Publication (v) has also received a lot of attention within the research �eld. Ac-

cording to Google Scholar [85] statistics, the publication has been cited 80 times

during 2010�2014.

52

5. Summary of the Included Publications

Figure 5.4: Grading view in ALOHA, the rubric.

Publication (vi), Improving Pedagogical Feedback and Objective Grading, in-

troduces a concept of a rubric-based assessment tool in the form of a tool called

ALOHA. It is an online grading tool that is originally designed for facilitating prob-

lems in the grading process of programming courses, especially mass programming

courses.

If grading is done using semi-automatic assessment (see Section 4.3) CAA tools

like the ones listed in publication (v) are used to facilitate some parts of the grading

process. However, the workload for the manual assessment part can also be rather

overwhelming, especially when there are hundreds of student assignments. In this

case, multiple graders (for instance Teaching Assistants (TA)) are used.

Using multiple graders for the same assignment may cause problems in objectivity

and consistency. This can be avoided by using uni�ed grading schemes amongst

graders, or as Becker de�nes these: rubrics [12]. A rubric divides the formation of

the grade into assessing small enough sub-parts out of which the summary is then

calculated. ALOHA takes these rubrics into a web-based tool and adds features that

also facilitate the grading process for the TAs. The grading view of ALOHA which

holds the rubric inside is shown in Figure 5.4.

Besides having an existing grading scheme to help forming the grade, the TAs are

provided a feature called semi-automatic phrasing. This helps in generating proper,

personalized written feedback which is sent for the student. While �lling the grading

rubric (giving grades for small sub-parts) the TA already selects suitable prede�ned

phrases/phrase templates for each topic worthwhile mentioning and then if needed,

53

5. Summary of the Included Publications

those are manually customized to �t the correct use case. The purpose is to avoid

writing the same feedback all over again for each submission, which would be very

typical when grading small student programming assignments.

Besides introducing the ALOHA tool, the publication does an initiative evaluation

on the use of such tool. The tool was used in Tampere University of Technology

during spring semester 2006 on four programming courses. Altogether around 20

TAs had used the tool. The general opinion towards the process and the tool was

very positive but no o�cial survey was conducted on the attitudes towards the tool.

What was done was a statistical analysis to measure the e�ects of the tool to

objectivity. The grading distributions of the same course in two years (one with the

tool, one without) were examined. For each grader, a mean value of all given grades

was calculated and those were analysed by variance analysis.

In the year where the tool was not used, there was a statistically signi�cant

di�erence between three graders. This means that if a student was lucky enough

to get a certain grader for his work, he would have statistically had a much better

grade than in the case of two other graders. When the tool was taken into use, this

problem did not exist any more. The use of tool seems to limit the most lenient and

strictest graders.

On the basis of only one comparison between two years, the result could not have

been generalized but it was a good start. The real outcome of the publication is

the discussion on how such tool can be used to tackle problems related grading ob-

jectively, generating feedback and managing the whole process of manually grading

hundreds of student submissions.

According to Google Scholar [85] statistics, publication (vi) has been cited 8 times

during 2008 and 2014.

Publication (vii), Analyzing the Use of a Rubric-Based Grading Tool, is a di-

rect continuum study for publication (vi). Where publication (vi) introduced the

idea of a rubric-based grading tool and the tool ALOHA, this publication examines

the situation after two full years of ALOHA being used. It provides a thorough ex-

amination on how teaching assistants use a rubric-based grading tool and discusses

whether the tool was used like it was intended to be used.

For the study, all given grades and feedback mails were gathered from a large

programming assignment of the a programming course in Tampere University of

Technology. The course was the same which was already used in publication (vi)

for studying objectivity in given grades amongst di�erent graders.

54

5. Summary of the Included Publications

The same objectivity study than in publication (vi) was repeated to back up the

earlier �ndings: the grading remained objective. Besides this, new measurements

related to TAs work were also carried out.

Time spent with the tool for each submission by a TA was measured. Purpose was

to check did the tool "force" the TAs to spend su�cient amount of time grading each

individual student submission. The only data in hand for this were the timestamps

of the tool log �les, so only estimates were made.

The quality of the feedback mails sent for the student were also checked. As

the real "quality" would require qualitative analysis, to tell whether the feedback

is written "well" or "badly", the publication presents two quantitative measures to

give indisputable facts on the feedback mails. Amount of lines and percentage of

prede�ned phrases. Amount of lines was measured simple to see whether students

receive "enough" or even "much" feedback from their work2.

Percentage of pre-de�ned phrases is then related to the feature semi-automated

phrasing, to see whether the TAs are using the feature or not, and how much they are

writing completely custom feedback. This is not a measurement of better or worse

feedback: If the percentage of pre-de�ned phrases in the feedback mail is high, then

TA has used the tool e�ciently but customised only little. The feedback can still

be of high quality, as long as the phrases are of high quality.

The percentage was measured by using a sophisticated plagiarism detection tool

Nalkki [88], by comparing each feedback mail against a �le with all those pre-de�ned

phrases. In general, the TAs used the pre-de�ned phrases well, in average a bit

over 50% of all text consisted of pre-de�ned phrases. However, there were huge

variations between di�erent TAs, as one TAs feedback mails had the value over

90%. This indicates that a such feature clearly requires clari�cation, more guidance

and control and phrases that require customization.

As a general outcome, the publication concludes that even with such tool the

TAs work very di�erently which is of course natural. It is still essentially relieving

that the following conclusions can be made out from these results:

• All the graders used enough time with the tool. On the other hand, no one

seemed to use too much time either.

• The TAs wrote proper feedback and e�ciently used prede�ned phrases for

facilitating their workload and to ensure feedback of good quality.

• The grading remained objective when rubrics where used.

Altogether the grading tool seemed to be used�even though not homogeneously�

but at least in between the limits of what was expected. The publication also dis-

2roughly one could say that more is better here

55

5. Summary of the Included Publications

cusses di�erent approaches that could be used to improve the use of such tool as some

real problems were observed. Partly based on these results, a successor for ALOHA

called Rubyric has been developed in Helsinki University of Technology [10].

According to Google Scholar [85] statistics, publication (vii) has been cited 8

times during 2009 and 2014.

56

6. CONCLUSIONS

This chapter presents the results of the work being summarised and combined.

The results are directly discussed in relation to the posed research questions in the

following two subsections. After that, we combine and summarize the results and

discuss the bene�ts, limitations and generalizability of the results.

The main research question of this work, "How can the teaching of program-

ming be assisted with teaching technologies?", is discussed through the two

main focus areas: e�cient integration of visualization systems and tools-assisted

assessment.

6.1 E�cient Integration of Visualization Systems

Here, we will combine the conclusions from our publications to answer our �rst re-

search question

RQ 1, "How can visualization systems be e�ectively integrated into programming

courses?"

Publications (i), (ii), (iii) and (iv) presented concrete answers by addressing the

following three sub-questions:

RQ 1.1 How can program visualization examples support also deeper

learning?

Publication (i) presents various learning taxonomies in CS education context and

discusses what deeper cognition actually means in this context. From the point of

this thesis, it describes the practical use cases and CS-speci�c adaptation of Bloom's

Taxonomy of Cognitive Domain. As the publication concludes, the levels of Bloom's

taxonomy are well present, agreeable and �eld-tested also in CS education. Their or-

der and hierarchical dependency just seems to be more complex than in the original

taxonomy. This is mainly because producing and interpreting programming code

are separate skills. Regardless, Bloom's taxonomy provides a commonly accepted

basis on which to build other categorizations and applications on.

57

6. Conclusions

Based on Bloom's taxonomy, publication (ii) presented a categorization of visual-

ization examples that are based on corresponding levels of the taxonomy. Idea is to

apply the same principles already applied for Algorithm Visualizations through the

Engagement Taxonomy: By increasing the level of engagement in the examples the

student can progress on the levels of Bloom's taxonomy with visualization examples.

For program visualizations it was required to design completely new kinds of ex-

amples as PV was not used in such high abstraction level as algorithm visualizations

but more on concrete smaller items, and only to introduce the concept, thus corre-

sponding only the �rst levels of cognition. Publication (ii) presented also concrete

ideas for the visualization examples to reach higher levels of cognition. Publication

(iii) shows a concrete case study where new kinds of visualization examples, now

reaching levels 3 and 4 in Bloom's taxonomy (Application and Analysis): illustrative

and problem-solving visualizations were used successfully in a basic programming

course. Implementing these examples required minor modi�cations to the existing

PV tool [54].

Visualizations can also support deeper learning of programming from another as-

pect, from showcasing the whole process and di�erent structures of programming as

we have shown in publication (iv). The whole idea and realistic process of program-

ming (problem-solving, debugging, algorithm design, etc.) were demonstrated to

programming students in their very �rst lecture without telling anything else about

programming. Again, to deepen also the cognitive part, engaging visualizations were

successfully used.

RQ 1.2 How to integrate visualization tools into student homework as-

signments?

Publication (iii) demonstrated a practical case study where the new visualization

categories de�ned in publication (ii) were taken into use. The new, cognitively-more-

deeper visualization examples allowed improving consistent usage of visualizations

as they could be used also when preparing for exercise sessions and for submitting

homework. By having interruptive questions and �ll-in-the-blanks or "�x broken

code" types of assignments, the homework based on visualization tools were able

to go deeper into proper homework assignments. On the other hand, this also in-

troduced more opportunities for the students to work with the tool becoming more

familiar with it and making its use more consistent during the course. Based on our

results, it can be concluded that the usage of visualization examples can work well

as student homework if the examples are engaging enough and provide cognitively

deeper challenges.

58

6. Conclusions

RQ 1.3 With proper integration from both cognitive and practical per-

spective, are visualization systems helping to learn programming?

The empirical studies around publications (iii) and (iv) show that visualization

tools help the students in learning programming, especially the ones that are not

yet familiar with the topics. Publication (iii) concludes that there was a statistically

signi�cant di�erence of the post-test results between the students who used visu-

alizations and the ones that did not when looking at the students who found the

course topics di�cult. As a side e�ect, the visualization group also spent more time

studying the topic, so the results might be partially explained by that. Also, the

experiment of starting the whole course with "visualizations �rst", shown in pub-

lication (iv) was successful. The students found the example informative and used

the engaging example to experiment the big picture of programming themselves.

From the results of publications (iii) and (iv) we can conclude that with consis-

tent usage and proper course integration, visualization systems help students learn

programming either directly by having a positive e�ect on cognition or at least

indirectly by providing them a motivating and engaging environment to study.

6.2 Facilitating the Assessment of Programming Assignments

Our second research question, around tools-assisted assessment, was

RQ 2, How can the assessment process be assisted with teaching technologies?

This question is addressed in publications (v), (vi) and (vii) by answering the

following three sub-questions:

RQ 2.1 What kind of teaching technologies there are in terms of fea-

tures for the computer-assisted assessment of programming assignments?

Publication (v) is a survey of Computer-Assisted Assessment tools that are be-

ing used in programming courses. The general breadth of the tools is wide with

a lot of independent tools being out there, mostly being developed for individual

purposes. The general direction and features within the tools are following the

�ndings encouraged in the relevant research literature. These include for instance

supporting di�erent resubmission policies and possibility for additional manual as-

sessment to apply semi-automatic assessment processes. The publication presents a

systematic categorization of the features that exist in computer-assisted assessment

tools. Besides the above-mentioned, the tools have di�erent ways for de�ning tests,

integrating into learning management systems and sandboxing models.

59

6. Conclusions

The variety of tools is partially also explained by them di�erentiating in certain

programming paradigms or programming languages even though majority of the

tools were targeted only for Java development. For CS educators the wide language

support is good news because they have a good amount of options to select the tools

that best �t their existing teaching goals and purposes instead of needing to design

their courses "tools �rst".

The general trend of the tools indicates that web centrality is the dominant

approach facilitating the submission practicalities. Also, the integration to existing

learning management systems (like Moodle) has gotten a lot more attention making

it easier for the teacher to integrate these tools into the course infrastructure.

As recommendations to tool developers to get wider adoption for their tool we

recommend the following focus areas that were clearly problematic when trying to

get a proper grasp of the existing tools:

• transparency and explicit, clear explanations on how the system works with

emphasis on examples

• proper security model

• at least partial open-source model allowing easy extendibility and customiza-

tion.

As software development processes in general are moving from traditional wa-

terfall model towards leaner agile methods and processes, it is encouraging to see

these paradigms being supported by the tools as well. For instance, Web-CAT [27]

is highly emphasizing the Test-Driven Development paradigm by allowing the stu-

dents to submit their own test cases for their application along with their code.

Also, web applications are becoming more important and the educational tools will

need to support these paradigms better. A brief summative list for teachers of the

CAA tools covered in the publication (v) is presented in its Appendix A.

RQ 2.2 How can manual assessment be assisted with rubric-based as-

sessment tools?

Rubrics in general provide a good tool for graders to de�ne an objective grading

scheme. Especially in the case where multiple graders are used, they provide a uni-

�ed and objective scheme for everyone to use consistently. There are two possible

problems with traditional, paper rubrics: Firstly, all the graders might not use them

consistently possibly skewing the grading into a certain direction and hindering the

overall inter-consistency between graders as shown in Publication (vi). Secondly,

as students need constructive and personalized feedback from their programming

60

6. Conclusions

assignments, the grader needs to separately write the feedback manually, re-writing

the same issues several times.

Publications (vi) and (vii) show that when rubrics are used through a tool, for

instance via a separate web-based rubric-tool or as an integrated part within a CAA

system, the tool subtly forces the grader to go through each step of the rubric

carefully. Especially if the cumulative formation of the �nal grade is not shown

while going through the rubric, the graders personal hunch of the �nal grade will

not skew the results. However, we feel that the important aspect why our results

were positive were because the graders found the tool to be helpful for them, making

their job easier by providing features that facilitate in writing the feedback. In this

case, the tool provided semi-automated phrasing which helped generating feedback

based on the individual marks in the rubric.

For the teacher who is responsible for building the grading scheme, the rubric-

based assessment tools certainly create extra labour. Besides de�ning the scheme,

splitting it into small sub-parts of the rubric and inputting the rubric to the tool

somehow (for instance by writing an XML �le) he also needs to create all the pre-

de�ned phrases that are to be used with semi-automated phrasing. So the teacher

is not responsible only for the scheme but also for what kind of feedback should be

written for each part. Depending on the level of seniority of the graders this might

be a desired feature. Junior teaching assistants certainly require closer guidance in

their grading from the teacher than senior colleagues. Naturally, the teacher can

himself adjust the amount of e�ort he puts into the pre-de�ned phrases and how

much freedom does he leave for the graders themselves. If the same course has

multiple iterations, the previous schemes can be reused over time.

In the experiments, described in publications (vi) and (vii) the tool let teaching

assistants create their own phrases if they found out something was missing or felt

like contributing. Then, the best ones were shared to the others immediately and

used as default ones for the following iteration of the course.

RQ 2.3 Are rubric-based assessment tools e�ective and being used as

they ideally should be?

As shown in publications (vi) and (vii), when traditional paper rubrics were used in

a programming course with multiple graders there was a clear statistical di�erence

between the grades given by di�erent graders: the grading was not consistent and

objective. When looking at the results of the following two years when a rubrics-

based tool was used, those problems of were gone and the grading did not have

statistical di�erences between the graders. We can clearly conclude the result to be

positive.

61

6. Conclusions

What was also analysed in publication (vii) was the detailed usage statistics of

the tool: how did the teaching assistants use the tool in terms of time, days on

the task and how semi-automated phrasing was used in writing the feedback? The

results showed that there were clear di�erences in how the nine teaching assistants

acting as graders used the tool. The overall mean times spent with the tool for

each submission varied between 18 and 44 minutes. Some of the di�erence could be

explained by the di�erent experience levels of the graders but it also indicates that

some graders �rst spent more time with the program code then moving on to the

rubric tool while some went through the code while �lling the rubric simultaneously.

Regardless, the mean times all �t into the assumptions and guidance from the teacher

on how much to spend time with each submission1 and the idea was not to force

the graders into one harmonized working process. Looking at the mean times for

each assessment over time, it was found out that grading got slightly quicker as the

graders got experienced with the tool which was an expected and hoped feature.

Looking at the quality of the feedback, purely from the perspective of quanti-

tative measures, the length of feedback written with the tool was overwhelmingly

large. Each student received multiple pages of personalized feedback from their

submissions. We did not measure how the students felt about the quality of the

feedback but the overall course feedback indicated that after multiple weeks of hard

work towards their submission they appreciated receiving properly written feedback

from the course sta�.

Semi-automated phrasing also seemed to be a feature that the graders both ap-

preciated and utilized as we hoped. When comparing the written feedbacks to all of

the pre-de�ned phrases using a plagiarism tool (to �nd out correlation) all graders

had used the feature extensively, but still customizing the feedback at least around

30%, average being around 50�50 between pre-de�ned phrases and custom feed-

back. Combining the length of the feedback, time used with the tool and the usage

of pre-de�ned phrases we can conclude that a rubric-based tool with semi-automated

phrasing helps the graders in writing a very good amount of personalized feedback

in a very reasonable time.

In general, the teaching assistants used the tool the way they were expected but

there were quite big di�erences between the di�erent graders in their grading process.

This is an aspect that the teacher needs to consider when introducing such a tool

into use: The graders need to be properly introduced to the way the tool is supposed

to be used but especially if more senior graders are used they should not lose their

freedom of de�ning their own working strategies. Rubric-based assessment tools are

an e�ective aid for the teaching stu� but are not meant to replace the know-how of

well-trained teaching sta�.

1...as well as what was the basis for paying the graders for each assessment.

62

6. Conclusions

6.3 Summary of the Results

In this thesis, we have discussed how the teaching of programming can be e�ciently

facilitated by di�erent teaching technologies, focusing especially on visualization

systems and tools-assisted assessment. The combined results and a conclusive model

on the role of these technologies in di�erent parts of the student's learning path

within a programming course are shown in Figure 6.1, which we will now walk

through.

Visualization systems can be used as an e�ective additional mean for learning

programming. When being introduced to new topics, illustrative visualizations can

be used, for instance within the lectures by the teacher presenting them. Having only

simple illustrative visualizations shown occasionally to the students is not enough.

Successful use of visualization systems requires proper integration to the whole learn-

ing process. Instead of just using illustrative non-engaging visualization examples

the student should be engaged to interact with the examples. This has two main

bene�ts: Through better engagement the student's cognitive development within

the subject is enhanced, and there are more learning situations where visualization

examples can be used. Consistent usage of visualizations within the course materi-

als and infrastructure improves the learning process. In providing actual practical

examples of cognitively-improved program visualization examples, we have used the

Bloom's Taxonomy of Cognitive Development and the Engagement Taxonomy to

demonstrate how visualizations can enhance the deeper levels of cognition.

As the student needs to constantly practice his programming skills, actual as-

sessed programming assignments are a vital part of a programming course as as-

sessment greatly guides the student focus and e�orts during the course. As a lot of

programming courses are organized as mass courses with hundreds of students it is

impractical for the teacher to manually assess student programs. Computer-assisted

assessment tools allow the teacher to provide an easily accessible environment for

the students to submit their programming assignments and to receive formative (or

summative) feedback from their work. There are a lot of existing CAA tools that

can be used for di�erent programming languages with di�erent features and con�g-

uration possibilities that allow the teacher to adjust the tool to their exact course

needs.

Important part of learning programming is also learning the proper process for

creating software, including design, implementation, coding style, testing and de-

bugging. As good as CAA tools are, they are not su�cient for testing everything

the student needs to learn. Semi-automated assessment process uses CAA for ev-

erything that can be automatically tested but applies manual grading for the parts

where human perspective is needed for assessment and for personalized, construc-

63

6. Conclusions

Figure 6.1: Assisting the student learning process with di�erent teaching technologies
during the whole programming course.

64

6. Conclusions

tive feedback. Rubric-based assessment tools are a useful aid for manual grading to

provide consistency and objectivity in the grading especially when multiple graders

are being used. They can also include convenience features that make the grading

process more e�ortless and help in generating good feedback for the students.

Regardless of the teaching technologies that are selected to being used by the

teacher, it is important that these tools are meant to facilitate and support the

practical work of the teacher and help in the student's learning process. They are

not meant to replace the skilled teachers or graders and the importance of their work

in supporting the students in their process of slowly but steadily becoming expert

programmers.

6.4 Generalization and Limitations of the Work

The results of the work are gathered through individual experiments but have been

presented in this thesis in already rather generalized format. In this thesis, we have

placed our own work within the large area of similar research thus getting the con�-

dence to generalize our �ndings enough to make somewhat general recommendations

for teachers. Certain limitations and self-criticism however must be explicitly men-

tioned here.

Teachers and researchers have di�erent opinions on the di�erent levels of learn-

ing taxonomies, especially when adapted into practical examples. Our adaptation

of Bloom's taxonomy in to CS context and the visualization categories based on

the original Bloom's taxonomy can certainly be disputed to some extend. The

CS-speci�c adaptation of Bloom's is applicable enough to be used to explain the

phenomena of earlier research results discussed in publication (i) and is supposed to

work as a mean of communication, as a common vocabulary, and a tool for teach-

ers to understand the learning paths their students take. For the new visualization

categories, our intention was not to provide an ultimate hierarchical taxonomy but

instead present new program visualization types that are based on the relevant levels

of Bloom's taxonomy, regardless of their ultimate order.

The data we have collected and presented to support the e�ects of visualization

usage in exercise sessions is statistically meaningful but certainly limited to the

setup we used. In di�erent courses, with di�erent teaching sta�, topics and practical

implementations variance between results is expected. Thus, we feel we cannot make

a generalized statement that program visualizations always improve learning when

used properly over the course. Our results are however only positive. This is also

the mixed opinion in the existing research: Even though sometimes results have

not been clear, there are a lot of positive experiences with using visualizations, and

usually the relative di�erence in results comes from how they are used, which is

what we want to emphasize too.

65

6. Conclusions

As stated, our survey of existing CAA tools and their features in publication

(v) must be treated as a continuum study to the one of Ala-Mutka from 2005 [6].

Thus, our work does not contain the tools that were already used before 2005. Also,

despite our large literature review, there must be a lot of CAA tools we have not

covered.

For our results on the use of rubric-based assessment tools we were able to repli-

cate our data analysis presented in publication (vi) also in publication (vii). With

both of them showing positive results, we feel con�dent in saying our approach did

improve objectivity and inter-grader consistency in the manual assessment. Again,

when taken into other courses with di�erent teaching sta� and grading schema, the

results can be di�erent so generalization is again to be treated with a disclaimer.

But at least, the situation should be improved assuming the rubric-based tool is

being used following the grading schema.

Finally, one cause of possible criticism towards our work is that the included

publications in this thesis in general are at least couple of years old each, some even

close to ten years, and the original research in them does not include the most recent

years. We acknowledge that a lot has certainly happened within CSER during those

years. The introduction chapters of this thesis are up-to-date and provide insight to

even the latest research in the �eld making this work as a whole a 10 years worth of

research. Also, in this case, time has served our research well. Looking at our work

after a while has given the surrounding research �eld time to react on it and based

on the citations and discussion our work has gotten, its validity within the �eld has

been positive. The intention of our work has not been to provide an individual set

of teaching technologies to recommend but to discuss the approaches in adopting

any of the existing or future tools, making our results last time better.

6.5 Bene�ts of the Work

Besides presenting the conclusions earlier we also want to emphasize what sort of

an impact do we wish to contribute with this work to di�erent stakeholders, teach-

ers, teaching technology developers, CS education researchers and of course students.

Bene�ts for Teachers

We shall start with teachers, as this work is mainly targeted to be a thorough,

but su�ciently bite-sized overview for CS teachers on the o�ering that CS educa-

tion research has provided to facilitate parts of their practical, every-day work. We

see a lot of contribution to the teachers.

Firstly, we want teachers to recognize that there is a full research discipline trying

to tackle the problems they face every day. Despite being a science discipline, CS

66

6. Conclusions

education research is also very close to practice, like this work, providing practical

but research-based solutions to real problems.

Secondly, if unfamiliar to the research discipline, it is very di�cult to approach

the plethora of di�erent tool o�ering, and even though something would be found,

adopting the tool e�ciently to the curricula requires knowing the best practices.

Here is where we see our biggest contribution: The work introduces the �eld of-

fering, researched-veri�ed results and also the best practices to e�ciently integrate

tools teaching technologies into a programming course.

Bene�ts for Teaching Technology Developers

We also see contribution towards people developing these tools. Especially we want

the people who consider creating their own tools to �rst open their eyes for the

already existing o�ering. Both software visualizations and assessment tools have

developed enormously over the past decades and the general opinion in the research

is widely leaning towards collaboration and integration of the existing tools in order

to create larger ecosystems instead of individual silos. Certainly, especially as the

�eld of CS evolves, there will always be need for new things to visualize or assess

but instead of making completely new tools from the scratch, one should �rst inves-

tigate whether an existing tool ecosystem could be extended through collaboration

towards the new features. Unfortunately, this is not always possible and it is un-

derstandable why new small tools get created. Regardless, we hope to contribute

at least in advising what sort of features there are, what are the results of using

them and how people have already tackled certain issues the �rst phases of the tools

might have had.

As a concrete examples, for program visualization tool developers, we are con-

tributing validated results on creating systems and examples that engage the student

by the new visualization examples that we have created based on the Bloom's tax-

onomy, shown in publications (ii) and (iii). For CAA tools, publication (v) provides

a survey of features of such tools to take into account when developing one's own.

For rubric-based assessment tools, we have provided data on how our original ap-

proached were used with recommendations to move forward. Already using these

results, succeeding tools have been developed.

Bene�ts for CS researchers

Besides good ground work for either visualization research or around tools-assisted

assessment we �nd some bene�ts especially from the CS-speci�c adaptation of

Bloom's taxonomy, the Matrix Taxonomy, presented in publication (i). Already

67

6. Conclusions

now, at the time of this thesis, the article has been out for several years and has

been widely cited and used as a basis for the everlasting discussion around suitabil-

ity of certain learning taxonomies. As has been argued, the new CS-speci�c Matrix

Taxonomy is certainly not �tting all possible use cases, but it does provide one fresh

look into the real-life problems students face when learning to program. As such,

the new taxonomy does provide a useful tool for further research�which already

now, has been quite active around the topic.

Certainly, the other �ndings of our work provide a lot of possibilities for future

work in research as well. For instance, the new visualization categories give a good

basis but certainly can use of further validation, new concrete implementations and

eventually incremental iterations.

Bene�ts for the Student

This thesis is not directly targeted for the student even though the student is in

the lead role here most of the time. The tools are meant to be used by students

but rarely it is the student who has a saying on the tools used for the course infras-

tructure. Naturally, these tools are targeted for the student to learn better, so we

hope that our ultimate biggest contribution will be towards students even though

our results directly are not targeted for students to apply.

Sometimes, the students become teaching assistants that are grading submissions

of other students. Eventually they might end up becoming teachers and even CS

education researchers. Maybe, if read by a student, this work could also contribute

by planting a small seed for better educational practices. But mostly, until then,

students, we are happy to see you have selected to take the journey towards be-

coming expert programmers. You are, after all, why CS teachers and CS education

researchers do their work. So, keep on rocking! (See Figure 6.2)

Figure 6.2: The author of this thesis, rocking. Thank You!

68

BIBLIOGRAPHY

[1] Tuukka Ahoniemi, Essi Lahtinen, and Teemu Erkkola. Fighting the student

dropout rate with an incremental programming assignment. In Proceedings of

the Seventh Baltic Sea Conference on Computing Education Research - Volume

88, Koli Calling '07, pages 163�166, Darlinghurst, Australia, Australia, 2007.

Australian Computer Society, Inc.

[2] Tuukka Ahoniemi, Essi Lahtinen, and Keeko Valaskala. Why should we bore

students when teaching CS? In Proceedings of the 7th Baltic Sea Conference

on Computing Education Research, November 2007.

[3] Tuukka Ahoniemi and Tommi Reinikainen. ALOHA - a grading tool for semi-

automatic assessment of mass programming courses. In Proceedings of the 6th

Baltic Sea Conference on Computing Education Research: Koli Calling 2006,

Baltic Sea '06, pages 139�140, New York, NY, USA, 2006. ACM.

[4] Kirsti Ala-Mutka. Automatic Assessment Tools in Learning and Teaching Pro-

gramming. PhD thesis, Tampere University of Technology, 2005.

[5] Kirsti Ala-Mutka and Hannu-Matti Järvinen. Assessment process for program-

ming assignments. In Proceedings of the IEEE International Conference on

Advanced Learning Technologies, ICALT 2004, 30 August - 1 September 2004,

Joensuu, Finland, page 0, 2004.

[6] Kirsti M. Ala-Mutka. A survey of automated assessment approaches for pro-

gramming assignments. Computer Science Education, 15(2):83�102, June 2005.

[7] Lorin W Anderson, David R Krathwohl, Peter W Airasian, Kathleen A Cruik-

shank, Richard E Mayer, Paul R Pintrich, James Raths, and Merlin CWittrock.

A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's

Taxonomy of Educational Objectives, Abridged Edition. Allyn & Bacon, 2000.

[8] A. Anglin, K. Anglin, P. L. Schumann, and J. A. Kaliski. Improving the e�-

ciency and e�ectiveness of grading through the use of computer-assisted grading

rubrics. Decision Sciences Journal of Innovative Education, 6:51�73, 03/2008

2008.

[9] Doug Atkinson and Siew Leng Lim. Improving assessment processes in higher

education: Student and teacher perceptions of the e�ectiveness of a rubric em-

bedded in a lms. ICALT '13: Proceedings of the 2013 IEEE 13th International

Conference on Advanced Learning Technologies, 2013.

69

BIBLIOGRAPHY

[10] Tapio Auvinen, Ville Karavirta, and Tuukka Ahoniemi. Rubyric: an online

assessment tool for e�ortless authoring of personalized feedback. In Proceedings

of the 14th annual ACM SIGCSE conference on Innovation and technology in

computer science education, ITiCSE '09, pages 377�377, New York, NY, USA,

2009. ACM.

[11] Ronald Baecker. Sorting out sorting: A case study of software visualization for

teaching computer science. MIT Press, Cambridge, MA, USA, 1997.

[12] Katrin Becker. Grading programming assignments using rubrics. In Proceedings

of the 8th annual conference on Innovation and technology in computer science

education, ITiCSE '03, pages 253�253, New York, NY, USA, 2003. ACM.

[13] Roman Bednarik. Methods to analyze visual attention strategies: Applications

in the studies of programming. PhD thesis, University of Joensuu, Department

of Computer Science and Statistics, 2007.

[14] Roman Bednarik, Niko Myller, Erkki Sutinen, and Markku Tukiainen. Analyz-

ing Individual Di�erences in Program Comprehension. Technology, Instruction,

Cognition and Learning, 3(3):205�232, 2006.

[15] Mordechai Ben-Ari, Roman Bednarik, Ronit Ben-Bassat Levy, Gil Ebel, Andrés

Moreno, Niko Myller, and Erkki Sutinen. A decade of research and development

on program animation: The Jeliot experience. Journal of Visual Languages &

Computing, 22(5):375 � 384, 2011.

[16] S D Benford, E K Burke, E Foxley, and C A Higgins. The Ceilidh system for the

automatic grading of students on programming courses. In Proceedings of the

33rd Annual on Southeast Regional Conference, ACM-SE 33, pages 176�182,

New York, NY, USA, 1995. ACM.

[17] John Biggs and Catherine Tang. Teaching for Quality Learning at University,

fourth edition. Open Univ Press, 2011.

[18] B.S. Bloom, M.D. Engelhart, E.J. Furst, W.H. Hill, and D.R. Krathwohl. Tax-

onomy of Educational Objectives: Handbook 1 Cognitive Domain. Longmans,

Green and Co Ltd, London, 1956.

[19] Marc H. Brown. Zeus: a system for algorithm animation and multi-view editing.

In Proceedings of IEEE Workshop on Visual Languages, pages 4�9, 1991.

[20] Marc H. Brown and Robert Sedgewick. A system for algorithm animation.

SIGGRAPH Comput. Graph., 18(3):177�186, January 1984.

70

BIBLIOGRAPHY

[21] Janet Carter, Kirsti Ala-Mutka, Ursula Fuller, Martin Dick, John English,

William Fone, and Judy Sheard. How shall we assess this? In Working group

reports from ITiCSE on Innovation and technology in computer science educa-

tion, ITiCSE-WGR '03, pages 107�123, New York, NY, USA, 2003. ACM.

[22] Christopher Douce, David Livingstone, and James Orwell. Automatic test-

based assessment of programming: A review. J. Educ. Resour. Comput., 5(3),

September 2005.

[23] Gil Ebel and Mordechai Ben-Ari. A�ective e�ects of program visualization.

In Proceedings of the second international workshop on Computing education

research, ICER '06, pages 1�5, New York, NY, USA, 2006. ACM.

[24] Bob Edmison, Stephen H. Edwards, and Manuel A. Pérez-Quiñones. Using a

rubric-based assessment system to improve feedback and student performance

in course-management systems. In Proceedings of 2010 ASEE Southeast Section

Conference, 2010.

[25] Stephen H. Edwards. Improving student performance by evaluating how well

students test their own programs. J. Educ. Resour. Comput., 3(3), September

2003.

[26] Stephen H. Edwards, Jürgen Börstler, Lillian N. Cassel, Mark S. Hall, and

Joseph Hollingsworth. Developing a common format for sharing programming

assignments. SIGCSE Bull., 40(4):167�182, November 2008.

[27] Stephen H. Edwards and Manuel A. Perez-Quinones. Web-CAT: Automatically

grading programming assignments. In Proceedings of the 13th annual conference

on Innovation and technology in computer science education, ITiCSE '08, pages

328�328, New York, NY, USA, 2008. ACM.

[28] Sally Fincher and Marian Petre. Computer Science Education Research. Taylor

& Francis, 2004.

[29] G. Gibbs. Using assessment strategically to change the way students learn.

In Assessment Matters in Higher Education: Choosing and Using Diverse Ap-

proaches. 1999.

[30] S. Habeshaw, G. Gibbs, and T. Habeshaw. 53 Problems with Large Classes:

Making the Best of a Bad Job. Interesting ways to teach. Technical and Edu-

cational Services, 1992.

71

BIBLIOGRAPHY

[31] Colin Higgins, Tarek Hegazy, Pavlos Symeonidis, and Athanasios Tsintsifas.

The coursemarker cba system: Improvements over ceilidh. Education and In-

formation Technologies, 8(3):287�304, September 2003.

[32] Christopher D. Hundhausen. Integrating algorithm visualization technology

into an undergraduate algorithms course: Ethnographic studies of a social con-

structivist approach. Comput. Educ., 39(3):237�260, November 2002.

[33] Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. A meta-

study of algorithm visualization e�ectiveness. Journal of Visual Languages &

Computing, 13(3):259 � 290, 2002.

[34] Essi Isohanni and Hannu-Matti Järvinen. Are visualization tools used in pro-

gramming education?: By whom, how, why, and why not? In Proceedings of the

14th Koli Calling International Conference on Computing Education Research,

Koli Calling '14, pages 35�40, New York, NY, USA, 2014. ACM.

[35] Essi Isohanni and Maria Knobelsdorf. Behind the curtain: Students' use of vip

after class. In Proceedings of the Sixth International Workshop on Computing

Education Research, ICER '10, pages 87�96, New York, NY, USA, 2010. ACM.

[36] David Jackson. A semi-automated approach to online assessment. SIGCSE

Bull., 32(3):164�167, July 2000.

[37] David Jackson and Michelle Usher. Grading student programs using assyst.

SIGCSE Bull., 29(1):335�339, March 1997.

[38] Colin G. Johnson and Ursula Fuller. Is bloom's taxonomy appropriate for

computer science? In Proceedings of the 6th Baltic Sea conference on Computing

education research: Koli Calling 2006, Baltic Sea '06, pages 120�123, New York,

NY, USA, 2006. ACM.

[39] Mike Joy, Nathan Gri�ths, and Russell Boyatt. The boss online submission

and assessment system. J. Educ. Resour. Comput., 5(3), September 2005.

[40] Harri Järvi. Visualisointiympäristö ohjelmoinnin perusopetukseen. Master's

thesis, Tampere University of Technology, 2010.

[41] Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, and Tapio Salakoski. Auto-

matic assessment of program visualization exercises. In Proceedings of the 8th

International Conference on Computing Education Research, Koli '08, pages

101�104, New York, NY, USA, 2008. ACM.

72

BIBLIOGRAPHY

[42] Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, and Tapio Salakoski. Ef-

fects of course-long use of a program visualization tool. In Proceedings of the

Twelfth Australasian Conference on Computing Education - Volume 103, ACE

'10, pages 97�106, Darlinghurst, Australia, Australia, 2010. Australian Com-

puter Society, Inc.

[43] Ville Karavirta. Facilitating Algorithm Visualization Creation and Adoption in

Education. PhD thesis, Teknillinen korkeakoulu, 2009.

[44] Ville Karavirta and Ari Korhonen. Automatic tutoring question generation

during algorithm simulation. In Proceedings of the 6th Baltic Sea conference on

Computing education research: Koli Calling 2006, Baltic Sea '06, pages 95�100,

New York, NY, USA, 2006. ACM.

[45] Ville Karavirta, Ari Korhonen, Lauri Malmi, and K. Stalnacke. MatrixPro -

a tool for on-the-�y demonstration of data structures and algorithms. In Pro-

ceedings of the Third Program Visualization Workshop, pages 26�33, University

of Warwick, UK, 07/2004 2004.

[46] Colleen Kehoe, John Stasko, and Ashley Taylor. Rethinking the evaluation of

algorithm animations as learning aids An observational study. International

Journal of Human-Computer Studies, 54:265�284, 1999.

[47] Michael Kolling, Bruce Quig, Andrew Patterson, and John Rosenberg. The

BlueJ system and its pedagogy. Journal of Computer Science Education, Special

issue on Learning and Teaching Object Technology, 13(4):249�268, December

2003.

[48] Ari Korhonen, Mikko-Jussi Laakso, and Niko Myller. How does algorithm vi-

sualization a�ect collaboration? Video analysis of engagement and discussions.

In WEBIST 2009 - 5th International Conference on Web Information Systems

and Technologies, 2009.

[49] Ari Korhonen and Lauri Malmi. Matrix - concept animation and algorithm

simulation system. In Levialdi S. Panizzi E. De Marsico, M., editor, Proceed-

ings of the Working Conference on Advanced Visual Interfaces, pages 109�114.

ACM, Trento, Italy, 2002.

[50] Mikko-Jussi Laakso. Promoting Programming Learning�Engagement, Auto-

matic Assessment with Immediate Feedback in Visualizations. PhD thesis, Uni-

versity of Turku, Turku Center for Computer Science (TUCS), 2010.

73

BIBLIOGRAPHY

[51] Essi Lahtinen. Integrating the use of visualizations to teaching programming.

In Hannu-Matti Järvinen and Kirsti Ala-Mutka, editors, MMT 2006 Methods,

Materials and Tools for Programming Education Conference Proceedings, 2006.

[52] Essi Lahtinen. A categorization of novice programmers: A cluster analysis

study. In Proceedings of the 19th annual Workshop of the Psychology of Pro-

gramming Interest Group, 2007.

[53] Essi Lahtinen. Students' individual di�erences in using visualizations:

Prospects of future research on program visualizations. In Proceedings of the

8th International Conference on Computing Education Research, Koli '08, pages

92�95, New York, NY, USA, 2008. ACM.

[54] Essi Lahtinen and Tuukka Ahoniemi. Annotations for de�ning interactive in-

structions to interpreter based program visualization tools. Electron. Notes

Theor. Comput. Sci., 178:121�128, July 2007.

[55] Essi Lahtinen, Tuukka Ahoniemi, and Anniina Salo. E�ectiveness of integrating

program visualizations to a programming course. In Raymond Lister and Si-

mon, editors, Seventh Baltic Sea Conference on Computing Education Research

(Koli Calling 2007), volume 88 of CRPIT, pages 195�198, Koli National Park,

Finland, 2007. ACS.

[56] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of the

di�culties of novice programmers. SIGCSE Bull., 37(3):14�18, June 2005.

[57] Essi Lahtinen, Hannu-Matti Järvinen, and Suvi Melakoski-Vistbacka. Targeting

program visualizations. In Proceedings of the 12th annual SIGCSE conference

on Innovation and technology in computer science education, ITiCSE '07, pages

256�260, New York, NY, USA, 2007. ACM.

[58] S.-P. Lahtinen, E. Sutinen, and J. Tarhio. Automated animation of algorithms

with Eliot. Journal of Visual Languages & Computing, 9(3):337 � 349, 1998.

[59] Ronit Ben-Bassat Levy and Mordechai Ben-Ari. We work so hard and they

don't use it: acceptance of software tools by teachers. In Proceedings of the 12th

annual SIGCSE conference on Innovation and technology in computer science

education, ITiCSE '07, pages 246�250, New York, NY, USA, 2007. ACM.

[60] Ronit Ben-Bassat Levy, Mordechai Ben-Ari, and Pekka A Uronen. The jeliot

2000 program animation system. Computers & Education, 40(1):1 � 15, 2003.

[61] Raymond Lister and John Leaney. First year programming: Let all the �ow-

ers bloom. In Proceedings of the Fifth Australasian Conference on Computing

74

BIBLIOGRAPHY

Education - Volume 20, ACE '03, pages 221�230, Darlinghurst, Australia, Aus-

tralia, 2003. Australian Computer Society, Inc.

[62] Raymond Lister and John Leaney. Introductory programming, criterion-

referencing, and bloom. SIGCSE Bull., 35(1):143�147, January 2003.

[63] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley, and

Christine Prasad. Not seeing the forest for the trees: Novice programmers and

the solo taxonomy. SIGCSE Bull., 38(3):118�122, June 2006.

[64] Harri Luoma. Tulkin toteutus ohjelmoinnin perusopetuksen tarpeisiin. Master's

thesis, Tampereen teknillinen yliopisto, 2007.

[65] Harri Luoma, Essi Lahtinen, and Hannu-Matti Järvinen. CLIP, a Command

Line InterPreter for a subset of C++. In Proceedings of the 7th Baltic Sea

Conference on Computing Education Research, November 2007.

[66] Lauri Malmi, Ville Karavirta, Ari Korhonen, Jussi Nikander, Otto Seppälä,

and Panu Silvasti. Visual algorithm simulation exercise system with automatic

assessment: TRAKLA2. Informatics in Education, 3(2):267�288, 2004.

[67] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Ha-

gan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and

Tadeusz Wilusz. A multi-national, multi-institutional study of assessment of

programming skills of �rst-year cs students. SIGCSE Bull., 33(4):125�180, De-

cember 2001.

[68] Orni Meerbaum-Salant, Michal Armoni, and Mordechai (Moti) Ben-Ari. Learn-

ing computer science concepts with scratch. In Proceedings of the Sixth Inter-

national Workshop on Computing Education Research, ICER '10, pages 69�76,

New York, NY, USA, 2010. ACM.

[69] Andrés Moreno, Niko Myller, Mordechai Ben-Ari, and Erkki Sutinen. Program

animation in jeliot 3. SIGCSE Bull., 36(3):265�265, June 2004.

[70] Niko Myller, Roman Bednarik, Erkki Sutinen, and Mordechai Ben-Ari. Ex-

tending the engagement taxonomy: Software visualization and collaborative

learning. Trans. Comput. Educ., 9:7:1�7:27, March 2009.

[71] Niko Myller, Mikko Laakso, and Ari Korhonen. Analyzing engagement taxon-

omy in collaborative algorithm visualization. In Proceedings of the 12th annual

SIGCSE conference on Innovation and technology in computer science educa-

tion, ITiCSE '07, pages 251�255, New York, NY, USA, 2007. ACM.

75

BIBLIOGRAPHY

[72] Thomas L. Naps, James R. Eagan, and Laura L. Norton. JHAVE-an envi-

ronment to actively engage students in web-based algorithm visualizations. In

Proceedings of the thirty-�rst SIGCSE technical symposium on Computer sci-

ence education, SIGCSE '00, pages 109�113, New York, NY, USA, 2000. ACM.

[73] Thomas L. Naps, Guido Rössling, Vicki Almstrum, Wanda Dann, Rudolf Fleis-

cher, Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan

Rodger, and J. Ángel Velázquez-Iturbide. Exploring the role of visualization

and engagement in computer science education. In Working group reports from

ITiCSE on Innovation and technology in computer science education, ITiCSE-

WGR '02, pages 131�152, New York, NY, USA, 2002. ACM.

[74] Seppo Nevalainen and Jorma Sajaniemi. An experiment on short-term e�ects

of animated versus static visualization of operations on program perception.

In Proceedings of the Second International Workshop on Computing Education

Research, ICER '06, pages 7�16, New York, NY, USA, 2006. ACM.

[75] Richard E. Pattis. Karel the Robot: A Gentle Introduction to the Art of Pro-

gramming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1981.

[76] Arnold Pears, Stephen Seidman, Crystal Eney, Päivi Kinnunen, and Lauri

Malmi. Constructing a core literature for computing education research.

SIGCSE Bull., 37:152�161, December 2005.

[77] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth

Adams, Jens Bennedsen, Marie Devlin, and James Paterson. A survey of litera-

ture on the teaching of introductory programming. SIGCSE Bull., 39:204�223,

December 2007.

[78] Marian Petre. Why looking isn't always seeing: Readership skills and graphical

programming. Commun. ACM, 38(6):33�44, June 1995.

[79] B.A. Price, R.M. Baecker, and I.S. Small. A principled taxonomy of sofware

visualization. 4(3):211 � 266, 1993.

[80] T. Rajala, E. Kaila, J. Holvitie, R. Haavisto, M. Laakso, and T. Salakoski.

Comparing the collaborative and independent viewing of program visualiza-

tions. In Frontiers in Education Conference (FIE), 2011, pages F3G�1�F3G�7,

Oct 2011.

[81] Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. VILLE:

A language-independent program visualization tool. In Proceedings of the Sev-

enth Baltic Sea Conference on Computing Education Research - Volume 88,

76

BIBLIOGRAPHY

Koli Calling '07, pages 151�159, Darlinghurst, Australia, Australia, 2007. Aus-

tralian Computer Society, Inc.

[82] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teach-

ing programming: A review and discussion. Computer Science Education,

13(2):137�172, 2003.

[83] Guido Rössling and Bernd Freisleben. AnimalScript: An extensible scripting

language for algorithm animation. SIGCSE Bull., 33(1):70�74, February 2001.

[84] Guido Rössling and Bernd Freisleben. ANIMAL: A system for supporting mul-

tiple roles in algorithm animation. Journal of Visual Languages and Computing,

13:341�354, 2002.

[85] Google Scholar. http://scholar.google.com, December 2014.

[86] Cli�ord A. Sha�er, Matthew Cooper, and Stephen H. Edwards. Algorithm

visualization: A report on the state of the �eld. SIGCSE Bull., 39(1):150�154,

March 2007.

[87] Cli�ord A. Sha�er, Matthew L. Cooper, Alexander Joel D. Alon, Monika Ak-

bar, Michael Stewart, Sean Ponce, and Stephen H. Edwards. Algorithm visu-

alization: The state of the �eld. Trans. Comput. Educ., 10(3):9:1�9:22, August

2010.

[88] Petri Sirkkala and Sami Puonti. Nalkki-project - tool for plagiarism detection

using the web. In Raymond Lister and Simon, editors, Seventh Baltic Sea

Conference on Computing Education Research (Koli Calling 2007), volume 88

of CRPIT, pages 229�230, Koli National Park, Finland, 2007. ACS.

[89] Juha Sorva. Visual Program Simulation in Introductory Programming Educa-

tion. PhD thesis, Aalto University, 2012.

[90] John Stasko. Smooth, continuous animation for portraying algorithms and

processes. MIT Press, Cambridge, MA, USA, 1997.

[91] John Stasko, Albert Badre, and Clayton Lewis. Do algorithm animations assist

learning?: An empirical study and analysis. In Proceedings of the INTERACT

'93 and CHI '93 Conference on Human Factors in Computing Systems, CHI

'93, pages 61�66, New York, NY, USA, 1993. ACM.

[92] John T. Stasko. Tango: A framework and system for algorithm animation.

Computer, 23(9):27�39, September 1990.

77

BIBLIOGRAPHY

[93] John T. Stasko, Marc H. Brown, and Blaine A. Price, editors. Software Visu-

alization. MIT Press, Cambridge, MA, USA, 1997.

[94] Ian Utting, Allison Elliott Tew, Mike McCracken, Lynda Thomas, Dennis Bou-

vier, Roger Frye, James Paterson, Michael Caspersen, Yifat Ben-David Ko-

likant, Juha Sorva, and Tadeusz Wilusz. A fresh look at novice programmers'

performance and their teachers' expectations. In Proceedings of the ITiCSE

Working Group Reports Conference on Innovation and Technology in Computer

Science Education-working Group Reports, ITiCSE -WGR '13, pages 15�32,

New York, NY, USA, 2013. ACM.

[95] Juha-Matti Vanhatupa, Arto Salminen, and Hannu-Matti Järvinen. Organizing

and evaluating course on embedded programming. In Proceedings of the 10th

Koli Calling International Conference on Computing Education Research, Koli

Calling '10, pages 112�117, New York, NY, USA, 2010. ACM.

[96] Antti Virtanen. Visuaalinen tulkki ohjelmoinnin opetukseen. Master's thesis,

Tampere University of Technology, 2005.

[97] Antti T. Virtanen, Essi Lahtinen, and Hannu-Matti Järvinen. VIP, a Vi-

sual Interpreter for Learning Introductory Programming with C++. In Tapio

Salakoski, Tomi Mäntylä, and Mikko Laakso, editors, Proceedings of Koli Call-

ing 2005, 2006.

[98] Leon E. Winslow. Programming pedagogy�a psychological overview. SIGCSE

Bull., 28(3):17�22, September 1996.

78

7. PUBLICATIONS REPRINTED

79

7. Publications reprinted

Publication (i)

Fuller, U., Johnson, C.G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I., Jack-

ova, J., Lahtinen, E., Lewis, T., McGee Thompson, D., Riedesel, C., Thompson, E.

Developing a Computer Science-Speci�c Learning Taxonomy In: Working group re-

ports on ITiCSE on Innovation and technology in computer science education, June

2007, Dundee, Scotland

81

 152

Developing a Computer Science-specific

Learning Taxonomy
Ursula Fuller

Computing Laboratory
University of Kent

Canterbury CT2 7NF
United Kingdom

U.D.Fuller@kent.ac.uk

Colin G. Johnson

Computing Laboratory
University of Kent

Canterbury CT2 7NF
United Kingdom

C.G.Johnson@kent.ac.uk

Tuukka Ahoniemi

Institute of Software Systems
Tampere University of Technology

Tampere, Finland

tuukka.ahoniemi@tut.fi

Diana Cukierman

School of Computing Science
Simon Fraser University

Burnaby, British Columbia
Canada

diana@cs.sfu.ca

Isidoro Hernán-Losada

Lenguajes y Sistemas Informáticos
Universidad Rey Juan Carlos

Madrid
Spain

Isidoro.hernan@urjc.es

Jana Jackova

Faculty of Management Science
and Informatics

University of Zilina /Slovak
University of Technology
Zilina, Slovak Republic

Jana.Jackova@fri.uniza.sk

Essi Lahtinen

Institute of Software Systems
Tampere University of Technology

Tampere
Finland

essi.lahtinen@tut.fi

Tracy L. Lewis

Information Technology
Radford University
Radford, VA 24142

USA

Tlewis32@radford.edu

Donna McGee Thompson

Student Learning Commons
Simon Fraser University

Burnaby, British Columbia
Canada

dmcthomp@sfu.ca

Charles Riedesel

Computer Science & Engineering
University of Nebraska Lincoln

259 Avery Hall
Lincoln, Nebraska 68588-0115

USA

riedesel@cse.unl.edu

Errol Thompson

Massey University
Wellington

New Zealand

kiwiet@computer.org

ABSTRACT
Bloom’s taxonomy of the cognitive domain and the SOLO
taxonomy are being increasingly widely used in the design and
assessment of courses, but there are some drawbacks to their use
in computer science. This paper reviews the literature on
educational taxonomies and their use in computer science
education, identifies some of the problems that arise, proposes a
new taxonomy and discusses how this can be used in
application-oriented courses such as programming.

Keywords
Computer science education, taxonomies of learning, curricula,
assessment, credit transfer, benchmarking

Categories and Subject Descriptors
K.3.2 Computer and Information Science Education

General Terms
None

1. INTRODUCTION

1.1 Motivation
Educational taxonomies are a useful tool in developing learning
objectives and assessing student attainment. They can also be
deployed in educational research, for example to classify test
items and investigate the range of learning these are measuring.
The well-known educational taxonomies are generic and rely on
the assumption that the hierarchy of learning outcomes is the

 153

same in all subjects, from art history to zoology. However,
taxonomies are not simple to use and researchers find it hard to
reach agreement on the classification of items, which limits their
benefits to instructors [27]. This paper reports the work of an
ITiCSE Working Group investigating the hypothesis that the
hierarchy of learning outcomes in computer science is not well
captured by existing generic taxonomies and that computer
science education would be better served by the development of
a computer science-specific taxonomy.

1.2 What is an educational taxonomy?
A taxonomy is a classification system that is ordered in some
way. Linnaeus’s taxonomy arranged living organisms into a tree-
structured hierarchy. This gave biologists a tool to help them
understand the relationship between members of the plant and
animal kingdoms and to communicate accurately about them [7].
Taxonomies of educational objectives can similarly be used to
provide a shared language for describing learning outcomes and
performance in assessments. Unlike the biological taxonomy,
educational taxonomies are not usually tree-structured. To a
greater or lesser extent they divide educational objectives into
three domains, cognitive, affective and psychomotor. Some, such
as Bloom’s taxonomy, treat each of these as a one-dimensional
continuum [7], others, like the revised Bloom’s taxonomy,
describe the cognitive domain using a matrix [3]. Yet others,
like the SOLO taxonomy, use a set of categories that describe a
mixture of quantitative and qualitative differences between the
performance of students [5] and there are also taxonomies that
claim they can be applied equally to all three domains.

1.3 What taxonomies are used for
Learning taxonomies describe and categorize the stages in
cognitive, affective and other dimensions that an individual may
be at as part of a learning process. Paraphrasing Biggs [6], we
can say that they help with “understanding about understanding”
and “communicating about understanding”. Thus learning
taxonomies can be seen as a language which can be used in a
variety of educational contexts.

Learning taxonomies can be used to define the curriculum
objectives of a course, so that it is not only described on the
basis of the topics to be covered, but also in terms of the desired
level of understanding for each topic [48]. Computing programs
accredited by ABET have to be specified in terms of measurable
objectives, including expected outcomes for graduates [14].
More generally, the use of learning outcomes is mandated in the
countries of the European Higher Education Area [1,8,68] and is
increasingly prevalent in the US and elsewhere [15].

Learning taxonomies are widely used to describe the learning
stages at which a learner is operating for a certain topic. For
example, a student may be capable of reciting by heart what
recursion is but not capable of implementing a recursive
algorithm. An instructor may aim to have his or her students
learn a topic at a certain level in a taxonomy (e.g. students may
be expected to be able to comprehend the concept of recursion
without necessarily applying it). Once this has been done, the
instructor can assess students at the chosen level through a
suitable choice of questions or examples [39]. This approach is
encouraged by teacher-trainers [26]. Furthermore, the students’
answers can be analyzed as belonging to one level or another;
such answers can help the instructor revise his or her teaching

techniques to better guide students to accomplish a certain
learning stage.

Learning taxonomies have been used in many other contexts,
such as introducing students to a learning taxonomy to raise
their awareness and improve their level of understanding and
their studying techniques [16,71]. They are also used to
structure exercises in computer-based and computer-assisted
instruction [21,36].

1.4 Weaknesses of taxonomies from a CS

standpoint
Learning taxonomies, particularly Bloom’s taxonomy of the
cognitive domain, have had a considerable impact on curriculum
and assessment design in the last fifty years. However, this does
not mean that their use is unproblematic. The classification of a
specific learning outcome or test item depends on its context. A
task that challenges the analysis and synthesis skills of a
beginner becomes routine application of knowledge for a more
advanced learner. Similarly, a student who has been taught how
to solve a problem that is extremely similar to the test item will
demonstrate skills lower in the taxonomic order than one who is
solving it from first principles. This is a generic problem but
computer science-specific difficulties also manifest themselves.

Johnson and Fuller [27] found that colleagues disagreed about
the relative difficulty of cognitive tasks in computer science. A
significant proportion felt that it is easier to apply knowledge to
solve simple problems than to describe this knowledge. They
also found that computer science instructors did not find the
terms synthesis and evaluation useful in describing learning
outcomes and assessment tasks for programming courses,
especially at the introductory level, instead seeing the
application of knowledge as the highest skill that they should be
developing. Close questioning revealed that application, as used
by these colleagues, did in fact subsume analysis, synthesis and
evaluation, leading Johnson and Fuller to propose a revised
taxonomy with higher application as the highest level.

Lahtinen’s recent work [37] shows that the ordering of cognitive
tasks in Bloom’s taxonomy is a very poor fit for the learning
trajectories of some students tackling programming for the first
time. In addition, the use of taxonomies is concentrated on the
cognitive domain, even though learning in the affective domain
is also essential for the formation of computer science
practitioners. These problems led the working group to
investigate whether a subject specific taxonomy would be of
more use to computer science instructors than the existing
generic ones.

1.5 Methodology
In order to investigate this hypothesis, our working group has
reviewed a number of taxonomies described in the educational
literature, together with the range of uses to which they are put.
We have also reviewed studies in the computer science
education research literature that use one or more taxonomies as
an analytic tool. In addition we have looked at the practice of
assessment in computer science both for novice programming
and in two other typical subject areas, drawing on the experience
of members of the working group and their colleagues. We have
used this evidence to propose a new, computer science-specific
taxonomy and to make recommendations about how it might be
used. We concentrated on the cognitive domain because that is

 154

the area in which there is existing research on the use of
taxonomies in computer science.

2. REVIEW OF EXISTING TAXONOMIES
Educational researchers have developed a range of taxonomies,
developmental stages and instructional design strategies aimed
at helping educators develop learning outcomes, educational
resources, and assessments. These taxonomies have been based
on a range of educational theories and research. Readers
interested in the theoretical foundations for the taxonomies
reviewed by the working group should direct their attention to
the referenced papers.

2.1 Cognitive domain

2.1.1 Bloom and revision
Of these taxonomies, the most widely cited in the literature
reviewed by the working group is the original Bloom’s
taxonomy [7]. Bloom’s taxonomy has six categories, where each
category builds on the lower ones:

 1. Knowledge
2. Comprehension
3. Application
4. Analysis
5. Synthesis

A
bi

lit
ie

s
an

d
sk

il
ls

6. Evaluation
Bloom’s taxonomy has since been revised by Anderson et al [3].
The authors changed the nouns listed in the Bloom’s model into
verbs, to correspond with the ways learning objectives are
typically described.

Revised Bloom’s taxonomy [3]

These taxonomies do not define a sequence of instruction but
define levels of performance that might be expected for any
given content element. A learner performing at a higher level is
expected to be able to perform at the lower levels in the
cognitive hierarchy. This could be interpreted as implying a
sequential learning process. However, the taxonomy doesn’t rule
out the use of an iterative approach to learning the content.

The authors of the revised taxonomy acknowledge that there is a
possible overlap in terms of the cognitive complexity among the
higher level categories of the hierarchy. However, the midpoint
of each of the higher level categories is seen as being more
complex than the lower category [32,67]. For example, the
cognitive process of Explaining in the Understand category may
require a higher cognitive load than Executing in the Apply
category in some contexts.

A key difference between the revised taxonomy and the original
taxonomy is that the type of knowledge elements is also defined:
A. Factual knowledge, B. Conceptual knowledge, C. Procedural

knowledge, D. Metacognitive knowledge. This provides a
matrix into which learning objectives are mapped.

Revised Bloom’s Taxonomy [67]

2.1.2 Niemierko , Tollingerova, Bespalko
Other taxonomies of learning objectives have extended Bloom’s
taxonomy.

Niemierko and others claim that the three highest Bloom
categories (higher thinking processes) cannot be ordered
hierarchically in science subjects [50]. This has been used for
the development of curricula in e.g. Slovakia, the Czech
Republic and Poland [35]. He developed the “ABC” taxonomy
of learning objectives [50] that are organized in two dimensions:

Levels Categories of learning objectives

I. Knowledge A. Remembering of knowledge

B. Understanding of knowledge

II. Abilities

and skills

C. Application of knowledge in typical problem situations

D. Application of knowledge in unfamiliar problem situations

Niemierko’s “ABC” taxonomy of learning objectives [50]

Applications in category D include the analysis, synthesis, and
evaluation categories of Bloom’s taxonomy.

Tollingerova’s taxonomy [35] has five, hierarchically-ordered
operation categories : 1. memory reproduction of knowledge,
2. easy thought operations with knowledge, 3. difficult thought
operations with knowledge, 4. communication of knowledge, 5.
creative thinking

According to Bespalko learning objectives can be expressed in
two stages of abstraction and four activity levels [35, 50]:

I. Reproductive activities: 1. recognition (identification), 2.
reproduction

II. Productive activities: 3. application, 4. creativity
(transformation)

2.1.3 Critical thinking
Some researchers see Bloom’s taxonomy as not giving enough
emphasis to aspects of critical thinking. Critical thinking goes
beyond the cognitive categories of the original Bloom’s
taxonomy to incorporate attributes of reflective judgment with
respect to the value of what is being learned and to make

Categories Cognitive processes

1. Remember Recognizing, Recalling

2. Understand Interpreting, Exemplifying, Classifying,
Summarizing, Inferring, Comparing, Explaining

3. Apply Executing, Implementing

4. Analyze Differentiating, Organizing, Attributing

5. Evaluate Checking, Critiquing

6. Create Generating, Planning, Producing

 155

judgments on the reliability and authority of the associated
knowledge.

The reflective judgement taxonomy by King and Kitchener has a
total of seven stages that fall into three groups indicative of pre-

reflective thought (Stages 1-3), quasireflective thought (Stages 4
and 5), and reflective thought (Stages 6 and 7) [29].

Facione’s critical thinking taxonomy is more closely aligned
with Bloom’s taxonomy. It lists six critical thinking skills with
appropriate sub-skills. To become a good critical thinker
exhibiting self regulation, the person must engage in
interpretation, analysis, evaluation, inference, explanation, and
meta-cognitive self-regulation [18]. The revised Bloom’s
taxonomy [3] endeavours to capture some of these skills through
the use of the knowledge dimensions and the inclusion of the
meta-cognitive knowledge.

2.2 Unified domain taxonomy
There have been a number of attempts to produce a taxonomy
that covers the cognitive (C), affective (A) and psychomotor (P)
domains. The work of De Block [35] is an example of this
approach:

1 Knowledge
C: Repeat, define, show, name, etc.
A: Listen to opinion of others, accept notes, realize, etc.
P: Show, imitate, understand sound, smell, taste, etc.

2 Understanding
C: Describe, characterize, say in own words, explain,

compare, etc.
A: Accept opinions of others, answer questions, react to

rules correctly, ask relevant questions, participate, etc.
P: Demonstrate a principle, put together and disassemble

something that is known, etc.
3 Application

C: Solve, calculate, number, translate, illustrate, analyze,

make, etc.
A: React to rules automatically, accept norms and values,

cooperate in a group, apply norms and rules, etc.
P: Make, produce, try, repair, adapt, cook, cut, put together

and disassemble something that is new, etc.
4 Integration

C: Design, create, summarize, judge, decide, plan, etc.
A: React to rules spontaneously, apply norms spontaneously

and behave under rules, initiate cooperation, find

satisfaction in behavior and work under society’s rules,

etc.
P: Perform an activity fluently, without hesitation, without

mistakes, automatically; work precisely, quickly, etc.

Niemierko [50] describes the possibility of synthesizing an
overall educational taxonomy.

2.3 Structure of the Observed Learning

Outcome (SOLO)
The SOLO taxonomy makes no reference to cognitive
characteristics of the learner’s performance or to the affective
dimension. It focuses on the content of the learner’s response to
what is being assessed. It endeavours to identify the nature of
that content and the structural relationships within that content.
The content could be designed to assess knowledge, cognitive

skills, or underlying values. The taxonomy can be used to
establish the relationships expected between these different
types of content. It is left up to the assessor or course designer to
define the type of content expected.

The SOLO levels are:

§ Prestructural – not related to topic – disjoint – missed the
point

§ Unistructural – simple meaning, naming, focussing on one
issue in a complex case

§ Multistructural – ‘shopping list’ – disorganised collection
of items

§ Relational – understanding, using a concept that integrates
a collection of data, understanding how to apply the
concept to a familiar data set or to a problem

§ Extended abstract – relating to existing principle, so that
unseen problems can be handled, going beyond existing
principles [5,6].

In defining these categories, Biggs and Collis [5] use three
crucial characteristics. These are:

1. capacity – how many things are handled in the content
– “a quantitative increase in what is grasped” [6]

2. relating operation – the way in which the content is
related to the intended purpose – the integration of the
components within the content

3. consistency and closure – the drawing of conclusions
or bringing to closure that is consistent

Using SOLO in assessment can provide a mechanism for holistic
marking [69,70]. However, Biggs [6] provides examples of
assessment strategies that use items targeted at specific SOLO
levels as well as more holistic strategies.

The lower levels of the SOLO taxonomy (unistructural and
multistructural) can be used to focus on individual items or
attributes of what is being assessed. The higher levels with their
emphasis on integration and extension of principles require a
broader range of content or attributes to be examined.

The SOLO taxonomy makes no attempt to infer a cognitive
processing level although it might be argued that to perform at a
relational level or an extended abstract level involves greater
cognitive processing than that required for unistructural or
multistructural since the learners not only have to be able to
recall items, they have to show the relationship among items
(relational) and draw conclusions (extended abstract).

2.4 Instructional Design
Instructional designers use taxonomy concepts to guide course
creation. Merrill proposed the Component Display Theory
(CDT) for instructional design [46,47]. It classifies learning
along two dimensions: content (facts, concepts, procedures, and
principles) and performance (remembering, using, and
generalizing). A complete lesson would consist of an objective
followed by some combination of rules, examples, recall,
practice, feedback, helps and mnemonics appropriate to the
subject matter and learning task

 156

Find

Use

Remember

L
ev

el
 o

f
p

er
fo

rm
a
n

ce

F
ac

t

C
on

ce
pt

Pr
oc

ed
ur e

Pr
in

ci
pl

e

 Type of content

The types of content are very similar to the knowledge
dimensions of the revised cognitive Bloom’s taxonomy [3]. The
Use performance level focuses on an ability to use an existing
framework to process input. The Find performance level focuses
on the ability to create a new framework through the adaptation
of existing rules. This has similarities to the Apply and Create
categories of the revised cognitive taxonomy.

2.5 Discussion of existing taxonomies
By far the most widely used of the taxonomies reviewed above
is the original work by Bloom et al. Its strengths are that it is
based on extensive analysis of test items, its simplicity, and its
identification of distinct, recognizable aspects of the cognitive
domain. Instructors have taken it to mean that they can assess
comprehension, application, analysis, synthesis and evaluation
and that this hierarchy maps onto a grading scheme. The
weaknesses of the original Bloom’s taxonomy is that the
categories have not always proved easy to apply, that there is
significant overlap between the categories and debate about the
order in the hierarchy of analysis, synthesis and evaluation. In
addition, its simplicity means that each category combines
different types of cognitive activity.

There are many variants of the original Bloom. There is
evidence that the revised category names used by Anderson et al
have been adopted by instructors but it is not clear that the
added complexity of distinguishing aspects of the cognitive
domain such as procedural and metacognitive knowledge
outweighs the simplicity of the original scheme. Facione’s work
is similar in its approach to improving on Bloom.

The work of Niemierko, Tollingerova and Bespalko has strong
similarities to Bloom but produces two separate dimensions
related to knowing and applying. This addresses the difficulty of
regarding Bloom’s categories as a single hierarchy but does not
map so nicely onto a six or seven point scale. Component
display theory identifies essentially the same dimensions but is
specialized for use in computer-based instruction.

SOLO is very different to the other taxonomies reviewed above
because it deals with the content of the learner’s response to
what is being assessed. Its holistic approach means that it can be
used to assess performance in the affective and psychomotor, as
well as cognitive, domains. By comparison with Bloom, it may
be regarded as giving less guidance to instructors because is
does not map onto categories of cognitive performance that can
be singled out for assessment. Its strength is in encouraging a
holistic approach that supports deep learning, its weakness that

there is not yet much reported experience of using it for
assessment in a range of subjects.

3. THE USE OF TAXONOMIES IN

COMPUTER SCIENCE EDUCATION

LITERATURE

3.1 Existing Literature on Taxonomies for

Computer Science
A number of papers have explored how various generic
taxonomies can be applied to computing topics. In particular,
there are three ways in which such taxonomies have been
applied: to the design of courses at various levels of granularity
in time, the design of teaching, learning and assessment
materials, and, finally, the analysis of student responses to
exercises. In this section, we review work on these topics.

3.1.1 Design of Courses
Some authors propose using these taxonomies for the design or
evaluation of courses. Indeed, the notation of educational
objectives was the original purpose of Bloom’s taxonomy. This
can be at a number of different granularities: it could be used for
describing student progress through a single topic, through a
course, or through a whole degree programme.

Howard et al. [23] propose to clearly identify goals for every
lesson, and to assign them to a given level of the taxonomy.
Most lessons have a number of knowledge goals, but achieving
other levels varies during the course. Plotting the highest level
of each level in a graph shows the evolution of the course
according to knowledge depth. Scott [65] states that assessment
should measure the level achieved by each student, and the
grade should depend on his/her achievement. In particular, he
notices that his teaching has been covering levels 3 (application)
and 6 (evaluation). Buck and Stucki [11] outline an inside/out
pedagogical approach based on Bloom's taxonomy for cognitive
development. This framework allows students to comprehend
the basic concepts before they are asked to apply them.

Doran and Langan [17] report on a project that implemented a
cognitive-based approach (using Bloom’s taxonomy) to the first
two years of a computing degree, using strategic sequencing
(spiral) and associated mastery levels of key topics. The project
also investigated the use of structured closed labs, with frequent
feedback and early use of teams. They used course micro-
objectives mapped to specific levels in Bloom’s taxonomy.
Machanick [43] describe his experience of applying Bloom's
Taxonomy in design three different courses.

Some applications have applied the taxonomy across a
programme of study for a degree. For example, Sanders &
Mueller [64] discuss the redesign of the curriculum at his
university to bring material that is concerned mainly with lower
Bloom levels to the early years of a degree programme, and vice
versa. In other areas, Bloom's taxonomy has also been used to
redesign whole curricula. In particular, Reynolds & Fox [62]
extend a curriculum in Information Technology based on the
ACM Curriculum’91 to include new knowledge units and
describe they fit it in Bloom taxonomy levels. In the same area,
Azuma et al. [4] extend this taxonomy in order to apply it to
Software Engineering. Manaris & McCauley [44] presented one
possible implementation of the HCI curricular guidelines

 157

included in CC’01. This implementation employs Bloom’s
taxonomy to identify levels of student competence for each of
the learning objectives.

Oliver et al. [51] discuss the idea of a Bloom Rating for courses
of study. The course assessments are analysed by instructors and
the level in Bloom’s taxonomy that the assessment is designed
to engage the students at. These are then averaged for all of the
assessments on the course, and this is termed the Bloom rating.
This is then applied to looking at how courses develop in the
cognitive demands that they make on the students over the three
years of their degree programme. They note that some modules
early in the degree programme have a high rating, and some
towards the end have a low rating.

This paper makes a number of assumptions about the use of
Bloom’s taxonomy. Firstly, that the course should develop
students’ cognitive skills over the (three) years of the course,
engaging students at a low cognitive level at the beginning of
the degree and working towards the higher levels towards the
end of the degree. There is also the assumption that an
assessment works at one particular level. A danger with this is
that becomes normative, and that it is used as a “quality
measure” – the higher the Bloom rating, the better the course.

Johnson and Fuller [27] report on two studies of computer
science courses carried out by students in the first year of
computer science studies within a university: a panel of
assessments rated by instructors, and interviews with the
instructors on each course. A significant conclusion from these
studies is that the most significant level for many of the courses
studied is the application level; applying techniques to the
creation of artefacts would seem to be at the core of what the
study of computing is about. However, for complex application
problems students need to use skills that would be classified at
the analysis/synthesis/evaluation levels. The authors propose a
new level of “higher application” for subjects such as
computing. This encompasses cognitive activity that is aimed a
solving a problem, yet which needs the traditionally “higher
level” skills that engage students at the
analysis/synthesis/evaluation level.

A recent paper by Kramer [31] identifies abstraction as a core
skill that is important for many areas of computer science. The
author discusses Piaget’s model of cognitive development,
which consists of four stages: sensorimotor, pre-operational,
concrete operational, and formal operational [54]. His argument
is based on studies that show that a significant percentage of the
general population do not develop this final stage in the
taxonomy: they do not progress to the stage of making
significant use of the formal operational processes. Following on
from this, he argues that getting students to this stage is a
prerequisite for the students studying many aspects of
computing, and that we should devise courses that ensure that
students reach this stage of general cognitive engagement with
material that they encounter before teaching most computing
topics, or that we could use measures of abstraction ability as a
way of selecting students for computing courses.

Finally, Rademacher [56] reports research in progress includes
the conceptual development of a model and metrics to determine
and classify the level of cognition and added value included in
selected knowledge management (KM) systems. He joins
Bloom’s Taxonomy of Cognitive Objectives and Greenwood’s

Six C’s of the Knowledge Supply Chain in order to contribute a
new approach for assessing the role of knowledge management
systems including value, skill sets, learning, modeling, and
media.

3.1.2 Design of Teaching Materials and

Assessments
Another way in which these taxonomies are used is in designing
teaching materials and assessments. For example, structuring
materials to help students to move through a taxonomy, or
structuring assessments so that they assess a wide range of levels
of engagement with this material.

A number of authors have discussed how learning taxonomies
can be used for assessment design. Lister [38] notes that typical
assessments in introductory programming leap straight into
higher levels of Bloom’s taxonomy, and presents a course
design and examples of assessments that move students through
the Bloom hierarchy. Thompson [70] reports on the use of the
SOLO taxonomy to structure the marking scheme for a
programming course, and in particular using this taxonomy to
help students understand the grade that they have been assigned.
Farthing et al. [19] discuss the design of a new kind of multiple-
choice question (permutational MCQs) that can be used more
readily than traditional questions to assess higher-level skills.

Lahtinen and Ahoniemi [36] are concerned with the use of
taxonomies for the design of visualizations to help students
understand programming not only in the elementary cognitive
levels but to support their progress further also. They look at
each level of Bloom’s taxonomy, and discuss the kinds of visual
material that would be relevant to presenting and interacting
with material at each level resulting into a categorization of
program visualization examples. Naps et al. [49] make a
comprehensive study about the educational effectiveness of
visualizations for computer programming education. They
identify a set of good practices that have proved to be
educationally effective. Bloom’s taxonomy is proposed as a
standard framework that educators can use to measure such
effectiveness. Ihantola et al. [25] have developed a taxonomy of
algorithm visualizations: whilst not a “learning taxonomy” as
such (it does not give a structure for how students’ development
is meant to be guided by these visualizations) it could be used
alongside such a learning taxonomy to investigate the match
between students’ development as learners and the technology
required to support that development.

Some authors have designed software tools to assist at some
level. Thus, Kumar [34] has developed a set of applets (named
“problets”) to assist at the application level for well-delimited
topics. Each problet allows randomly generating instances of a
problem involving a concept, a question to be answered and
some kind of visualization or interaction to help solving the
problem.

Buck and Stucki [11] extend the JKarelRobot environment to
give support to all the levels in Bloom’s taxonomy. For instance,
students are continuously asked the next statement to be
executed by Karel. At the end of the run, they are given a score
that shows their competence at the comprehension level. Ala-
Mutka [2] reports a different automated assessment approach.
Facts: there exist different objectives and evaluations but these

 158

objectives are not reached. The reasons are: There aren’t
obvious and joint criteria and the design of tasks is not careful.
A possible solution is to design the objectives, the tasks and the
assessments with some obvious criteria based in Bloom's
Taxonomy.

Hernán-Losada et al. [21] describe insecurities and ambiguities
that they found in applying taxonomies to the design of
educational tools. They may classify difficulties into two
classes: terminology and the inherent complexity of
programming itself. They propose a guide to use the taxonomy
within the Computer Science. Moving on from this, in their
more recent paper [22] they describe their experiences with
designing and developing learning tools inspired by the
taxonomy of Bloom. They present a generic framework for the
design of these applications and describe the tools developed for
the learning of object-oriented programming.

3.1.3 Analysis of Student Responses to Exercises,

and Measuring Student Progress
Whalley et al. [72] investigate the results of applying the Bloom
and SOLO taxonomies to analysing the results of a
programming exercise that was carried out by students at a
number of universities. Nine of the questions in this exercise
were multiple choice, the final was a free-text question that
required students to give an English description of a piece of
code. The conclusions of this paper are that the difficulty of
these questions correlates strongly with their placement on the
taxonomies (in that most students can tackle the lower-rated
questions, a subset of those can perform on the higher level
questions, then a subset of them on the highest). A particular
item of interest is the free-text question that was asked at the
end. The authors use SOLO to analyse the responses to these
questions. This is carried further in [43] where they analyse the
responses to this question and to a further question, related to
classifying programs and investigating similarity between
programs, and examine students responses using the SOLO
taxonomy.

Lister et al. [42] report on the authors use of the SOLO
taxonomy to describe differences in the way students and
educators solve small code reading exercises. Data was collected
in the form of written and think-aloud responses from students
(novices) and educators (experts), using exam questions. During
analysis, the responses were mapped to the different levels of the
SOLO taxonomy. From think-aloud responses, the authors
found that educators tended to manifest a SOLO relational
response on small reading problems, whereas students tended to
manifest a multistructural response. These results are consistent
with the literature on the psychology of programming, but the
work in this paper extends on these findings by analyzing the
design of exam questions.

Lister and Leaney [39,40] also notice that typical programming
assignments correspond to level 5 (synthesis). Instead, they
group the six levels of the taxonomy into three pairs, so that
achieving a level in a given pair yields the corresponding A, B
or C grade. In addition, they identify grading practices adequate
to each pair, namely lab exercises and exams, multiple choice
exams, assignments, projects, and peer review. These ideas have
been applied by Box [9], in particular emphasizing the way in
which taxonomies can be used to provide a transparent means by
which assignments can be explained to students and students can

understand their grade and how performance fits into overall
progress on courses. In particular, this paper gives
comprehensive guidance to lecturers who are considering using
Bloom-style structuring for their assessments. Cukierman and
McGee Thompson [16] report on the use of Bloom’s taxonomy
directly with students, in order to help students devise learning
strategies to help with their learning of topics in computer
science.

The paper by Burgess [13] reports on the author’s experience
with using Bloom’s taxonomy in marking assessments. The
grade given to an assessment depends on the level in Bloom’s
taxonomy that the student’s response suggests that that student
is working at.

Buckley and Exton [12] review Bloom’s taxonomy as a richer
descriptive framework for programmers’ knowledge of code and
illustrates how various software maintenance tasks map to
knowledge levels in this hierarchy. A pilot study (with 2
students) is presented showing how participants’ knowledge of
software may differ at various levels of this hierarchy.

4. EXAMPLES OF THE USE

TAXONOMIES IN SOME CANONICAL

COMPUTER SCIENCE COURSES
The interaction between typical computing learning outcomes
and taxonomies can be further illustrated through examples.
This subsection presents three such examples, chosen to be
typical of courses that appear in a wide range of computing
curricula. One is a first year course, the second is from material
that is often given at an intermediate level and the third
demonstrates features of final year courses. They are all based
on actual courses but have been adapted to suit the needs of this
paper. The discussion covers the use of Bloom’s taxonomy of
the cognitive domain and the SOLO taxonomy, because these
are the only ones that we found being used in practice in the
computer science education literature. In addition, there is some
consideration of Bloom’s taxonomy of the affective domain
because this could improve constructive alignment between the
values instructors want to instill and the ways we assess
computing students.

4.1 Introductory Programming Example

4.1.1 Description of course
This is typical introductory object-oriented programming course.
It lasts for a single semester and takes an objects-first approach
to teaching Java programming, closely following a well-known
textbook. The students have lectures and classes (labs) each
week. The lectures, which are optional, introduce new concepts.
Students are expected to do programming exercises in the class
sessions and finish these off in their own time. Some of the class
exercises are marked and these marks contribute 20% of the
final course result. The main assessment for the course is
currently a closed book examination that contains a mixture of
multiple choice questions and essay answers.

4.1.2 Learning Outcomes
At the end of the course students will be able to

• Use an object-oriented programming language to write
programs.

 159

• Discuss the quality of solutions through consideration
of issues such as encapsulation, cohesion and
coupling.

• Recognise and be guided by social, professional and
ethical issues and guidelines

4.1.3 Assessment using Bloom in the cognitive

domain
Bloom’s taxonomy in the cognitive domain is conventionally
used to assess the first two learning outcomes given above. A
typical approach is to write assessment items that are intended to
assess at a single level and then to award some fraction of the
total number of marks available, depending on how complete the
student’s response is seen as being. It is relatively unusual to
have tasks that are seen as giving students the chance to respond
at more than one level, along with assessment criteria indicating
which level the student is seen as operating at.

4.1.3.1 Example 1
Consider the following class definition.

public class Car
{

public int numberOfSeats;
private String model;
private int engineCode;
public Car(String model)
{

model = model;
}
public int getSeats()
{

return numberOfSeats;
}

private String getModel()
{

return model;
}

public void setEngineCode(int code)
{

int n = code * 2;
if(code >= 100) {

engineCode = n;
}
else {

engineCode = code;
}

}
}

Decide which statement is correct (A, B or C). Only one
statement is correct.

Accessors / mutators

(a) The method getSeats is an accessor
method.

(b) The method getSeats is a mutator method.

(c) The method getSeats is both an accessor
and a mutator method.

Discussion This test item could be assessing recall if it is using
an example that the students have seen before. If they have not,
it could be a simple example of application of a rule. A
conscientious, or over anxious, student could have come across
this example before even if it was not used in lectures. A student
who did not bother to go to lectures may be applying thise rule
from first principles, even if the examiner expects students to be
using recall. It is thus hard in practice to determine which of
these two Bloom cognitive levels a student is performing at.

4.1.3.2 Example 2
In designing an application, the concept of coupling is
important. One guideline states that you should have
weak coupling. What is coupling, and why should you
have weak coupling?

Discussion This tests whether students have reached the
“explain” level. In the unlikely event that the reasons for weak
coupling have not been spelt out in lectures, it could be at a
considerably higher level.

4.1.3.3 Example 3
Write a method to calculate the winnings of a lottery ticket
with three integers, a, b and c on it. The header of the

method is

public int lotteryTicket(int a, int b, int
c)

If the numbers are all different from each other, the
method returns 0. If all of the numbers are the same, the
method returns 20. If two of the numbers are the same,
the method returns 10. For example:

lotteryTicket(1, 2, 3) → 0

lotteryTicket(2, 2, 2) → 20

lotteryTicket(1, 1, 2) → 10

Write a full implementation of this method.

Discussion The instructor is likely to expect this to be
straightforward example of apply.

4.1.4 Assessment using SOLO
Example 1 above focuses on a single piece of information, ie
recognizing the naming of an accessor method. This means that
it can be used to assess at the unistructural level.

4.1.4.1 Example 4
Provide two examples of loop constructs that can be used
in a method to calculate the minimum value in an array.
The header of the method is

 public int min(int []a)

Discussion this test item requires identification of two distinct
loop constructs but not necessarily working code. This means
that it can be used to assess at the multistructural level. If the
question asked the student to write a routine that calculates the
minimum value then it is targeting a relational response since to
develop working code requires an understanding of how
different constructs work together.

4.1.4.2 Example5
In plain English, explain what the following

 160

segment of code does:
bool bValid = true;
 for (int i = 0; i < iMAX-1; i++)
 {

 if (iNumbers[i] > iNumbers[i+1])
 {
 bValid = false;
 }
 }

Discussion This seeks a relational response in the sense that the
student needs to recognise what is being performed as a whole
(relational response) rather than describing the actions of the
individual statements (multistructural response); see [40,70,72].

4.1.4.3 Example 6
Performance at the extended abstract level requires students to
generalise their knowledge. An example of testing for this could
be as follows: the students have been taught how to use an
ArrayList. They are now asked to implement code using the Java
library LinkedList class. This expects them to generalise the
knowledge of working with one collection type and apply it in a
near context.

4.1.5 Assessment in the Affective Domain
The learning outcome “Recognise and be guided by social,
professional and ethical issues and guidelines” represents an
area of learning in which instructors want students to take what
they have learnt to heart, not simply to be able to play back what
has been told to them. To provide constructive alignment
between learning outcome and assessment, it is necessary to
assess in the affective domain. The problem is that there is no

time for this learning to be embedded, so it is not very feasible
to assess it during this module. The answer may be to move the
assessment of the affective dimension to a later course.

4.2 Databases Example

4.2.1 Description of course
This course is an introduction to the principles, use, and
applications of database systems. It assumes no previous
knowledge of databases or database technologies. Topics
include: an introduction to relational database systems,
relational database model, entity-relationship model, relational
algebra, SQL, relational design, and advanced topics such as
relational query evaluation, XML databases, and fundamentals
of transactions and concurrency.

4.2.2 Learning Outcomes
This course contributes to the development of the following
capabilities:

• Enabling Knowledge: Fundamental database concepts
including analyzing, designing, defining, constructing and
manipulating relational database systems.

• Problem Solving: Ability to design and implement
database solutions for various application areas and to
build queries for users’ needs, based on analysis of data
modeling problem specifications.

• Critical Analysis: Ability to analyze data modeling
problem specifications and derive alternative conceptual
models that represent the problem in different perspectives
leading to alternative database designs.

Figure 1. Example 8.

 161

4.2.3 Assessment using Bloom’s taxonomy in the

cognitive domain

4.2.3.1 Example 7
The INSERT statement provides an optional clause to list
the columns that you are inserting values into. Why is it
prudent to list the columns when you are developing code
for a production system?

Discussion This invites students to describe the syntax of an
INSERT statement and infer what can go wrong. This is the
Comprehension level of Bloom’s cognitive taxonomy. However,
students who do not know the syntax but have learnt by trial and
error that not listing the columns can produce unexpected results
may answer at the lower level of Remember.

4.2.3.2 Example 8
See Figure 1.

Discussion Most database courses drill students on this kind of
problem, so the question requires Application of known rules.
Note that no explanation is required. Many instructors would
consider that this would make the question more difficult, even
though Comprehension, and Explaining in Anderson et al’s
revision of Bloom’s taxonomy, comes at a lower level than
Application.

4.2.3.3 Example 9
A database contains the following tables:

MOVIE(movieID, title, yearReleased, genre,
ratingCode, nationality)

RATING(ratingCode, ratingDescription)

PERSON(name, DoB)

MOVIE_PERSON(movieID, name, role)

where role can take the values “Director”, “Producer”, etc.

Write a query to return the title, rating, and year released
of all movies released from 1970 – 1995 inclusive that
were directed by Quentin Tarantino, Ron Howard, or Brian
DePalma. Movies should be listed from most to least
recent with titles listed alphabetically for each year.

Discussion This type of question typically presents a new
scenario to the students, so they are expected to operate at the
Analysis level to solve it.

4.2.3.4 Example 10
Roger Ebert, a well-known movie critic, wants to compare
directors across ratings and genres to see if there are any
trends (e.g., do certain directors typically choose movies
from a particular genre with particular ratings?). Using the
tables in example 10 above, write a query to help Roger
analyze the directors who have released one or more
movies since 1960. Specifically, list each director along
with the genre, rating description, and the number of
movies the director has directed in the given genre with
the given rating. However, keep the amount of data
manageable by only including rows with more than 10
movies. List your results from highest to lowest number of
movies. If multiple rows have the same number of movies
then list the director, genre, and rating description
alphabetically.

Discussion This is a more complex example of analysis. It falls
short of Synthesis, or Creating in the revised Bloom’s
taxonomy, because the problem is very self contained and there
is effectively a single right answer. If the student had to find out
about the world of movies as well as about databases, it would
required synthesis.

4.2.3.5 Example 11
For each schedule below, tell whether it is conflict-
serializable. If yes, also tell:

• Whether it is recoverable;
• Whether it avoids cascading rollbacks;
• Whether it is possible under strict 2PL.

(a) T1.write(B), T2.read(A), T2.write(A), T1.read(A),
T1.write(A), T1.commit, T2.commit

(b) T1.write(B), T2.read(A), T2.write(A), T1.read(A),
T1.write(A), T2.commit, T1.commit

(c) T1.write(B), T2.read(A), T2.write(A), T2.commit,
T1.read(A), T1.write(A), T1.commit

(d) T1.write(B), T2.read(A), T1.read(A), T2.write(A),
T1.write(A), T2.commit, T1.commit

(e) T2.write(B), T2.read(A), T2.write(A), T1.write(B),
T2.commit, T1.read(A), T1.commit

Discussion This also requires analysis but falls short of
evaluation.

4.2.4 Assessment using SOLO
Example 7 above seeks a unistructural response because it deals
with a single construct. Example 8 is multistructural because
knowledge of both Insert and Delete constructs is required but
they are used independently. Examples 9 and 10 target a
relational response because the student has to understand how
SQL syntax can be applied to her or his analysis of the problem.
Example 11 is also seeking a relational response.

4.3 Computing Professionalism Examples
Professionalism within computing is a topic of concern to many
professional organizations (IEEE/ACM, BCS etc). These
organizations have sought to make professionalism an explicit
learning objective (instructional modules) at the university-level.
Within computing, this often involves some form of work-based
learning. The question of concern is how to assess
professionalism? Instructors have often relied on written reports
to assess the student’s ability to apply professional concepts.
Additionally, many instructors have attempted to assess
professionalism through the use of peer, employee and self
evaluations.

4.3.1 Description of course
A course in computing professionalism covering topics
concerning the social impact, implications and effects of
computers on society, and the responsibilities of computer
professionals in directing the emerging technology. Relevant
professional skills are explored via active-learning activities
such as business writing, oral presentations, debates, job hunting
and interviewing, professional etiquette, critical thinking, and
peer reviewing. An extension to this course gives students the
opportunity to apply their skills in consulting capacity, working
with real clients to solve their problems.

4.3.2 Learning Outcomes
Students completing this course should be able to...

 162

• review and analyze the effects—both anticipated and
observed—of the insertion of computer technology into
many aspects of society;

• combine their understanding of technology's effects with
their personal values, to express and carry out ethical
behavior with respect to computing and its impacts,
including an ability to articulate and weigh the pros and
cons associated with diverse ethical positions;

• identify, analyze, and act upon work situations that have
potential ethical, legal, or other professional implications;

• produce written documents of varying type and size in a
competent and professional fashion, including the ability
to review and critique colleagues' work;

• design and deliver an interesting, concise, and relevant
oral presentation with technical content.

Students completing the extended course will

• Be able to apply the concepts and techniques required to
build software systems to meet the needs of small
enterprises

• Have developed their own computing professional identity
through applying the ACM/IEEE code of ethics

• Interact “professionally” with a client through meetings,
written reports and email.

4.3.3 Assessment using Bloom’s taxonomy in the

cognitive domain

4.3.3.1 Example 12 A review of a technical article
Following reviewing and editing guidelines, students are
asked to analyze and critique an assigned article,
including providing an answer to questions dealing with
the organization and writing style of the article.

Discussion This requires students to Evaluate in the cognitive
domain. There is also an element of Synthesis (Creating in the
revised taxonomy), particularly if the students are expected to
extend the review to their own discussion of the topic of the
article.

4.3.3.2 Example 13 Group Debates
The debates are intended to sharpen the student’s skills
to adopt and support one or more viewpoints on an issue
about ethics or professionalism in the workplace. The
class is broken down into groups of 4-5 students. Each
team will choose an ethics topic and write a scenario that
raises issues associated with this topic. Teams are
instructed to choose topics that have believable
arguments both pro and con.

General topics to consider include Special needs, ADA
requirements, Universal accessibility, Consideration of
public risks in system development, Internet censorship,
Competitive intelligence or industrial espionage,
Intellectual rights, copyrights, & patents, Privacy, National
missile defense system, Protection of the environment or
ecology, Ethics of medicine or biotechnology, Scientific
fraud or plagiarism, Hackers, Professional and legal
liability for defective information or software, Viruses,
worms, and other "malware", Technological obsolescence

(losing jobs to automation), Cryptography and public
encryption, Whistle-blowing.

Discussion This allows students to demonstrate skills of
analysis, synthesis and evaluation. Note that because they are
asked to take a stance for the sake of debate, they cannot be
assessed in the affective domain.

4.3.3.3 Example 15
Proposal to a hypothetical work group about a

professional issue: This assignment takes place in four
phases. The first deliverable is a two-page (500 words)
plan for how the student is approaching the proposal-
writing process. The second will be a first draft of an 8-
page proposal (approximately 2000 words) researched
and written according to the earlier plan. The third
deliverable is review of another student’s proposal. The
fourth deliverable is a final draft of the proposal, in which
the student makes revisions and responds explicitly to the
review feedback.

Discussion This gives students excellent opportunities to
demonstrate synthesis and evaluation.

4.3.4 Assessment using the SOLO taxonomy
If the SOLO taxonomy is used in assessing professionalism then
for a unistructural assessment, a single professionalism attribute
would be assessed. A multiustructural assessment would seek to
assess to professionalism attributes in a way that was
independent of each other. A relational assessment would focus
on how the professionalism attributes are integrated together in
the assessment exercise. An extended abstract assessment would
seek to observe professional attributes that are being interpreted
in new ways.

In utilizing the SOLO taxonomy, it is not simply the
professionalism attributes that can be assessed. In assessing at
the relational or extended abstract level, it is possible to assess
how professionalism interacts with or relates to other more
technical attributes.

4.3.5 Assessment in the Affective Domain
The learning outcomes of the extended course described above
are concerned with the development of professional attitudes
and values as well as with cognitive skills. These can be
measured using a variety of instruments. One is a reflective log,
in which students are asked to report their feelings and motives
and to evaluate their own performance in the consultancy role.
Another instrument is the instructor’s observation: was the
student proactive in working professionally or was nagging
required to ensure that tasks were completed punctually and to a
high standard? Finally, feedback from the clients has an
important role in determining whether the student’s professional
values and commitment are demonstrated under all
circumstances.

5. WHAT IS SPECIFIC ABOUT

COMPUTER SCIENCE
The learning taxonomies discussed in sections 2 and 3 are
generic, implying that the types of learning and the ordering of
the hierarchy are constant across subjects. However, this may
not be the case. For example, in applied subjects such as
computing, a principal learning objective is the ability to

 163

develop artifacts (in computing, pieces of software) [30]; by
contrast, instructors in other subjects (such as English
Literature) place more emphasis on skills of critique and less on
producing artifacts (such as novels). It could therefore be argued
that in applied subjects, Application encompasses Synthesis and
Evaluation, rather than being a lower level skill. It is notable
that the recent ACM overview of computing curricula [28]
refers to performance competencies rather than learning

outcomes, reinforcing the perceived importance of Application.

We can also distinguish between disciplines in which there is an
emphasis on learning through interpreting and those in which
learning is predominantly achieved through doing. Economics
and Theology could be seen as examples of the former, Dance
and Music performance of the latter. This is not to suggest that
Economics and Theology do not require their students to do in
the sense of repeatedly writing essays; however they are learning
about the practice of the subject rather than running an economy
or developing a new religion. Computing students are expected
to do a lot of learning through doing, whether it is learning
about software engineering by developing systems of increasing
complexity, learning about networking by implementing
protocols or learning about group dynamics by working in
teams.

There are several other characteristics that apply specifically to
computer science as discipline. First, and perhaps foremost,
studying processes and problem solutions is very central to, if
not the essence of, computer science. One could say that solving
problems and producing an effective and efficient solution is the
core goal of a computer science professional. Computer science
centrally involves modeling the real world, representing
domains of the most varied nature and complexity, representing
knowledge in general and dealing with processes and solutions
for problems in such domains.

In order to address the complexities of the problems and
domains, there is an essential need to abstract and decompose
problems into subproblems and modules. Abstraction,
modularity and reusage of previous solutions constitute essential
abilities needed by any computer science researcher or
professional.

Other characteristics of computer science are creativity and
openness to novelty, considering that they are inherently related
to finding solutions to problems. It is also worthy of notice that
computer science is becoming more and more multidisciplinary,
and hence professionals and academics need good
communication skills not only among themselves but also with
experts in other disciplines.

The following list of keywords encompasses what this working
group considers to be intrinsic characteristics of computer
science. Clearly, a comprehensive learning taxonomy should be
useable for assessment of all of them.

Intrinsic characteristics of computer science:

 Problem solving

 Domain modelling

 Knowledge representation

 Efficiency in problem solving

 Abstraction/modularity

 Novelty/creativity

 Categorization

 Communication skills with experts in other domains

 Adoption of good practice in software engineering

This final feature of computing reflects the need to develop
professional skills and values. It is not enough that students
should know what constitutes good programming style; we want
them to have taken this to heart so that they instinctively write
elegant code whenever they work on a piece of software, not just
when marks are explicitly available for doing so. Similarly, any
intended learning outcome relating to the ACM/IEEE or other

 professional code of conduct ought to go beyond “Knows about
the code of conduct”. We want students to respond positively to
it by internalizing it and making it part of their personal set of
moral and ethical principles, so that they automatically behave
according to its precepts, even under challenging circumstances

6. A NEW TAXONOMY FOR

COMPUTER SCIENCE

In this section we present a new taxonomy designed to be
suitable for computer science and engineering, especially for
learning programming (in the broadest meaning of the word).
We also present a novel way to apply any existing taxonomy
which better deals with modularity and increasing levels of
abstraction, aspects that typify engineering and computer
science in particular.

6.1 Two Dimensional Adaptation of Bloom’s

Taxonomy – The Matrix Taxonomy
The intent of the proposed taxonomy is to provide a more
practicable framework for assessing learner capabilities in
computer science and engineering. The immediate target for this
work is computer programming, but we feel the taxonomy is
applicable to other fields of engineering in which practitioners
produce complex systems. It is meant as a partial solution since
(among other things) it does not address the affective domain,
only indirectly deals with abstraction skills, and incompletely
handles structural relationships in the content.

The inspiration for this taxonomy was research [41,73]
indicating that comprehension of program code and the ability to
produce program code are two semi-independent capabilities.
Students who can read programs may not necessarily be able to
write programs of their own. And the ability to write program
code does not imply the ability to debug it. Robins et al. [63]
describe this independent interpretive skill as the ability to
distinguish the intended behavior of the program from the actual
behavior of the program.

 164

Although a review of the literature reveals a wide range of
possible candidates, only Bloom’s taxonomy of the cognitive
domain appears to be widely used in computer science course
and assessment design. Its main strengths are that the levels are
reasonably easy to understand and there is a developing
literature, reviewed above, on how to use it to devise test items.
Thus we felt it would form the most natural basis for our
proposed taxonomy.

We used the revised version of Bloom’s taxonomy [6] which
responded to problems with the linear approach at the higher
levels. It provides a level of creation (Higher Application) which
requires competency at all the previous levels and one that does
not (Create). In order to visualize this distinction and the semi-
independent skills of reading and writing program code, our
taxonomy employs a two dimensional matrix with an adaptation
of Bloom’s taxonomy which is presented in Figure 2.

Figure 2. A graphical presentation of the two dimensional

adaptation of Bloom’s taxonomy.

The dimensions of the matrix represent the two separate ranges
of competencies: the ability to understand and interpret an
existing product (i.e. program code), and the ability to design
and build a new product. Levels related to interpretation are
placed on the horizontal axis and levels related to generation are
placed on the vertical axis, with the lowest levels at the lower
left corner. The names of the levels are from the revised version
of Bloom’s, as we feel they are sufficiently unambiguous. It is
understood that students traverse each axis in strict sequence.
For example, it is not possible to begin to do synthesis (Create)
until there is some degree of competency through the Apply
Level.

6.1.1 Applying the taxonomy – traversing the

matrix
The matrix should be especially useful for instructors needing a
marking grid for their students. Also it rather clearly illustrates
all the different learning paths students may take, as discovered
in recent work by Lahtinen [37].

Different students take different "learning paths" in the matrix
taxonomy. For instance, when a student learns a new
programming concept he first achieves the knowledge of this
concept. At that point the student is in the cell (the state of)
"none/Remember" shown in Figure 2. If this student continues
with learning by imitating a ready example of a program but
without deep understanding of the concept, they will achieve

the state "Apply/Remember", i.e. applying/trying to apply the
concept without real understanding, with trial and error. This
behaviour is illustrated in Figure 3. If instead of imitating, the
student decides to first find more information on this concept, as
from a book, they might proceed to the cell "none/Understand"
to the right of the initial cell. This means that the student is not
yet able to produce program code, but he might already
understand the meaning behind this concept.

A competent practitioner of a concept would be placed in the
cell "Create/Evaluate", which means that he is able to perform at
all the competency levels in the matrix. This can also be
identified as the level Higher Application [27] and can be
reached through different paths as shown in Figure 6.

However, there are students who attain only some of the
competencies. For instance, the theoretical students identified in
a cluster analysis study [37] may be placed in the cell
"none/Evaluate" which means that they are able to read program
code, analyze, and even evaluate it, but cannot yet design a
solution or produce program code. This is not the most common
pathway for students to follow, but these students have only
proceeded in the horizontal direction as shown in Figure 4.

The same study revealed another group, called the practical

students, who could be placed in the cell "Create/Understand" of
the matrix. Being in that cell would indicate the ability to apply
and synthesize without the ability to analyse or evaluate even
their own program code. This behaviour is illustrated in Figure
5. The problem for these practical students is in not being able
to debug their own solutions when they encounter errors.

Figure 3. A student trapped in trial and error approach

 165

Figure 4. The pathway of the students who attain only
theoretical competencies.

Figure 5. The pathway of the students who attain only practical
competencies.

Figure 6. The goal, “Create/Evaluate” or Higher Application,
can be reached through different pathways.

Mapping Programming Activities to the Matrix

We provide a mapping from a set of computer programming
activities to the cells of the matrix in order to illustrate the
discriminatory power of the proposed taxonomy for this subject
area. This is done with a list of problem-solving activities
related to programming collected as a reaction to difficulties
encountered in using Bloom’s Taxonomy. The activities shown
in Table 1 are mapped to the cells of the taxonomy. See Figure
7.

Table 1 – A list of problem-solving activities related to
programming

Solution

Activity

Description

Adapt modify a solution for other domains/ranges

Analyse probe the [time] complexity of a solution

Apply use a solution as a component in a larger
problem

Debug both detect and correct flaws in a design

Design devise a solution structure

Implement put into lowest level, as in coding a
solution, given a completed design

Model illustrate or create an abstraction of a
solution

Present explain a solution to others

Recognize base knowledge, vocabulary of the domain

Refactor redesign a solution (as for optimization)

Relate understand a solution in context of others

Trace desk-check a solution

To “adapt” a solution probably requires competency close to
Create on the vertical scale and at least Understand on the
horizontal scale, because modifying involves production and
knowing what and how to modify requires understanding.
“Apply” in the meaning of Table 1 may be as high as Create on
the vertical axis since it calls for some creative ability, probably
more than implied by the Apply level, in spite of its name. The
position in the horizontal axis depends on the situation. To
“debug” calls for a collaboration of both interpretation and
building so should be high on both axes, perhaps in the cell
“Create/Analyse”. The ability to “design” naturally implies
Create on the vertical scale and likely some degree of
interpretation on the horizontal scale, though how much is
uncertain.

“Refactor” and “Relate” are shown at the highest level of
interpretation because both call for a deep understanding of the
context of the problem and solution. We view “refactoring” as
involving an improvement on the original design, thus admitting
a possible placement even higher than “design”.

To avoid belaboring the mapping example, we simply state that
similar reasoning inspired the placement of the remaining
activities. The point is that a mapping is feasible and does result
in a fairly complete covering of the grid. Furthermore, most of
these activities are general enough to be immediately applicable
to other fields of engineering.

 166

Several of the solution activities may be amenable to assessment
using the SOLO taxonomy, which considers the organizational
complexity of the problem. This dimension is not at present
well illustrated by our matrix, though it may be expected that
SOLO levels generally increase as one goes from the origin to
the upper right. Consider the activity “present”: One would
prefer the ability of presentation at the relational level of SOLO
as opposed to uni- or multi-structural. “Design”, “relate”, and
“model” are other activities we have identified for which SOLO
is useful. In contrast, “implement” as defined in the table,
involves applying a process to an otherwise completed design,
and thus may be less related to skills involving complexity.

Many of the activities are related to the ability to work with
abstraction, an ability that is vital for computer programming
and has been discussed as an overriding argument for an
alternative learning taxonomy [33]. Design, model, refactor,
debug, and present may easily be seen to involve extensive
consideration of abstractions. As examples, these activities may
include as sub-activities the following: traversing levels of
abstraction, mapping between levels (precision being essential
for programming!), constructing new abstractions (with the
attendant requirements of retaining needed detail and
eliminating unneeded detail), adapting abstractions, and using
abstractions as models of the original problem and/or solution.

A subject of some discussion in this working group was how to
apply the matrix taxonomy to the affective domain. We have
designed this taxonomy only for the cognitive domain but non-
cognitive skills (e.g. social and emotional skills and the adoption
of professional standards) also play a major part in programming
practice. Internalization of professional practices is indeed an
essential component of learning for computer programmers.
Possibilities considered included extending the matrix in one or
both directions by another level, or devising a companion
matrix. Our overall feeling was that there is so little experience
in computer science of assessment of values and attitudes that
this would be premature. Krathwohl, Bloom and Masia’s
taxonomy for the affective domain [32] appears to be usable for
courses aiming to develop professional values and we would

like to encourage its adoption so that an evidence base can be
accumulated.

6.2 Applying Taxonomies Iteratively - a

Spiral Architecture for Applying a Learning

Taxonomy
Robins at al. describe a schema as “a structured chunk of related
knowledge” [63]. The student's learning goes through learning
new schemas, modifying and combining them in order to
produce new, more abstract schemas. Thus, the learning of
programming could be seen as an iterative process. In the very
beginning, the student is taught really simplistic and basic pieces
of information and places to apply them. Instead of learning
some things here and there, programming is a skill that is
learned by building new information on top of earlier
information. So in a way the basic pieces of information
students are first struggling with become the bits and pieces they
use in subsequent learning of new material. Compared to other
cyclic learning styles e.g. the experimental learning style
described by Kolb’s Learning Cycle [30], the idea here is to
proceed to a new level after each cycle.

The idea of a cognitive learning taxonomy can also be used in an
iterative, spiral way. When the student is learning the basic
concepts and the simplest subjects, he is going through the
taxonomy in respect of that subject only. After having created a
schema on that subject, he is then guided into a more abstract
subject. When looking only at this new subject, the student is
starting again from the lowest level of taxonomy—but now
using the earlier material as a prerequisite.

The spiral process could be applied to Bloom's taxonomy, in
that when the student is learning a new subject, his
prerequisites—the materials to use in building new
knowledge—have become his new basic knowledge, although
the student has perhaps reached the level Create or Evaluate on
those earlier subjects. Create could be described as the ability to
combine one subject with others in order to build new solutions.
This may also be seen when new solutions or subjects are learnt
by building upon and integrating previous knowledge. This is
easily seen to be true when considering that topics that are
difficult and require in-depth analyzing by students are mere
basic knowledge for expert programmers. Applying Bloom’s
taxonomy iteratively is illustrated in Figure 8.

Here is an example of a learning spiral: In the beginning a
programming student is taught how to use a loop structure. He
will go through all the levels of Bloom's taxonomy while
learning it. He knows that a loop can be used for iteration; he
understands how the loop works; he is able to apply a loop
when told etc., eventually learning it thoroughly. After reaching
the highest levels, the loop structure has become a tool for the
student to use in subsequent programming. As the student is
trying to learn how to sort an array, the loop can be seen as his
basis knowledge upon which he is building his new knowledge.
Later as the student is trying to implement a top-application1 to

1 The application that displays and updates sorted information

about the top CPU processes

Figure 7. Mapping programming activities to the Matrix

 167

his own operating system, he will use the sorting of an array as a
part of his base knowledge.

Traditionally programming has been taught starting with low
levels of abstraction, moving on bit-by-bit to higher
abstractions. For example, consider learning expressions, loop
structures, functions, classes, design patterns etc. There are still
many situations where one returns for more in-depth learning.
Using a high level programming language itself establishes a
starting level of abstraction, and using the objects-first approach
immediately raises that level. The spiral approach with learning
taxonomies must not be seen as going directly from bottom to
top, but by seeing each round as thoroughly learning some new
piece of information which is then used as a basis for the next
round in the topic. It is of benefit to know how to write
functions using C++ when one is trying to do something similar
but more challenging with a lower level language such as
Assembly, because then one already has knowledge of
procedures, functions, parameters and return values.

The spiral application of a taxonomy is not limited to any
particular taxonomy such as Bloom's. One round of the spiral
(the learning of a new schema) could be described by any
taxonomy suitable for describing students’ abilities in that
subject. For instance, the Matrix taxonomy proposed in
subsection 1 could be applied in a spiral way. One learning path
from the elementary level “none/Remember” to the Higher
Application level “Create/Evaluate” can be seen as one round of
the spiral. When rising to a higher abstraction level, the student
starts his “ learning path” once again from the lower left corner.

When trying to move up a level of abstraction (as in to start a
new round of the spiral) the student may not have reached the
Higher Application level “Create/Evaluate”. To use his skills as
a basic knowledge for the next, more abstract round the student
may well be in one of the nearby cells, such as
“Create/Analyse”. While already progressing in the next round
(with a more abstract subject), the student may eventually reach
the “Create/Evaluate” state of the earlier level through his
experience in using it. Thus the two rounds would in a way be
followed in parallel for a while. On the other hand, if the student
has taken one of the less desirable learning paths illustrated in
Figures 3 and 4 (theoretical or practical only) and attempts to
progress to the next round, he could be building his knowledge
on misconceptions and may later face problems.

7. CONCLUSIONS AND

RECOMMENDATIONS
Despite the wide range of taxonomies presented in this paper the
Bloom’s taxonomy of the cognitive domain seems to dominate
the field of computer science course and assessment design.
Though having many benefits, its principal weakness is that the
levels do not appear to be well ordered when used to assess
practical subjects such as programming. Our recommended
solution is to separate Bloom’s six levels into two dimensions,
Producing (incorporating apply and create) and Interpreting
(incorporating remember, understand, analyze and evaluate).
This removes the strict ordering while retaining many of the
concepts of Bloom’s taxonomy. This generates a matrix that can
be used to identify a range of different learning trajectories and
hence to guide students in how to improve their skills and
understanding.

Discussions with colleagues also exposed a lack of alignment
between learning outcomes and assessment practice in the area
of professionalism. Instructors bemoan students’ lack of
commitment to good engineering principles but fail to assess
this, sending mixed messages to learners. This can be addressed
by assessment in the affective as well as the cognitive domain.
There no evidence in the literature of this being done, so the
most sensible course would be to use an existing taxonomy for
this purpose.

We recommend the use of our matrix taxonomy for the design
and assessment of programming and software engineering
courses. We also recommend that instructors and course
designers use Bloom’s taxonomy of the affective domain to
achieve constructive alignment between their desire to produce
computer scientists with professional attitudes and values and
the messages they send through assessment tasks. Further work
is needed to evaluate both these methodologies in computer
science education.

Figure 8. Bloom’s Taxonomy as a Spiral Taxonomy.

8. REFERENCES
[1] Agencia Nacional de Evaluación de la Calidad y

Acreditación. 2005. Título de Grado en Ingeniería
Informática.

[2] Ala-Mutka, K.M. A survey of automated assessment
approaches for programming assignments. Computer

Science Education 15, 83-102, 2005.

[3] Anderson, L.W., Krathwohl, D.R., Airasian, P.W.,
Cruikshank, K.A., Mayer, R.E., Pintrich, P.R., Raths, J.
and Wittrock, M.C., Eds. 2001. A taxonomy for learning

and teaching and assessing: A revision of Bloom's

taxonomy of educational objectives. Addison Wesley
Longman, Inc.

[4] Azuma, M., Coallier, F. and Garbajosa, J. How to apply the
Bloom taxonomy to software engineering. Software

Technology and Engineering Practice: Eleventh Annual

International Workshop on, 19-21 Sept. 2003, 117-122.

[5] Biggs, J.B. and Collis, K.F. 1982. Evaluating the quality of

learning: The SOLO taxonomy (Structure of the Observed

Learning Outcome). Academic Press, New York.

 168

[6] Biggs, J.B. Teaching for quality learning at university.

Open University Press, Buckingham, 1999.

[7] Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H. and
Krathwohl, D.R. 1956. Taxonomy of Educational

Objectives: Handbook 1 Cognitive Domain. Longmans,
Green and Co Ltd, London.

[8] Bologna Secretariat. Framework of qualifications for the
European Higher Education Area, 2005.

[9] Box, I. Assessing the assessment: an empirical study of an
information systems development subject. Proceedings of

the fifth Australasian conference on Computing education -

Volume 20, Adelaide, Australia, Australian Computer
Society, Inc., 2003.

[10] Buck, D. and Stucki, D. J. Design Early Considered
Harmful: Graduated Exposure to Complexity and Structure
Based on Levels of Cognitive Development. 31st SIGCSE

Technical Symposium on Computer Science Education,

2000, 75-79.

[11] Buck, D. and Stucki, D.J. JKarelRobot: A case study in
supporting levels of cognitive development in the computer
science curriculum. Proceedings of the 32nd SIGCSE

Symposium on Computer Science Education, ACM Press,
New York, NY, 2001, 16-20.

[12] Buckley, J. and Exton, C. A framework for assessing
programmers' knowledge of software systems. Proc. 11th

IEEE International Workshop on Program

Comprehension, IWPC, 2003.

[13] Burgess, G.A. Introduction to programming: blooming in
America. J. Comput. Small Coll. 21, 19-28. 2005.

[14] Computing Accreditation Commission. Criteria for

Accrediting Computing Programs: Effective for

Evaluations During the 2006-2007 Accreditation Cycle.

ABET Inc, Baltimore, MD, 2005.

[15] Cooper, S., Cassel, L., Moskal, B., and Cunningham, S.
Outcomes-based computer science education Proceedings

of the 36th SIGCSE technical symposium on Computer

science education, ACM Press, St. Louis, Missouri, USA,
2005.

[16] Cukierman, D. and McGee Thompson, D. Learning
Strategies Sessions within the Classroom in Computing
Science University CoursesProceedings of WCCCE 2007,

12th Western Canadian Conference on Computing

Education, May 2007.

[17] Doran, Michael V. and Langan, David D. A cognitive-
based approach to introductory computer science courses:
lesson learned. Proceedings of the twenty-sixth SIGCSE

technical symposium on Computer science education,

Nashville, Tennessee, United States, ACM Press, 1995.

[18] Facione, P. A. Critical thinking; A statement of expert
consensus for purposes of educational assessment and
instruction, research findings and recommendations, 1990,

Fullerton ERIC Reports, ED315.423.

[19] Farthing, D. W., Jones, D. M. and McPhee, D.
Permutational multiple-choice questions: an objective and
efficient alternative to essay-type examination questions.
Proceedings of the 3

rd
 Conference on Innovation and

Technology for Computer Science Education, ITiCSE,

1998, ACM Press, New York, NY, 1998, 81-85.

[20] Gronlund, N.F. Measurement and evaluation in teaching.

MacMillan, New York, 1981.

[21] Hernán-Losada, I., Lázaro-Carrascosa, C. and Velázquez-
Iturbide, J. Á. On the use of Bloom’s taxonomy as a basis
to design educational software on programming.
Proceedings of World Conference on Engineering and

Technology Education, WCETE 2004, COPEC, Brazil,
2004, 351-355.

[22] Hernán-Losada, I., Velázquez-Iturbide, J. Á and y Lázaro-
Carrascosa, C. A. Programming learning tools based on
Bloom's taxonomy: proposal and accomplishments. Proc.

VIII International Symposium of Computers in Education

(SIIE 2006), León, España, Octubre 2006, 2006, 325-334.

[23] Howard, Richard A., Carver, Curtis A. and Lane, William
D. Felder's learning styles, Bloom's taxonomy, and the
Kolb learning cycle: tying it all together in the CS2 course.
Proceedings of the twenty-seventh SIGCSE technical

symposium on Computer science education, Philadelphia,
Pennsylvania, United States, ACM Press, 1996.

[24] Huitt, W. and Hummel, J. 2003. Piaget’s theory of
cognitive development. Educational Psychology

Interactive

[25] Ihantola, P., Karavirta, V., Korhonen, A. and Nikander, J.
Taxonomy of effortless creation of algorithm visualizations.
Proceedings of the 2005 International Workshop on

Computing Education Research, ICER '05, Seattle, WA,
October 01-02, 2005, ACM Press, New York, NY, 2005,
123-133.

[26] Illinois Online Network: Educational Resources,
http://www.ion.illinois.edu/resources/tutorials/assessment/b
loomtest.asp, Accessed on 19/07/2007, 2007.

[27] Johnson, C. G. and Fuller, U. D. Is Bloom's taxonomy
appropriate for computer science? 6th Baltic Sea

Conference on Computing Education Koli Calling 2006,

Koli Calling, November 2006, Berglund, A. and Wiggberg,
M., Eds. Department of Information Technology,
University of Uppsala, Stockholm, 2007, 120-123.

[28] Joint IEEE Computer Society/ACM Task Force on
Computing Curricula. 2005. The Overview Report.
http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/ed
ucation/cc2001/CC2005-March06Final.pdf, 2005, visited
September 2007.

[29] King, O.M. and Kitchener, K.S. 1994. Developing

reflective judgement: understanding and promoting

intellectual growth and critical thinking in adolescents and

adults. Jossy-Bass Inc, San Francisco.

[30] Kolb, D. Experiential Learning: Experience as the Source

of Learning and Development. Prentice-Hall, New York,
NY, 1984.

[31] Kramer, J. Is abstraction the key to computing?
Communications of the ACM 50, 37-42, 2007.

[32] Krathwohl, D.R., Bloom, B.S. and Masia, B.B. 1964.
Taxonomy of educational objectives: the classification of

 169

educational goals. Handbook Volume 2: Affective domain.

McKay, New York.

[33] Krathwohl, D.R. A revision of Bloom's taxonomy: an
overview. Theory into Practice 41, 212-218, 2002.

[34] Kumar, A.N. Learning programming by solving problems.
In Informatics Curricula and Teaching Methods, L. Cassel
and R.A. REIS, Eds. Kluwer Academic, 29-39, 2003.

[35] Kundratova, M., Turek, I. Chapters from engineering

pedagogy. Educational Objectives (in Slovak). STU
Bratislava, 2001.

[36] Lahtinen, E. and Ahoniemi, T. Visualizations to Support
Programming on Different Levels of Cognitive
Development. Proceedings of The Fifth Koli Calling

Conference on Computer Science Education, 2005, 87-94.

[37] Lahtinen, E. A Categorization of Novice Programmers: A
Cluster Analysis Study. Proceedings of the 19th annual

Workshop of the Psychology of Programming Interest

Group, Joensuu, Finland, July 2-6, 2007, Sajaniemi,J. and
Tukiainen,M., Eds. University of Joensuu Department of
Computer Science and Statistics, Joensuu, Finland, 2007,
32-41.

[38] Lister, R. On Blooming First Year Programming, and its
Blooming Assessment. Proceedings of the Australasian

Conference on Computing EducationACM Press, New
York, NY, 2000, 158-162.

[39] Lister, R., and Leaney, J. Introductory programming,
criterion-referencing, and Bloom. Proceedings of the 34th

SIGCSE technical symposium on Computer science

education, Reno, Nevada, USA, ACM Press, 2003.

[40] Lister, R., and Leaney, J. First year programming: Let all
the flowers bloom. 5th

 Australasian Computer Education

Conference, Adelaide, SA, Australia, 2003.

[41] Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J,
Lindholm, M., McCartney, R., Moström, J.E., Sanders, K.,
Seppälä, O., Simon, B., and Thomas, L. A multi-national
study of reading and tracing skills in novice programmers.
Working group reports from ITiCSE on Innovation and

technology in computer science education, Leeds, United
Kingdom, ACM Press, 2004, 119-150.

[42] Lister, R., Simon, B., Thompson, E., and Whalley, J.L. Not
seeing the forest for the trees: novice programmers and the
SOLO taxonomy. Proceedings of the 11th annual SIGCSE

conference on Innovation and technology in computer

science education, Bologna, Italy, ACM Press, New York,
NY, 2006, 118-122.

[43] Machanick, P. Experience of applying Bloom's Taxonomy
in three courses. Proc. Southern African Computer

Lecturers' Association Conference, Strand, South Africa,
June 2000, 2000, 135-144.

[44] Manaris, B. and McCauley, R. Incorporating HCI into the
undergraduate curriculum: Bloom's taxonomy meets the
CC'01 curricular guidelines. Frontiers in Education, 2004.

FIE 34th Annual Meeting, 2004, T2H/10-T2H/15.

[45] Merrill, M.D. Lesson segments based on component
display theory. In Instructional design theory, M.D.

Merrill, Ed. Educational Technology Publications,
Englewood Cliffs, NJ, 177-212, 1994.

[46] Merrill, M.D. The prescriptive component display theory.
In Instructional design theory, M.D. Merrill, Ed.
Educational Technology Publications, Englewood Cliffs,
NJ, 159-176, 1994.

[47] Merrill, M.D. The descriptive component display theory. In
Instructional design theory, M.D. Merrill, Ed. Educational
Technology Publications, Englewood Cliffs, NJ, 111-157,
1004

[48] Moon, J. How to use level descriptors. Southern England
Consortium for Credit Accumulation and Transfer, 2002.

[49] Naps, T., Cooper, S., Koldehofe, B., Roessling, G., Dann,
W., Korhonen, A., Malmi, L., Rantakokko, J., Ross, R.J.,
Anderson, J., Fleischer, R., Kuittinen, M. and McNally, M.
2003. Evaluating the educational impact of visualization.
ACM SIGCSE Bulletin 35, 124-136.

[50] Niemierko, B. Pomiar sprawdzajacy w dydaktyce. Teoria i

zastosowania (in Polish).Panstwowe Wydawnictwo
Naukowe, Warszawa, 1990.

[51] Oliver, D., Dobele, T., Greber, M., and Roberts, T. This
course has a Bloom Rating of 3.9. Proceedings of the sixth

conference on Australasian computing education - Volume

30, Dunedin, New Zealand, Australian Computer Society,
Inc., 2004.

[52] Perry, W.G.J. Forms of intellectual and ethical

development in the college years: a scheme. Harcourt
Brace Jovanovich College Publishers, Forth Worth, 1968.

[53] Perry, W.G.J. Different worlds in the same classroom. In
Improving learning: new perspectives, P. Ramsden, Ed.
Kogan Page; Nichols Pub. Co, London, New York NY,
145-161, 1988.

[54] Piaget, J. and Inhelder, B. The Psychology of the Child.

Routledge & Kegan Paul, 1969.

[55] Polanyi, M. 1958. Personal knowledge: towards a post-

critical philosophy. Routledge and Kegan Paul, Chicago.

[56] Rademacher, R. Applying Bloom's taxonomy of cognition
to knowledge management systems. 1999 ACM SIGCPR

conference on Computer Personnel Research, New
Orleans, LA, April 8-10, 1999, ACM Press, New York,
NY, 1999, 276-278.

[57] Rapaport, W.J. William Perry's scheme of intellectual and
ethical development,
http://www.cse.buffalo.edu/~rapaport/perry.positions.html.

[58] Reeves, M.F. An Application of Bloom's Taxonomy to the
Teaching of Business Ethics. Journal of Business Ethics 9,
609-616, 1990.

[59] Reigeluth, C.M. and Stein, F.S. 1983. The elaboration
theory of instruction. In Instructional-design theories and

models: an overview of their current status, C.M.
Reigeluth, Ed. Lawrence Erlbaum Associates, Hillsdale,
NJ, 338-381.

[60] Reigeluth, C.M., Merrill, M.D. and Bunderson, C.V. 1994.
The structure of subject matter content and its instructional
design implications. In Instructional design theory, M.D.

 170

Merrill, Ed. Educational Technology Publications,
Englewood Cliffs, NJ, 59-77.

[61] Reigeluth, C.M., Merrill, M.D., Wilson, B.G. and Spiller,
R.T. 1994. The elaboration theory and instruction: a model
for sequencing and synthesizing instruction. In
Instructional design theory, M.D. Merrill, Ed. Educational
Technology Publications, Englewood Cliffs, NJ, 79-102.

[62] Reynolds, C. and Fox, C. 1996. Requirements for a
computer science curriculum emphasizing information
technology: subject area curriculum issues. ACM SIGCSE

Bulletin 28, 247-251.

[63] Robins, A., Rountree, J. and Rountree, N. 2003. Learning
and Teaching Programming: a Review and Discussion.
Computer Science Education 13, 137-172.

[64] Sanders, I. and Mueller, C. A fundamentals-Based
Curriculum for First Year Computer Science. 31st SIGCSE

Technical Symposium on Computer Science Education,

ACM Press, 2000, 227-231.

[65] Scott, T. Bloom's taxonomy applied to testing in computer
science classes. J. Comput. Small Coll. 19, 267-274, 2003.

[66] Simpson, B.J. The classification of educational objectives:
psychomotor domain. Illinois Journal of Home Economics

10, 110-114, 1966.

[67] Svec, S. Taxonomy for Teaching: A System for Teaching
Objectives, Learning Activities and Assessment Tasks
(Revision of Bloom’s Taxonomy of the Cognitive Domain).
In Pedagogicka revue (in Slovak) 57, 453-476, 2005.

[68] Swedish Ministry of Higher Education and Research,
Higher Education Ordinance,
http://www.sweden.gov.se/sb/d/574/a/21541, Accessed on
19/07/2007, 2007.

[69] Thompson, E. Does the sum of the parts equal the whole?
Proceedings of the seventeenth annual conference of the

National Advisory Committee on Computing

Qualifications, Mann, S. and Clear, T., Eds. National
Advisory Committee on Computing Qualifications, 2004,
440-445.

[70] Thompson, E. Holistic assessment criteria - applying SOLO
to programming projects. Proceedings of the Ninth

Australasian Computing Education Conference (ACE

2007), Ballarat, Victoria, Australia, Mann, S. and Simon,
Eds. Australian Computer Society Inc, 2007, 155-162.

[71] University of Victoria. Learning Skills Program - Bloom's
Taxonomy,
http://www.coun.uvic.ca/learn/program/hndouts/bloom.htm
l, Accessed on 19/07/2007, 2007.

[72] Whalley, J.L., Lister, R., Thompson, E., Clear, T., Robbins,
P., Kumar, P. K.A., and Prasad, C. An Australasian study
of reading and comprehension skills in novice
programmers, using the bloom and SOLO taxonomies.
Proceedings of the 8th Australasian Conference on

Computing Education - Volume 52, Hobart, Australia,
Australian Computer Society, Inc, 2006, 243-252.

[73] Winslow, L.E. 1996. Programming Pedagogy - a
Psychological Overview. SIGCSE Bull. 28, 17-22.

Acknowledgements

This paper is partly supported by the ITiCSE 2007 Student Bursary of

the British Computer Society and the grant of FGU No 21/2007 (Faculty

of Management Science and Informatics, University of Zilina)

7. Publications reprinted

Publication (ii)

Lahtinen, E., Ahoniemi, T. Visualizations to Support Programming on Di�erent

Levels of Cognitive Development In: The Proceedings of The Fifth Koli Calling

Conference on Computer Science Education, pages 87�94, November 2005.

103

Visualizations to Support Programming on Different Levels
of Cognitive Development

Essi Lahtinen
Institute of Software Systems

Tampere University of Technology
Tampere, Finland

essi.lahtinen@tut.fi

Tuukka Ahoniemi
Institute of Software Systems

Tampere University of Technology
Tampere, Finland

tuukka.ahoniemi@tut.fi

ABSTRACT
�����������	��

���������������������������
��������

��������� �!���"���#��$��#%
�
&�����$('�)
$���*
+ $���,-,-��� + & ���
& � ����$����������-)
$�� �����#����� +)
$�� + $���,-,.��� + & ���
& �)����
���/��

��������$��
� $ 021���34�5�#��$ 67��

��������$��
��� +)
$���8
��� ,-�.���9�
�:����&��
)
$�� + $���,-,.��$�����$����
�����
���������;'<����& ���
& �)��9�
�
%
��$����=���
%
��� + 8
���
& �
��,-�������������>,.��?(��$@%
�BA-& �
�B����� �C���2)
$��D%
�
&���� +)
$�� + $���,-�C���
��

� ��$E��3��F0�GH
#�
��6I��

�J�
��� %
�K���L��

�J������$��
� $E���
%���

�-)
�
$�)M�����
���N��

�E�D�����������B�����������
�4%
�.�
������� � ,O���-,-� ����0

PQ���#��,<R �S�=��TD���
��,S'U������$��D%
�
& ���.���BTU������� ���-����& � + �
�B���B���C%
��*
��� ����)
,.���#�9��
����E��

�J������$��
� $K�V�������:3H��0�WX��%
� �
��� + ��

�-��& ��)Y�J���
�������������������������
�H���@& �:��� $9�����N��

�����Z������� �B�9&����[8M�J�.�����������������V��$
+ �
��%
��� + ��

�E������$��
��� + 8M������� $H8�'@�������������������������
��0

G4

���S)���)M� $S���#��$��#%
�
& � �J��&������ + ��$��������������\���7�������������������������
��0
GH

�4&������ + ��$��B� �L)
$�� ��� �#��� %.��$��H$�� ��������%J���E��

�4������� ���L���IPQ���#��,<R �
�=��T����
��,S'�0]G!�^��

�:3_

�:3`��

�[&������ + ��$��������������a&����a8Y���
��� %F6
37�b�������U������$��D%
�
& �[��T���,-)
��� �@���
%a��%
�����C���X

�:3_���^%
����� �B��)
�������������������������
�7���Z��

�K&������ + ��$���� ��0

KeywordsP7�B�D��,�R �4G	��TD���
��,S'�6Dc9������������� �����B���F6
dL$�� + $���,.,-��� + 6�ef����$��
��� + 6G!����&=

��� +

1. INTR ODUCTIONc9�B���������������������
�g
�������8Y� ���C�
��� %.���J����%h������$��
��� + ���h,.����'.��$(*
���������Q& ��,.)
����� $K��& �B� �
& �.� %
�
&����������\8
����37�.8M� �����5�#�-��

�5'\��$��
�
�����
����%�)M� %�� + � + �B&������B'C������%��������=� + �����
���B'C���H��

�5'C&����
�B%�8M��0
ij����

�Z���#��$��#%
�
&�����$('�)
$�� + $���,-,.�B� + & ���
$����Z�B����� �!��

� $��J��$��S���B*
����������� �����B���
�7���������k��8
�����V��$Q�V$�� �9�
����0gl��
$Q37��$�m.��� +�+ � �(���7�S)Y����*
����8
�B�.���������������\���U

��3n��

��'/& ���
��%U8M�h%
����� ����)M� %\����8M�h,.��$��
��oI� &����;�#�K���
%<%
��$���&���� %�8M������� $H�V��$4��

�E�
� � %
�����N��

�K��� ��$��
��$ 0

G4

�g8
� +�+ � ���N)
$���8
��� ,p�����
������& �L)
$�� + $���,-,-� $��f%
�D� �N�
���!��� � ,
����8Y�H��

���
�
%
��$����=���
%
��� + ���I8�������&�)
$�� + $���,.,-��� + & ���
& ��)����78
���
$�����

� $	������$��
��� + ���E��)
)
�B'���

� ,rq s�tu0	iv�"
����"8M� � �J& ���
& ���
%
� %�q;w�x�6
w�w tI��
����H�
������& �E)
$�� + $���,-,-� $��H��$��9�y'D)
��&������B'h����,-�B��� %h���-���
)M� $(*
z & �k���ImD�
�:3H��� % + �E���f)
$�� + $���,-�H���
%@��� �
%C���J��)
)
$�����&=
C��

�E)
$���*
+ $���,{R �����
�K8#'<���B�
��RM$�����

� $H��
��������D��m#��� + ������

���k��$ + ��$H3�

����� �
���9��

��)
$�� + $���,<02GH

��'>,.��'|mD�
�:3`��

����'D�#�=��T}���
%a��� ,.����*
����& �S���4���
%
�;����%
�����Q&����
&��)�����6	8
���J%
���
���Zm#�
�:3~

�:3~����8
�
����%
)
$�� + $���,-�-�
���B� + ��

� ,�q;w���tu0}1�� �
& ��67�B�-���.�B,.)M��$(�=�����J���/� ,-*
)

�������� �E��

�K�
�=� + ���(��$������ + �B� �H���N��

��&����
&��)������B�<��

�K������&=

��� +,h����� $������B��0

ij�@��

���H)���)M� $437�E���#��$��#%
�
& �E��%
�����H���<

��3����J)
$��D%
�
& �E�D������*
�����������������
���V��$��
������& ��)
$�� + $���,.,-� $��H���.� �

����
& �S��

���(���
%
� �#��� R
�:3��[)
$�� + $���,-,.��� + ��mD�B�����-���
���K���
�B'�& ���
& �)��K�
�
%
� $����=���
%
��� +#� 0GH

�K��%
� ���H�V��$H%
����� �B��)
�B� + �������������������������
����$��E%
�B���B%
� %<���#���-%
�B�V*
�V� $�� �#�	������� �B�"��&�& ��$�%
��� + ������

�4P7�B�D��,�R �N�=��TD���
��,S'K���
��

�Q������� ���

���!& � + �
�B���B���E%
����� ����)
,.���#��0Q�D��&����������S3����B�F���=��$(�H3H�B��
<)
$������ ����*
��� + 37��$�m\%
���
�C8#'\�������������������������U���D���7%
�5�#������)Y� $��-����$�������$ 0\ij�
�D� &����B���/�h37�Z3������	�B�#��$��D%
�
&��.PQ���#��,<R ���=��T����
��,S'[���
%/�B�\�D� &�*
�������b�C�B���K��)
)
����&����������[���[�������������������������
�98#'[)
$�� ��� �#���B� + �@&�����*
� + ��$��������������[���"�������������������������
��0K�D� &��������/s-3H�����!)
$�� ��� ���9��

�J��T#*
��,.)
�B� �9���
%���%
� �����V��$�%
����� ����)
��� + ��

���D�����������B�����������
��0��D� &��������
� �������B'D� � ����

�S��,-)
��� ,-� ���=�����B���C���	���B���������������������F0��D��,.�E��������*
�����������������-���#���B�7��$��9��������)
�k��& ��%@�B�.��

��&������ + ��$��B� �7���Q��T
��,-)
��� � 0
GH

�K&����
&����
�������
����$��K)
$������ ����� %<�����D� &����������D0

2. RELATED WORKl��b��

�Z������� �"���g������$��D%
�
&�����$('[)
$�� + $���,.,-��� + & ���
$���� ��6F,-���(�
���f��

�9�D�����������B�����������
�4& ���
& ���#��$������E���C��T�)
�����B�
��� + ��

�E)
$�� + $���,
& �#%
�h���
%/�B���K8M�
����D�����
$ 0.G4

� $��.��$��Z�D������������� �����B�������D�����K���
&=

���	c9iyd}q;w:��t��V��$L�H�E�X���
%-��� �������L�Jq �:t
�V��$"�#��������
����"& ���#�=�����J���
������� $�)
$������ $K���g��

�-)
$�� + $���,-,.�B� + �k��� + ��� + �-��$��B���K���
8
�����S���
%
&����^��
#�
�Z�D���������������C���#' + �B��� �^�(��$��
&����
$�� �J��$Z���B�������h)
$�� + $���,.� 0
l��
��8Y���
� z � + ���B�
� %-3H�B��
.���-���#��� $�)
$��5��� $g8������ %-���#�������"��

�H�����(*
��� $�& $������������[���"��

�J��&��������N�D�����������B��������������T
��,-)
��� ��0�W2�B��
���

�
������� $�)
$������ $@
����
%
���B� + ��

��& �D%
�[���
%a�B���.�����������B��� ��� + ��

��)M� $(*
�����-&�$���������� + ��

�H��T���,.)
���4&����-& ���
& � ����$������H���
�B'Z���Z��

����&��������
& ���#�����#��0

�D��,.�/���#��$��#%
�
&�����$('�)
$�� + $���,-,.�B� + & ���
$����\������� �E������������������*
�������
��67��0 + 0~q;w�tv64��$���8
�
���B�h���
��8#'>���
�����\��������������� �J?(�
�(�@���
�
& � $(�=�����@)
$�� + $���,<6D�V��$7��T
��,-)
����3H�B��
@�	�k����
/q ��tu0"ij�@��

� ���9&������ ��6
& $���������� + ��

�h��T
��,-)
���h&����U�=��m��h,Z�
&5
U,-��$��.����,-�.��
����\3��B��

��

�<���#����$�)
$������ $-8�������%>���#���B��0|������� $(��

� �B� ��� 6Q,h���#'U��T
��,-)
��� �
���^��

���J������� �H��$��C)
�k�����]� � �������(���Y���j�g���v���>�=�������M�����=0>�D��,-�C���
��

�9��T
��,-)
��� �4�������Z������8
�B�9��

�������
%
� ���7���J��&����B��� �B'.)���$(����& ��)������
���C��

�K�D�����������B�����������<8#'@)
$��:����%
�B� +

���H�:3��<���
)
�����V��$H��

�K)
$���*
+ $���,�0[GH

�@���5�#���7���4��

�@��� ��$��
��$J� � + � + � ,.���#�Z��� � ,-�����b8M�C�
& $��B���B&����!����&�����$��������

����
&���� + ��

�S��� ��$��
�B� + 3��;��
��D������������� �����B���
�
q �tv0E�D���
& �Z�B�9�B�9�
���������;'��������B� $����@,.��m��K��

�S���#��� $�)
$��5��� $98������ %
���D�����9���#��� $���&��93H�B��
[��

�J�B����$��
� $ 6I��

�J��oI��$(�K��)Y� ���K���b%
�5�#������)�*
��� + ��

�[������� $�)
$������ $@���h�
���������;'>37��$(��
�3�

���B��3�

� �X,-�������
$��B� +��

�K)M� %�� + � + ��&����I�����B�
�K���f��

�E���#����0

l��b,.��$��Z��%������
& ��%/���5�#���	���")
$�� + $���,-,.��� + 6Y�V��$9���
�(�=���
& �Z���
& ���
$������S��8Y������%����=�C�(��$��
&����
$�� �K��$K��� + ��$��B��

,.� 6I��

�J������������������*
�������
����$����
�������B�B'<%
�5�#������)Y� %����.)
$�������%
�S�-,-��$�����8
����$���&���)
��&5*
���
$��Q���
��

�g��������������� � %S����$��
&5���
$��7�B�
��������%S�����(�=��'��B� + ������

�Q& �D%
�
����$��
&5���
$��.���5�#���Q�����B�/��

�-8�������&-)
$�� + $���,.,-��� + �D�����������B�����������
��0
l��
�4��8#�D�����
�	$����������Z�V��$!��

���	�B�!��
����	��

�����7���
8�?(� &����"��$��7�
���������B'
�
���S%
��$�� &����B'\�������D& �k����� %b�������
�B'/���
�.)
$�� + $���,-,.�B� + ����� + ��� + �8
���g$�����

� $"���K)
��� �
%
�K& �#%
��)
$������ ���=�����B���F0	¡"T
��,.)
�B� �"�������B�������B*
�������������.���D�����Q���@���@��8
�(��$���&��4������� �I��$���G!$���mD�k�Cq � tF���
%C��1�¢NcX£¡
q ¤�t#��
����!& ���
& ���#��$������Q���K��

�Q8M�
����D�����
$!������� + ��$��B��

,-�N���
%K��

� ��$
�
�=� + �E���<%����=�Z����$��
&����
$�����0

ef����� �f���f��

�E�=��TD���
��,S' ¥9� ��&�$���)��������
w�0"¦K�
�:3H��� % + � GH

�Z�����
%
� ���KmD�
��3��9��

�Z����&����9��$

��

�@& ���
& ��)����-�V$���,§��

�<��$�����6"�
�
$������F�
�
%
� $����=���
%
��� +

�D0g�7��,.)
$���

� �
������� GH

�¨�(���
%
� �#�©)M� $�& � �;�#���ª��

�
,-�����
��� + �«���¬��

�­����&����®���
%
�
�
%
� $��(�=���
%
�\

�:3¬��

�}& ���
& ��)����
37��$�m

��0"¢�)
)
����&���������� GH

�H�(���
%
� �#�g���Q��8
���4������)
)
�B'Z��

�
mD�
��3���� % + �K���<�
��3p���;���������B���
�4�V��$
��T���,-)
���\���p��T�� $�&������ ��%
� ��&�$���8Y��%
8#'h��

�E������&=

� $

�
0"¢������;'����B� GH

���(���
%
� �#�}&����r��%
� �������k'¯���
%
�����B���h)
$���8
��� ,-�J���^

���Z�:3��|���
%
�������B'�������

��& ��,.)M���
� �#���@���9��

�
���
8D?(� &��

sD0g�#'��#��

������� GH

�������
%
���#�7&����h,.��m��H�:3��.& ����*
& ���
�������
�p�V$���,°��

�±����$������ $]�����#*
� ���-���
% + � �
� $����������C3�
����.

�<
����
������$����2�V��$X�
��3²���;���������B���
�X���
%
��
D�
�³8
�
����%´����$ + � $=µ��
��3­3H

����� �
& ��,Z8
���
��� +

���Q����$������ $gmD�
�:3H��� % + �

� 0L¡"����������������� GH

�\�����
%
� ���[&����¶& ��,-)���$��U���
%
������� ���|%
�BoI� $����#�}m#���
%
�>������%
�����
���
%2,.��m���&5

������� �C��& & ��$�%
��� + ���
��

���4$����������
��� +

·Q¸�¹	ºV»a¼M½<¾�¿MÀ�Á�ÂfÃ	ÄNÅ�À�ÆVÂI¿�ÂYÇEÀ�ÈF»>ºk»DÉM»�º�ÊCÂYÇSËJºkÂFÂIÌ>ÍBÊCÀ�¸�ÎIÏ
ÂI¿fÂIÌ<Ð

�����#'��D������������� �����B���
�9)
$�� ��� �#�E& ���
& �)����93��B��

�����K)
$��#& � ������� +��

� ,Ñ�V�
$(��

� $ 0Z�D�B�
& �J������$��
��� +)
$���8
�B� ,.�E��$��Z���k��� �b&����
�
��&���� %
���^,-��$��[��%������
& ��%2�������
� �h��
����X���
%
�B�D��%
�����9& ���
& ��)����\q s:tv6437�
��� +�+ � ���g��
����Q��� ��$��
�B� + ,h����� $������B�g& ���
��%h8M��%
��$�� &�����%h����%
����� �B��)
)
$�� + $���, + � �
� $����������F6�,-�D%
� z &����������S���
%S%
� 8
� +�+ ��� + ��m#������� 0	�Q$���*
������� +)
$�� + $���,-�Z���^���
� �Z�:3H�^���S��,.)M��$(�=���#�Z���^�B����$��
��� +)
$���*
+ $���,-,-��� + 6����9�������������������������
�"��

���
��%J
������4,-��$��4)
$���8
����,Ò�����B�D*
��� + �������
$��E���
��������%C���N���
�;'C$���)
$�� ��� ������� + & ���
& �)�����0

3. BLOOM’S TAXONOMY AND ITS USAGE
IN TEACHING PROGRAMMINGG4

�S�=��TD���
��,S'<%
����� �B��)M� %[8#'�PQ���D��,`���E����0Jq ��t	&������ + ��$���� � ����BTb%
�BoI��$�� �#�Z�B����� ���S���7& � + �
�;���B���.%
����� �B��)
,-� ���S3H

� �U������$��
��� +�@���
8D?(� &���0ZG4

�J�=��TD���
��,S'��B� + � �
� $����L���
%b&����b8Y�-��)
)
����� %[���

�����
%�'D��� + & ��,.)
����� $g��& ��� �
&��9���
%.)
$�� + $���,-,.�B� + ��,-��� + ����

� $�� 0
G4

�-������� �B�K���L��

�J�=��T����
��,S'b��$��-��

�:3��b���/G	��8
���Cw�0-G4

��'

��$������k��� �.��)
)
$��#��&=

� %.�����
� ��$��;'�6�8Y� & ���
�����;�g���L��������� $"���K)
$��D&�� � %
���.���
�K���N��

���B����� �������N��

���B����$��
� $�mD�
��3��H��

�K����$������ $��B����� �������
��

�Z�=��T����
��,S'�0Zl9�[��

�J����

��$K
����
%F6f����,-�Z���L��

�J������� ���-����0 + 0��'D�#��

� ���������
%<�5����������������� � & ���
��%����B���J8Y�K�B�#��� $(��� %\q ��tv0

1���$��E34�E%
����& �
���7��

�K���5�#�����H�
����� + ���#��)C�(��$��
&����
$�� ���������<�5TD*
��,.)
����0NGH

�Q�B�:37� ���!������� �#������

�L�=��TD���
��,S'E���L���YÓ��4�k��� ÔD��6:3H

��&5

,.� ���
�!��
����!��

�4�(���
%
� �#�"m#�
�:3��!��

�7����&����	��$!��

�7& ���
& �)����"�V$���,
��

����$�����6�����$H��T���,-)
���E3H

� ��������$��
��� + ���#��)<�(��$��
&����
$�� �����<)
$���*
+ $���,-,-��� + 64��

���C�B����� �9& ���
��%2,-�����a��
����@��

�[�����
%
� ���<m#�
�:3��
��
����KÕ�Ö�×�Ø�Ù�6!ÚDÛ�Ü[���
%/ÝDÛhÞ�Õ�ÖM×�Ø�Ù<���D��)
�K��TD���������
%/��

� �B$K��'���*
�=��TI0�GH

���9%
�D���E�
���9$�� ßD�
��$��S�
�
%
� $��(�=���
%
�B� + ���"��

�Z��&��������	8M��*

������B��$����"��

�S���#��)[����$��
&5���
$�� ��6�?(�
������

�SmD�
�:3H��� % + ����
�������

��'
��$��S�
��� %��V��$�$��)M��������� + ��

��� + ��07W2�B��
�,-��$��K�
�
%
� $����=���
%
��� + ���

�:3a�E���#��)J37��$�mD�L���
%J��

�H%
�;oI� $�� �
& � �L8M���y37� � �J��

�4��

$������B�D��)
����$��
&����
$����9���
%���

����$�8M�
����D�����
$���

�S�����
%
���#��
�����$�� ��&=

� %���

�

����& ���
%��B����� �u6N�=Ó����Mà��5���������uÓ���0
ij����

����

��$�%�������� ��6"�5���M� ���=�����uÓ���6Y��

�S��� ��$��
��$9���B$�����%�'��
�
%
� $(*

���=���
%
�7��

�E���
8D?(� &��H���S37� ���Y��
����H

�E���H��8
���9���J��)
)
�;'C�;�H���C�
�53
���;���������B���
� 0H����$���T
��,-)
����6Y

��&����b��%
%[�.���D��)�����$��
&����
$������@���
��TD��������� +)
$�� + $���,Ò��$",-�D%
���k'���

�H& ���
%
�B���B���J������

�H���#��)F0NW2

���

�E���7��8
�B�9���J�������B'D� �9& �D%
�E�V��$7��T���,.)
�������Z$�� &�� + �
�����9��

�9)
�
$(*
)M�����9���N��& ��,.)
���5Th���#��)@�(��$��
&����
$��9��$Q��� z Th����� + �B&������B'.8
$���m�� �
���#��)F6���

�4�(���
%
� �#��R �L�B����� �
����& � + �
�B���B���7%
����� ����)
,.���#�L�B�"���J�(�=� + ��V���
$ 6N���Y���;á��=�V�=0Ql��@��

���4���5�#���u6�& ���
& �)����H���
&5
C���H�Z���#��)C��������$��;*
���#�-& ���
��%>8M�<�B�#��$��D%
�
&�� %|���[��

�C������$��
� $ 6Q���B�
& �@��

��'^�
� � %}�
,-��$��K�������B'D����& ���Y3H� '@���!���#��m#��� + ���H��

�K& �#%
��0

â á������
�������@& ���#��$��-,h��m#��� + ���
� �-�:3H�|& ���
& �B�
�������
�-�V$���,ã��

�
����$�������$9������� �B��09iv�E�B�9��

� z �k��
[������� �!������

���=��T����
��,S'�0Kl�����

���
������� �
��

���B����$��
� $g���g��8
�B�H�����
���H��

�H���D��)-����$��
&����
$�� �g�B�.

���g��3��
)
$�� + $���,Ò&��D%
��0L�7��,Z8
���
� ,-� ���"3��;��
-

�B�L����$������ $"m#�
�:3�����% + ��6#�V��$
��T���,-)
���7�
����� + �V�
�
&��������Z&��������"���	��

�7& ���
%
�B�������J���M�����D��)Z���=������*
,-� �#��� 6����H�������Z)
�k��& � %C���@��

���4������� ��0"¢4�7��

���4)Y�������4��

�9������$��
� $
�������[m#�
�:3��Z���^3H

��&5
|m#���
%|�������B�������������
�J�[���D��)^����$��
&����
$��@���
�
� � %
��%F0

GH

�E���;TD��
<���
%C��

�E

� +

� ���H�B����� �F���N��

�9�=��TD���
��,S'.���S��ä����;åD�
�����uÓ��[3�

�B&5
<,-�����
�4��
����H��

�K��� ��$��
��$�& ���<& ��,-)���$������
%Z?(�
% + �%
�BoI� $����#�	mD���
%
�	���
��%
�����	����8
�
����%
��� + ���
%Z�
����� + ���#��)S����$��
&5���
$�� ��0
¢��K3H�B��
b��

�-��� & ���
%/������� �u67�=Ó����Mà��5�
�5���=��Ó��
6N��

�-������$��
� $�&���,J*
)���$�� %/��

�-,-�����
��� + ���Q%
�BoI��$�� �#�����D��)/����$��
&5���
$�� ��6N���/������� �L���BT

�J���K��8
���S���C& ��,-)���$��Z��

� ��$E��%
��ßD����&�'�����$E&�� $(�=�����b���;���������B���
�
���
%/��
D�
��%
� ��� + �\& �B����$�� $h�������
�
%
��$����=���
%^���
%/�����B,.)
����,.� ��� �)
$�� + $���,-�H�
����� + ���#��)
��0

�9��)
�h���@���u0nq �t�
���������
���$���%a��%
�����h���>3�
����h��

�������
%
���#�
&����b%
�C���b%
�BoI� $����#�K���5�#�����E���L��

�Z�=��TD���
��,S'����
%�3�
����KmD�B�
%
�
���E�=����mD�.��

���(���
%
� �#�@&����a8M� + �B��� �}���\���
)
)M��$(�@��� ��$��
�B� + ���
��

� �������=� + � � 0QG4

� ��$��(���
%�'<������8M�����H������&5

��� + %����=�J����$��
&����
$����
���
%]��� + ��$��B��

,-��0±GH

�[�=��T����
��,S'a& ���28Y�b�
����%����B,.������$��;'}���
������$��D%
�
&�����$('[)
$�� + $���,-,-��� + & ���
$���� � 0-l��
$�����,æ���9���C��,-)
$��:���
��

�S�
��� + �����	��

�K�=��T����
��,S'<�B���D������������� �����B���<%
����� �B��)
,-� ���9���
��

����$����J���!������$��D%
�
&�����$('@)
$�� + $���,-,-��� + 0

4. VISUALIZA TION CATEGORIESW\�Q
�� �#�Q�������;'�� � %���

�Q%
�;oI� $�� �#�!mD���
%
�!���������������B�������������
�f��
����
��TD���������
%<)
�����
�
��%<�
��3��y'D)Y���H���f�����������B�������������
�7��
����H& ���
��%C8Y�

� ��)
�V�
�Y����$g�����
%
� �����Q3�

�Z��$���������$��
��� + ��

��8�������& �Q���F)
$�� + $���,J*
,-��� + 0EW\�J$�� &�� + �
����� %[��
����9���<��&=

�������S��

�J%
�BoI��$�� �#�E������� �B�E���
PQ���D��,<R �7�=��T����
��,S'h��

�K�����
%
���#���
� � %
��%
�;oI� $�� �#��m#���
%
�H���N,h��*
��� $��k����� 0Nc9������������� �����B���
�"&����-8M�H�
��� %Z�#��$��=��������� �;'Z�V��$L���
)
)Y��$(����� +
��

� ���S%
�;oI� $�� �#��������� �B��04G	��8
���Z�J���#��$��#%
�
& � ����

��%
�BoI� $�� ���9& �����5*
+ ��$���� �	���
�����������B�������������
�!37�7
�� �#�Q$�� & � + �
��� � %J���
%S��

� ��$	$�� �������B���
���J��

�9�=��T����
��,S'�0

�D�[����$S��

�h���B���������������������
�S�
��� %^���^���#��$��#%
�
&�����$('U)
$�� + $���,J*
,-��� + & ���
$������7,h�����
�;'-�V�D& �
�7���.��

���y37� z $����7���5�#�����Q���fPQ���D��,<R �
�=��T����
��,S'Iç-mD�
��3���� % + �C���
%^& ��,-)
$��

� �
�������F0bWX�B��
^,-��$��h� �k*
�V� &����B���-�D������������� �����B���[���D�����S���
%\,.��$��-�5oI��$(�����\%
� ��� + �
�B� + ��

�
���B���������������������
�N��

�4&�� + �
�B���;�#�Q�(�=� + �Q&����J8M�7%
� �)M� �
� %J�������
$(��

��$
������� �B��0

4.1 Illustrati vevisualizationsc9���������B�������������
�"��$��4,.�������;'S�
����%-)
$������ ������� +)
$����V���
�
%-��T���,J*
)
��� �9���[�
�53Ò���
8�?(� &5���9���h�(���
%
� �#��� 0�W\�S&������N��

� ���@�V��� åD�=�uà������Vä��
ä:�V�=å
��� ��è������uÓ����Q8M� &����
���Q��

�5'S%
�9�
���	�
���������B'�$�� ß#�
��$��7,Z�
&=
S)���$(*
����& �B)������B���.�V$���,±��

�������
%
� ����0"G4

�������
%
� ���7,.���B�
�B'-�V�������:3H�L��

�
���B���������������������F0�Gg'�)
��& ���N&=
���$���&5��� $��������B& �9�V��$��������
�(��$������B���K���B�������B*
�������������
�H��$���ç

é P7$������	���
%<���B,.)
����0

ef����� �f���f��

�E�=��TD���
��,S' c9���������B�������������C& ����� + ��$('
w�0"¦K�
�:3H��� % + � *
�D0g�7��,.)
$���

� �
������� ij�����
�(��$������B���9�������������������������
�
��0"¢�)
)
����&���������� ê��������B� ��� + �������������������������
�
�
0"¢������;'����B� dL$���8
��� ,J*v�����;����� + �����������B�������������
�
sD0g�#'��#��

������� dL$��D%
�
&5���B���E�D������������� �����B���
�
� 0L¡"����������������� ¥9����&�� $��
��� + �D������������� �����B���
�

·Q¸�¹	ºV»pëI½p·ZÈF»�¸�ìNì"º�ÆVÅ�¸
À�ÆVÂI¿~ÂYÇ<ËZºVÂFÂYÌ>Í�Ê/À�¸�ÎFÂI¿FÂIÌ�Ð¯Æ�¿
ÉNÆVÊ:Äf¸Yº�ÆVí�¸
À�ÆkÂI¿NÊ

é GH

�J& �D%
�-���K���k��� �/,.��%
��?��
�(���V��$K�����B�
����$�������� + �<&�� $(�=�����
�k��� + ��� + �.�V�������
$��h���
%\%
�D� �S�
���Z�
��& � ������$����B'/��,-)
��� ,-� ���
�J)
$�� + $���,¯3H

��&5
<& ���
��%C8Y�K�
��� �V�
�f� ������3�

� $���0

é dL$����V���
�
%<���
����$��
&����B���
�H%
� ��& $��B8
��� + 8M����
<��

���('����=��TC���
%
��

�K����,h���#���B& ��0

é �#���)�*u8#'D*u�����)<)
$�� + $���,¯$��
�F0
ij����$��D%
�
& �B� + �C�
��3±&����
&��)��S���
)Y� $ z &��k�����B'[$�����&=

� �����
�B'���

�

z $������B����� �����Z��

�/�=��T����
��,S'Ò�y�:�YÓ��4������Ô#� � 0_¢��
��,.������� + ���
%
%
� �)
�B'J�5T�)
�k�����
��� + ����&5
.�(���)-&����-

� ��).�(���
%
� �#�g$�����&5
-������� �
�j34�
���=Ó����Mà��=�
���
�=��Ó�� � 0\eN�5������� + ��

�C�(���
%
� �#�J������%^��

�@$��
�|���4��

�
�������������������������C

��,-��� �B�!�V��$H��T
��,-)
���E8#'C� ����� $���� +

�����:3H�<���
)
���
�V��$"��

��)
$�� + $���,~���
%.�������B�:3���� + ��

��8M�
������B���
$g���Y��

��)
$�� + $���,��

�K�
�
%
��$����=���
%
��� + &�����

����)<$�����&5

��� + ������� �I�y37�J����� �<8Y��������$ 0

G4

�E$����������h3�
�'h37�9%
�-�
���4���#��$��#%
�
& �K�S����,-�9�V��$4�S�D���������B*
��������������&������ + ��$('�$�����&=

��� + ���
�B'E��

� z $��(�	������� �#������

�g�=��T����
��,S'
�y���MÓ��4�k����ÔD� � �B�N��
����	�B,.)
����,.� ������� + �������������������������
�N�V��$f��

���!���5�#���
���
�B'b���KßD�
�B���J%
�BA.& �
�B�S���
%/�
��� ��������0.eN�5���
��& ���
���B%
� $S�C���;������*
�������h3�

��$��K�Z�
�:�D��& �E)
$�� + $���,.,-� $Q
����4������$��
� %C

�:32���Z)
$����#�H�
����TD�9���
%���

� ��34���#�������h$���)Y�����9)
$���������� + ��

���=��,.�E����TD��0HGH

�
������&5

��$���� ���B��

��,_��
�������

�S)
$���8
��� ,_���9�����;�#��%�8#'��B,.)
����,.� ����*
��� + �C�B�D��)/���
%/%
� ,-���
�(��$������ �9��

�J��'D�#�=��T[���Q�@���D��)F0Z¢4�E��

���
)Y�������K��

� z $����K������� �u6fmD�
�:3H��� % + �J��
����K���D��)b���=����� ,-� �#���E��T��B����6

��������B$�����%�'[8Y� ���\$�����&=

� %F0h�D�
)
)Y��$(����� + ���
�B'���

���E3H�B��
b�D������*
�����������������\
����S�
����&��������g�
���.8Y� & ���
���.��

�.�=��,.�J���B���������������������
��T
��,-)
���E&���� + �B���K,-��$��9��
����Z?(�
���4��

�K��'D�#�=��TI0

G4

�98Y� �
� z ���4���f�B�����
����$������B���H�������������������������
�g�=��m���)
�k��& ��3�

� �
��

�C�(���
%
� �#�Z34�������Z���bm#�
�:3¯

�:3¯����,-����

��� + ��&����������B'\37��$�m#�
���
%U�B�\3H
����Zm#���
%\���4���B�������������
���B�S&����\8Y�.�
��� %F0<PQ� ��� + ��8
�B�
���.���
��37� $7��

� ���Kß#�
� ���������
�H,.��m�� �7��

�K%
�BoI� $�� �
&���8M���y37� � �C��

�
�=��T����
��,S'b������� �B�S���
�@���
%\�y37�
0CGH
D�
�K34�.��� +�+ ��������
����S�D������*
�����������������
����

���
�B%�8M�S%
����� ����)M� %����.���
)
)Y��$(�E������� ���(����

�S���5�#���
�y37�J���	P7�B�D��,�R �7�=��T����
��,S'�0

4.2 Utilizing visualizationsGN�E%
� �)M� �J��

�7& � + �
�B���B���4�(�=� + �Q���
�D������������� �����B���
�!������

�4���5�#���
�5���M� ���=�����uÓ���6"��

�h�(���
%
� �#�Z��

���
��%U)���$(����& ��)������h,-��$��.��
����<?��
�(�
�V���B���:3��B� + ��

�C���B���������������������>���.���|��

���B�����
����$������B���C��T���,.)
������0
l9�
�K���������������C���4���-8
�
����%�)
$�� + $���,.,-��� + ��T�� $�&������ �H���-$��
�������
���������������=���������E���D���u0NW\�Q&������#��

�7�
�5TD�	���=� + �Q���
��

�g���B���������������������
&������ + ��$���� ��åD����� ��è��V�DÔUä:�V�=å
��� ��è����u��Ó��
��8M� &����
�����B�}��

���.&������ + ��$('��

�Z�(���
%
� �#�E�������
)
)M����� %����@8M����
����B����������� ����

�Z& �#%
�J���
%��
���
��

�Km#�
�:3��B� % + �K

�K
���� + ���B�
� %<���J����$ 0

G4

�.��mD���B�	��

�-�����
%
� ����
����E���<)
$���&��������-���b��

�����B����� �L���g��

�
�=��T����
��,S'����	���K��)
)
�B'S

���"mD�
�:3H��� % + �4���-�9�
��3>���;���������B���F0!¢��L�
8��������	�V��$	%
����� + ��

����6���

�7�����
%
���#�L& ���Z8M� + �;�#���J�9)
$�� + $���,¶��
����
����$�����%�'X��,.)
�B� ,.���#���<�|���;�������b)
$�� + $���,-,-��� + �(��$��
&����
$���0¯GH

�
�=����mS&����-8Y�4���K,-�D%
���k'S��

�H8Y�
�� �������
$L���M��

�B�g�(��$��
&����
$��4���K������*
�����k'C�
��3³$�� ßD�
�B$�� ,.���#������$����.��,-)
��� ,-� �#�9�-���B�������K��TD�����
�����������
��

�.�V�
�
&��������������B�y'�0��D���
& �-��

� + �����L�����
��������)
$��#%
�
& �@�<& ��,-*
)
������� �;'[�
��3±)
$�� + $���,æ'��������
%[��

�Z�=����m�$�� ß#�
��$�� �K���
�B'�����,-)
���

mD�
��3���� % + �K��)
)
���B&����������F6D��

���7&������ + ��$('h���4&�������� %[åD�u�V� �kè ���u��Ó����B��*
����� ��%C���N�Mà�Ó���å
� ���uÓ���0

GH

�H���B���������������������-���#���M,.��m�� �L��

������mD�B�
%
�7���F�5T
��,.)
�B� �Q�����(*
��� $N�V��$f��

�Q�����
%
���#�!8Y��&����
���g��

�g�����
%
� ���!&����S�(�=��$(�N3��;��
 + �������B� +���-�
�
%
� $��(�=���
%<��

�K�5T����(����� + & �#%
�K8#'h��������������� ��� + �B��0"¢��k��� $H�
��*
%
� $��(�=���
%
�B� + ��

�J& �#%
�-��

�J�(���
%
� �#�K
������C8��������K�V��$E,h��mD�B� + �
������)h�V��$(3H��$�%-����,.��m�������,.�H,-�D%
� z &����������
�L���K��

��& �#%
��0	W\$��B��*
��� +

���K�:3��b)
��� &�� ��& �#%
�-�V��$K�����;����� + ��

�-)
$���8
����,{,h��m�� �9��

�
�����
%
���#�7��)
)
�B'J��

�H& ���
& �)��7�B�h�K�
��3a���B�������������J3H

��&5
.�B�Q����mD���B�
$������ %<���<������� �I��

$�� �.���5���M�;���=���u��Ó�� � ���	PQ���#��,<R �Q�=��T����
��,S'�0

4.3 Problem-solvingvisualizationsl��b��

�-�V���
$(��
b������� �"���L��

�J�=��TD���
��,S'^�����Y���;á��=�V� � 6f��

�J�(����*
%
� ���g���"���
)
)M����� %J���9��%
� �#���B�V'S)
$���8
�B� ,.�L���
%J�����B���Q��

� ,�6�3�

��&=

�������
$������B'2& $�������� %���

�U����,-�b�Mà�Ó#î������Z�j�5Ó��;ä��V�DÔaä��V�=å
���;��è����u��Ó����
�V��$H��

���
��TD��&������ + ��$('<���!���B���������������������
� 0H�D���
& ��)
$���8
��� ,`�����;�D*
��� + ���	��& ��,-,.����,-����

�#%S����������&5

��� + 6���

� $��7��$��Q�D�
,-� $����
�!%
���k*
�V� $�� ���K3H� '��E���g8
�
����%
��� +)
$���8
��� ,J*v�����B�D��� + ���B���������������������
� 0SW\�
������$��D%
�
& �Z�y37�@%
�;oI� $�� �#�E���
8��y'D)Y���K���L)
$���8
�B� ,-*u�����B�D��� + ���B�������B*
�������������
�H���@��

�K�������B�:3���� + ���
8
��� &����B���
� 0Q�7� $(�=�����
�B'�6�,.���#'@,.��$��
���
8��j'�)M� ��&����C8Y�K%
����� �B��)M� %F0

4.3.1 Debugging visualizations�[� '�8M����

������,-)
��� �(�g3H� '-���S)
$��D%
�
&��K��)
$���8
��� ,J*v�����;����� + ���;*
���������B������������������� + �B������

�������
%
� ���E������T���,-)
����)
$�� + $���,r��
����
& ���#�=�����
�"���Z� $�$���$"���
%J��%
� ��&�$���)��������S3H
����	��

�7& �D%
�7��

���
��%S%
�
0
�9�����
$������B'[��

�h� $�$���$�&����
�
���S8Y�h�<����,-)
���-��'D�#�=��Tb� $�$���$S8
���Z�
��� + ��&����D���
��6�3�

��&=
Z&����Z8M�4%
�BA-& �
�B�	���9�B�D&�������0!GH

�7�����
%
���#�"&����
z $����K���
�B,h��������

�J& �#%
�Z3��;��
[��

�Z�D������������� �����B�������#���!���C���#&������
��

�Z� $�$���$ 09GH

�B�E�B�9�
���������;'�,Z�
&=
��������B� $9�V��$���

�S�����
%
� ���9��
����
���#&�������� + ���S��$�$���$N8#'7?(�
���!$�����%
��� + ��

�g& �D%
��0Ll9�k��� �K��

�Q�����
%
���#�

�������� + �B���Z%
�;oI� $�� �#�9�B�
)
�����9���.��

�S)
$�� + $���,æ���
%������������B��� �S�B�
,-��$��9��
����<���
& �E��� z �
%C��

�E� $�$���$ 0

¢��k��� $���$���& ��� + ��

�J��$�$���$���

�J�����
%
���#�E&����[��

� �[��$('�

���E��3��
�����������B���2�V��$ z T���� + ��

�/8
� + ���
%���� �/�B����

�/���������������X34�����
& ��$�$�� &��@���
��8#'|�����������B��� ��� + ��

� z T���%X& �D%
��0p¢��X��������,h����� %
��� �(����� + ����$K& ��$�$�� &5���
� ����&����U�������<8M�.�
��� %b3��B��
/�V� ��%
8���&=m/���
%

�������.����)Y��������8
����0aGH

��� 67����& ���
$�����67$�� ß#�
��$�� �.,.��$��<�V$���,´��

�
�
����%<�D�����������B�����������@���#����0

4.3.2 Analysable visualizationsGH

�K& �D%
����T���,.)
���K�B��)
$���8
��� ,J*v�����B�D��� + �D������������� �����B���
�H�
� ��%
�
���N����8M�Q8
$���m�� �F0NGH

�L������&5

� $
?��
�(�!
����f����8M�Q,-��$��g& $��������B���g���
%
� z �
��� + ��

��)
$���8
��� ,Ò3�

� �-��

��& �#%
�9����$�� ��%�'J��,-)
��� ,-� �#���"��

�
%
� ����$�� %h�V�
�
&����B���������;�y'�0	¢7�Q�;���g����,-)
��� �(��6���

�H)
$���8
�B� ,~& ���.8M�H���
�
�
%
� $��(�=���
%b���
%���T�)
�����B�[3H
����E%
�D���9��

�Z)
$�� + $���,æ�B,.)
����,.� ���
���
%J

�:3|%
�D� �	�B�"$�����&=
S��

� z ������$�� ���
�B�"���Z%
���=������0	G4

�7ßD�
�����������
���@�
����?(�
���C��8Y�����@��

� z ���������=���������E��

��)
$�� + $���,<6H8M� &����
���
��

���@& ���a8Y�[����� �X8#'[?��
�(�@$��
�
�
��� + ��

�������������B�������������}���\��

�
� �
%F0ZG4

�J,h�����[)M���B�#���9��

�J�����
%
���#�K
����9��� z �
%/��������$��J

��3
��

�-)
$�� + $���,Ñ$�����&5

������

�J$�� ���
�B�S���
%b3H

��&5
/)

������ �K�B��
����E���
+ �/��

$���� +
F02GN�U%
�B$�� &��.��

���(���
%
� �#�.���\%
�B�D��%
�<��

��)
$���8
�B� ,
�������[��,.������� $�)���$(���J���
%|�������;'�� �h����&=
^���7��

� ,ï&���$�� �V�
���B'�6	��

�
������� + �
,.� ���H& ���<���
&����
%
�K��,.������� $ 6�,-��$��9%
���=������� %<ßD�
�����������
��0

�9�����
$������B'���T
��,-)
��� �9����m�����

���E& ���
��%[8M�J%
���
��?(�
�(�E���[)���)Y��$
���
%h)Y� �F6D8
���7���I��

�������
%
� ���4& ���-34����&=
.��

��&��D%
�9���
��,.������%F6D�B�
&����[

� ��)[

��,`���@�����B������

�Z)
$���8
��� ,<09W\�Z8M� ���������S��
����K����%
�B� +3��;��
��D������������� �����B���<%
�#� ���
���9�����������<��

��������$��
��� + �=����mC8M��'����
%
��

���Q��T���,-)
����6#8
���7���
)
)M��$(���7�;�Q8#'.)
$��:�D��%
��� + ���
����

� $g)Y� $���)Y��&�*
���B���H������)
)
$�����&=
h�B��0	���5�#��$(��

� ��� ����6 + ����� + ��

$���� +
-��

��& �#%
�����
%
� �)
�;'J��
����L��

�H�����
%
� ���g���g��8
���4�������
��37� $LßD�
�����������
�g��8M�����g�B��6
%
� �)M� �
�9��

�Z�(�=� + �����"������$��
��� + ���
%b$��B��� ���
)����.��

�Z������� �!�V���
$
�����M���;á��=�V� � ���N��

�E�=��T����
��,S'�0

ð�ÆkñIÄfÁ:»^¼M½K¾�º�º�ÄfÊ�À:Á�¸�À�ÆkÉM»�ÉNÆVÊ:Äf¸Mº�Ækí#¸�À�ÆkÂI¿}ÂMÇ�ºVÂIÂMì	Ê�ò�·ZÈf»�ì!Á�Â�ñMÁ�¸YÌóÆVÊ-Á�Ä!¿!¿!Æ�¿fñ|Æ�¿>À�Èf»bÄ!¿NÃN»#Á�º�Æ�¿f»DÃ2º�Æ�¿f»Mò

4.4 Productive visualizationsG4

� z �k��
C������� �F���F��

�9�=��T����
��,S'h���E��á��
���
�5�=�V�=6�3�

�B&5
C,-�����
�
& ��,Z8
���
��� + ��

�<��� ��$��
��$ R �-����$�������$-mD�
�:3H��� % + �C���/)
$��#%
�
& �<�
��3
3�

����� � 0}GH
#�
�-37��
����
%
���C��

���.�B����� �H8#'>������� + �
,.� �����Z���\��,J*
)
��� ,-� �#�J��& ��,.)
�B����� �B'\�
��3O)
$�� + $���,ï3H�B��

�����-��& �#%
�h��� + ���
���=��$(��� %@3H�B��
F0

¢ + �����F6���

� $�����$��H%
�BoI� $�� ���L34��'��L���I���B%
��� + ��

���Lm#���
%.���M�=����m#�
8#'@�������������������������
��0g1�� $��K37�����#��$��#%
�
& �K�y37�.���
8Y& ����� + ��$�������ç�ä:�V�
�=å
��� �kè5���#Ô/���
�@�=��å���������ô �@�5Ó��;åD���uÓ��X���
%2ä�����å����;��è��V�DÔb���������=�=�BÔ��
�
�.���
�u0nGH

� ���b�j37�|���
8M&������ + ��$���� �C&��������B���|8M�b& ��,Z8
���
� %X���
��
�����8M����
C���N��

�K��%
��������$��K�
��� %C���.����%C��

�K�(���
%
� �#�H���<��,.)
�B��*
,.���#����� +

���4�:3��C)
$�� + $���,<0

4.4.1 Visualizing the student’s solutionG4

�Z���#����$�)
$������ $E8�������%[�D�����������B���������������D��������
����E� ����8
���S��

�
�����
%
� ���"���9�D�����������B� �4

�B�L��3��J& �D%
�H�������E)
$��:�D��%
�7��

�4)Y��������8
���B�B�y'
���h���=��$(�9& $���������� + �.& ��,.)
���5��� �B'��
�53Ò)
$�� + $���,_�V$���,æ�h��& $�����&=

���<��

�K���B���������������������C���D���u07GH

���H34��'C��

���(���
%
� �#�������
����� + ��

�
�������������������������.���#���M���Z$��)
����&��9

���7�
�������I)
$�� + $���,~%
�5�#������)
,.� ���
� �#�D��$����
,.���#��0}GH

�<������&=

� $.&���� + �B�������a������� + �
,.� ���J���\��,J*
)
��� ,-� �#�9�.�
�53Ò)
$�� + $���,r��
������=������� z � ��& � $(�=������$���ßD�
��$�� ,-� ������0
GH

� �<��

���(���
%
� �#��&����<�D����������������

�����:3��<���������������<��$�)���$(�������
�B�H%
�
$���� + ��

�K)
$�� + $���,-,.�B� +)
$��D& � ����0

G4

�J�
��$�,.���N34��'����g%
����� +)
$�� + $���,.,-��� + ������� + �
,-� �#���L?��
�(�
�
����� + ���J��$�%
������$('S)
$�� + $���,.,-��� + � ������$����
,-� �#�	���
����� ��%Z���M�����B*
����������� �����B�������D���
�������9���
)
)M��$(���	��

�7���=� + � z ���E�(�=á����������=�V� � 0!GH

�
8Y���
� z � + ���B�
� %b8#'[�
����� + �h���B�������	� �#�D��$����
,.���#�K�������C���
)
)M��$(�
��

�H�����
%
� �����L3H

��
������H)
$���8
��� ,-�L���-)
��� & ��� + ��� + �5��

� $g

��3}��

�
)
$�� + $���,r$��
�
��04ij�[�J3H� '�6���

���
�=� + �����!��

���D�����������B�����������<���#���
$��)
�k��& � �	��

�4�
��� + �7���Y�E%
��8
� +�+ � $"�V��$ z �
%
��� + ��

�7)
�k��& � �	3�

� $��
��

��)
$�� + $���,`8M�
������ �H3�$���� + 07ê����B� + �J�����������B�������������C���#���f& ���
8Y��,-��$��<8Y� �
� z & �k���������
&����
�:�D��& ��)
$�� + $���,-,.��$��-��� $('>������%
��,
mD�
�:3]

�:3����J�
�����Z%
� 8
� +�+ ��$��5oI� &����B��� �B'�0

G4

�4�B%
���9����37��$�mD��� + ���-��& �#%
�4���J�����B�����������������������D�����B�	��
����
��

�K�(���
%
� �#��&����<��,-)
��� ,-� �#�H�J���;�������K)���$(�H���f��

�K)
$�� + $���,r���
%

���B����������� �.�B�S8Y������$��h3H$��B����� + ��

�h$�� ���Z���7��

�h)
$�� + $���,<0[�D��,-��*
����,-� �K��������������� ��� + ��

�h&��D%
�@����$�� ��%�'/���\��

�-��� $('\� ��$��;'\%
����� �;*
��)
,.���#�S���=� + � �S&����U$��5�#� ���g,-���(�=��m�� �����/��

�-��

���
mD��� +)
$��#& � ���
���F��

���
������& ��)
$�� + $���,.,-� $ 0!GH

��)
��&����
$�� �Q)
$��:����%
��%@8�'-��

�����;*
���������B���������������#���N�
�������B�B'�

� �B)���

�Z��� ��$��
��$�$�� & � + �
��� �S���"

�Z
����
,.��%
�.3H$���� + &5

������� ��3��B��
\��

�h%����=�<�y'D)Y� � 0�W2

� �^�V�������:3H��� +��

�-��TD� & ���������/���g��

�J)
$�� + $���,Ñ���[��

�J�������������������������[���#����6F��

�
�����
%
���#�Z���k��� �^��������$���& � + �
�B� � �Z3H

� �U��

�h& ���#��$����Q���7��

�@)
$���*
+ $���,¬%
�D���.�
���.�V�������:3O��

�<)�����
}

�C
����.,-�����#�-�B�J���/�V�������:3K0
W2

� �}��

��� $�$���$��C��$����V���
�
%F6H�B�@�B�@�������\)Y��������8
���<���\�=��m��[���
��&��������C���J& ��$�$�� &��H��

��,�0

4.4.2 Visualizing the assignmentij�¶8
� +�+ � $[)
$�� + $���,.,-��� + ������� + �
,.� ������6E�������������������������
��&����
�������@8M�-

����)
�V�
�L�B� + �B����� + ��

�J������� + �
,-� ����0�ij�b��

���E&�������6f�;�K���
�
���Q��

�������
%
� ����R �Q& �D%
����
����Q���Q�D��������������� %h8
���Q��

�9������� + �
,.� ���
�B����� ���j0/¡L��)M� & �k�����B'/��

�@�
�:�D��& �@)
$�� + $���,.,-� $��S
������@����,-������,-� �
%
�BA.&��
�B����� �L���J$�����%
��� + �9��)M� & � z &����������J��
����g���L& ��,-)
����&������ %-���
%
�V�
���F���N�V��$�,.���Y��T�)
���������������
�4���C

�:32��

�E)
$�� + $���,O���4���
)
)Y������%
���J37��$�mY0g�D��,-������,-� �4�B�D��mD��� + �����S�����������I)
$�� ��� �#�=���������C���@��

�
��TD)Y� &5��� %X)
$�� + $���,õ8M�
������B���
$ + �B��� �@�\,Z�
&=
}& ��� ��$���$@)
�B&����
$��
����3�
����9���C�(�=��$(��37��$�m#��� + ���F6I����� �[��

��� +
���

�J�����
%
���#�E�������B�
�
� � %
�"���E8
�
���B%J��

�4)
$�� + $���,Ò�(��$��
&����
$�� �L8�'Z

��,-��� ���j0NGH

�4)M���B�#�
���9�
��� + �;����� + ��

�J������� + �
,-� �#�9���
�B'�8�'[�.�D������������� �����B����8
���9���
& ��,-)
�������9��

��������� + �
,.���#�4�
����� + �S�����������F)
$�� ��� �#�=���������F0

GH

�B�QmD�B�
%h���Y�����������B�������������.���F&����
$�����$���ßD�
��$�� �g��

�H������������������*
�������<���.��

�:3]��

��,h�����<)M���B�#�������!��

�S��� + ��$��B��

,`���
%��
���g?(�
���
��

�S)
$�� + $���,-,.��� + ����$��
&����
$�����0�ij�[��

�S����$�������$��y'D)Y���9���"���B�������B*
�������������
� 6Y34�S
������Z& ���
& � ����$������ %[���"���B����������� �B� + ��

�Z&��D%
��0K����$
)
$��)���$���� + ��

�����j'�)M�����!�D�����������B�����������
�H37���
� � %[�-�
�53¶mD���
%����
���D���"���\�C

� +

� $K�B����� �	���<���
)
)M��$(�K��������������� ��� + ��

�J8Y�
�� �������
$
���N��

����� + ��$��B��

,�0

4.5 Discerning visualizationsiv�S���K��� $('\�B,.)M��$(�=���������<��� ��&=
\��

�.�(���
%
� �#�S���<���D��m/������

�
)
$�� + $���,`& $��B����&������;'<�V$���,r��

�S8Y� + �B�
�
��� + ���"��� ��$��
�B� +)
$�� + $���,J*

,.�B� + 0³G4

���C���C���B���U$�� ßD�
��$���%2���a��

�b���5�#���9���;T¶�=�5ä���� å
���u��Ó�� ����9��

���=��TD���
��,S'^3�

� $�����

���(���
%
� �#�h���h���
)
)Y������%a���U������� ���
)
$�� + $���,-����& & ��$�%
��� + ���.

�����:3��<$����������
��� + ���
%�,h��m���&=

����& � �
8������ %C���C��

���H������������,-� ����0

ij�E��

�",-��$��g��%������
& � %K)
$�� + $���,-,.��� + & ���
$���� � 6�%
�BoI� $����#�fmD���
%
�
���	�����B���������
����$������k��� ��& ��,-)���$���%F6M�V��$����
���=���
& ��6Y8�'<�B�D��mD��� + ���
��

�S���('�,-)���������&E���B,.�����
%�,-� ,.��$('@& ���
���
,-)������������!��

�S��� + ��*
$��B��

,<0�ij����

�Z�B�#��$��D%
�
&5����$('�)
$�� + $���,.,-��� + & ���
$�������6M��

�S& ��,-*
)���$��������^�
� � %^�
���Z���b8M�C�����V��$�,.���7���
%U��

�@& ��,-)���$��B�����^& ���
8Y�K%
���
�S����,-)
�B'@�
����� + & ��,.,-���<��� �
�������
%�,.��mD��� + ���
��R ���:3H�
& ���
& ���
�������
�K��8Y�����E��

�J8M�
������B���
$E���L��

�J)
$�� + $���,�0�GH

���E& ���
8Y�4����%
� %Z8#'��������������������������
��0NG4

�4%
�;oI� $�� �#�"���������������
�!&����J8M�7���B*
������������� %Z��� + �B���H�98��������"�V��$	��

�H�(���
%
� �#��R �L��3��J$����������
��� + 0!GH

�
%
�BoI� $�� �
&�� �7��$����������B� $L���S8M��
����
%
��� %@���
%h%
�B��& �
����� %F6#3H

� �.��

�
�����
%
� ����&����C��� �E��

� ,¯& ���
& $������B&������B'C���@��

�E�D�����������B�����������F0

5. VISUALIZA TION EXAMPLESW\���
���<���D��)}����$��
&5���
$�� �@���h���}��T
��,-)
���<���E�/& ���
$�����& ����*
��� �#�H�B�@3�

��&=
C������$��
��� + &����<8M�K���B%
� %<8�'h���B���������������������
� 0"ef�D��)
����$��
&����
$����@���@�U&����
&��)��C������$��D%
�
& � %aßD�
�B�������}��

��8Y� + ���
�
�B� +���N������$��
��� +)
$�� + $���,-,.��� + $�� + ��$�%
��� ����6
���f��

�K��)
)
$�����&5
@���J)
$���*
+ $���,-,-��� + �B�Z��,.)M� $������B���h��$Z��8D?���&��J��$���� �#����%F0\¡"��� �^�B�H������$���*
%
�
& � %b���[��

�Z8Y� + ���
�
�B� + 6F�B�E�
���������B'��B�K�
���E������'��V��$9�(���
%
� �#��� 6
���J�������������������������
����$��K�
��� �V�
�N�B�<������&5

�B� + �B��0Q¢��B�f��

���5T
��,.)
�B� �
)
$�� �����#��� %<���@��

���H��� &����B���C
����
%
���K�B�D��)<�(��$��
&����
$�� ��0

W\�[& �:��� $C���B����

�b%
�BoI��$�� �#�@�y'D)Y� �C���E�����������B�������������
�@������$���*
%
�
& � %<�����D� &��������<�J���<���
$H�5T
��,.)
�B� ��0"G4

�K��T���,.)
��������$��Km��)��
����,-)
����6N���<��

��'b&����\8Y�.)
$�� �����#��� %/�����(���
%
� �#�������/��

� �B$ z $��(�
)
$�� + $���,-,.�B� + & ���
$����[���
%a%
�\�
���h$�� ß#�
��$����
�
%
��$����=���
%
��� + ���
& ��,.)
�B��TC��� + ��$��B��

,-��0

5.1 Illustrati ve visualizations�	� + �
$��HwL��

�:3H�!�4��&�$�� � ����

���N�������K�������
�(��$������B���	���B���������������������
��,-)
��� ,-� �#��� %�3��B��
9c9iyd^q w��:tv0fGH

�"��T
��,-)
���"& �#%
�g��

�:3��I��

�"�
���
���!�j34�-�
� �(��� %�Ú#Û�Ü�*v�B�D��)
��07GH

�K)
$�� + $���,r)
$����#��� + �B��� ����,-���
�#�
���f��

�9)Y��34��$��4���F�y37�
0"GH

�E)
$�� + $���,O���4$��
�C�(���)�*v8�'D*u�����)@3H�B��

���
����$��
&5�������
�����H��

�E3����
%
�:3]���C��

�E����)�*v�B� �k��&���$��
��$�%
����& $���8
�B� +��

�E$��
�<���N��

�E)
$�� + $���,O���C%
���=�����u0g�Q���
&��
$�$�� �#���B'�6
��

�E���=�����E���
��

�J)
$�� + $���,Ñ���K���
��,h����� %[���³öM��à5�u��î������S3H���
%
�:3Ò���[��

�J$�� +
������%
��0"¢����Z

�����H�V��$7��

�K�(���
%
� �#��6D��

��������� + �
,.���#�4&����C)
$���)M�����
���h��$('���

�Z8M�
����D�����
$E���"��

�Z)
$�� + $���,Ñ�������h3H�B��
���

�Z���
)
���Kx�0
GH

������T
��,-)
���.���S& ��,.)���$���8
���-��������� &����
$�� $ z $����S������$��D%
�
& �B� +���
8D?(� &��H���Z��

�K�(���
%
� �#��� 0

5.2 Utilizing visualizations�	� + �
$��C����

��3��Z���^�5T
��,.)
�B�h3H

� $��h��

�h�D�����������B�����������\���#���
& ���#�=�����
�<�|$�� ��%�'X,h��%
�b)
$�� + $���,÷��
����<)
$��������C��

� z ��� z $��(�
$�� ���
�;���S���Q��

�.,Z�
�B����)
���B&����������b�=��8
�B�.���7���;TI0@GH

�.�����
%
� ���Z& ���
��������������� ����

���4&��D%
�9��� + �5�H�(�=��$(����%F0"GH

���=����m.���Q���J&=
���� + ����

�
)
$�� + $���,æ���C)
$������K��

� z ��� z $����E)Y�:37� $��K���g���BTY0.l��
�B'b�C��,h�����
)���$(�	���
��

�Q& �D%
�9��3��B��
Z�H3H

�B���Q8���&5m + $����
�
%Z���S�	� + �
$��4� � ���!��� �k��V��$L� %
�B���B� + 0	¢��k��� $Q�K��

��$(�Q$���ø���&��������h�(���
%
� �#� z �
%
�L��

�H�=����mS���
8Y����,.)
�B� ,.���#��� %<3��B��
��.���D��)F0��D���;����� + ��

����)
$���8
��� ,`$������ ���
)
������

�g��

��$�%�������� �#����P7�B�D��,�R �N�=��TD���
��,S'-���5�����;���=������Ó�� � 8Y� & ���
��������
%
� ���",Z�
���	���
%
�)M� �
%
� �����B'Z�
������& �Q��

�7�
� � %J�V��$"�����D��)Z���S��

�
���������������<���
%C��

�����B,.)
����,.� ���H�B��0

¢��|����� �}� ������� $J��� $��������|���9�[���������B� ��� + �����������B�������������|& ���
��%
8Y��6g�V��$Z�B�
���=���
& ��6"��
����J��

� + �B��� �|& �#%
�C�5T
��,.)
�B�C& �����=���B�
�-���
��� z �
�B���J���#��)b����$��
&5���
$�����Õ�ÖM×�Ø�Ùfù�ú�Ü�û�Ù]ü>ý!þ�þ�þ � ��
����K$��)M�������
����,-����

��� + �
��� �V�
�u0UG4

�C�(���
%
� �#�-���Z���
)
)M����� %^���[,.�#%
���k'\��

�
���D��)U8�'\�B�
��� $(����� + ��$��������������g& ���
%
�B�������U�V��$���

�h���#��)\������
����
��

�L)
$�� + $���,]$��
�K3H������� �
%����N����,.�")M���B�#��0!¢��
����

� $N������� + �
,-� ���
�V��$Q��

�E�����
%
� ���H& ���
��%C8Y�E��,-)
��� ,-� �#���B� + �JÚ#Û�Ü�*v�B�D��)C3H

� �C��

�

ÿ��������	���
���
�����	��� ÿ��
�����
�
�����ÿ��
���
���
�����������! ÿ��
���
�����
�����!
"
���#�Hÿ��
�.ÿ����
�
$����! �ÿ������
$�%&�'���
�#()���	�
���
*+�,�- /.�.�ÿ����
�
$��0����	���
���213
ÿ�"!��ÿ����
�
$546�0�����
�#(7�
�	�
����*#�,��8�1�����
*:ÿ
�
�9�/�'���
�#(;:����Hÿ������
$��&�
���'���
�#(;:����Hÿ������
$�.��
�����
��������
�	���
��.�.! << ���	�
�����	���>=':�$!�?�
�	�
�
��@��
���
�������A�- <�������
�
���
���
�������# <

ð�ÆkñIÄfÁ:»CBI½]·ZÈF»]Å�ÂfÃN»�»#ÎF¸YÌbì"ºV»2ÂYÇh¸pì!Á�ÂM¹"ºk»
Ì[Ï=Ê ÂIºkÉNÆ�¿fñ
ÉNÆVÊ:Äf¸Yº�Ækí#¸�À�ÆkÂI¿CD(ÃN»D¹	ÄfñMñIÆ�¿fñUÉNÆ�Ê:ÄF¸Yº�ÆVí�¸
À�ÆVÂY¿FEZÂY¿XºkÂFÂMì!Ê

��$�� + �������I��� $����B���C���C��

�E�D�����������B�����������@���#���F�
�������SÕ�ÖM×�Ø�Ù:*v���#��)F0
GH

�.,.�#%
� z &����������/�=����mD�S&����U8M�h8
�
�B�B�Z���<��
�������

�h�����
%
���#�

���H��8
�������Z,-�D%
���k'@�����Y��

�9)
$�� + $���,¯&��D%
�E��$7���Z��
����4���
�B'h����,-�
)���$(���J���4��

�C&��D%
�C��$��h��� �k�J�V��$Z��%
�B����� + 0/GH

�B��6L�������
$������B'�6L%
��*
)M� �
%
�����[��

�J�����������������������������D���L���
%/�B���E&���)���8
�����B���B� ��0-�D��,-��*
����,-� �"3��B��
J��

�H�
�:����&����(���
%
� �#��� 6#�B�g&����.8M��& �B����$�� $L���K)Y�������Q�V��$
��

�K�����
%
���#���5T
��&����B'h3�

�B&5
<)���$(�����4

�K���
)
)M����� %C���-� %
�;��0

5.3 Problem-solvingvisualizationsij���D� &��������2�U37�[)
$�� ��� ����� %±�#��î�å�Ô:Ô����#Ô|ä�����å����;��è�������Ó����b���
%
���M���;á����#î5�k�Sä:�V�=å
��� ��è������uÓ����S������T���,-)
��� �����!�Mà�Ó#î������Z�j�5Ó��;ä��V�DÔ@ä����
�=å
��� ��è����u��Ó��
�=0L1�� $��E37� + �B���K�����5T
��,.)
�B�E���!8Y����
<���N��

� ,<0

5.3.1 Debugging visualizations�	� + �
$��J�h)
$�� ��� �����K�h& �D%
�Z��T
��,-)
���S��
����E& ���
��%[8M�J�
����%b�V��$
��,-)
��� ,-� �#���B� + �b�#�:î5å�Ô:Ô��V�#Ô@ä:�V�=å
��� ��è����u��Ó��
09GH

�S&��D%
�Z��T���,-)
���
���
& �B�
%
� ����

�-%
� z �
�B�������\���7�V�
�
&��������X�=Ó�å��
�y�5à@��
�����& ���
�#���K��

�
����� + � ������� ßD�
� �
&��S���	����,-�E&5
���$���&���� $����V���B���:3��B� + ����&5
<����

��$����
��37��$�%F0!GH

�7&��D%
�7& �����=���B�
�"���S���
%
��T������"���
8Y���
�
%
�	� $�$���$!��
����
�D&�& �
$��N���
�;'K�B�D��

�	34��$�%K� �
%
�f3��B��
K,Z�
�B���B)
���"����,-���k��$F&=
���$���&5��� $���6
�����B�7���g�
���7������'J��� z �
%F0"G4

���=����m + �B��� �h�V��$g��

���(���
%
� �#�Q���g���
���#&������E��

�K� $�$���$H���
%<& ��$�$�� &5���;��0

GH

�H& ��$�$�� &5�������-��

���(���
%
� �#�L�
� � %
�g���K&���$�$('J�����g���g���B,.)
�B'����
,-�D%
���k'S��

��&����
%
�;�������.���M��

�H���D��)F0Ll9�-����&=
.$����
�
%.���M��

�H���D��)
�B�g�
� � %
�g����8M��&5

� &=m�� %.��
����L��

�����
%
��TJ���I��

�H����$���� + ���g�
���Q�����
���"8M���
�
%
��0Hi=0 ��04��

�������
%
� ���9�
� ��%
�����h��%
%[������T#��$��.&=

� &=mD��� +���J��

�E& ���
%
�B�������<���!���D��)F0

5.3.2 Analysable visualizations�	� + �
$��K�-%
� ��& $��B8Y� ��������T���,-)
���E���"���^���M��� á�����î����Sä:�V�=å
��� ��è����
�u��Ó��
0	GH

�7�����
%
���#�"��� + �B��� �J��& ��,-)
����TS�V�
�
&����B���C���
����*v

� ��)
�V�
���;'
����,.��%|����G3HIG�ÜJG�ú#Û�Ü	ù�ü � �
����� + ��

$����C�
� �(��� %^ÚDÛ�Ü�*v���#��)
� 0\G4

�
�=����m}���C����,-)
�B'}���|�������;'�� ��3�
����C��

�b�V�
�
&����B���2%
�#� ��0~�D��,.�
+ �
��%����
& �b���h)
$��:����%
��%X3��B��
X�V��3Ñ��,h�����B� $hß#�
� ���������
�h���|8M� + ���3��;��
F0

GH

�B�ZmD���
%^������& �D%
�h&����^���������B'\8M�h�D��������������� %^8�'U��TD�������B� +���B���������������������h���#������0"G4

�EßD�
� �(�������
�4)
$�� �����#��� %C���@��

�E��T���,-)
���
��$��K��)M� �F6
���J&5

��&5m#��� + ��

�E& ��$�$�� &������
�(34��$��H���4�
���H)M��������8
���E8�'
�����k�y34��$���0QG4

� $���& ���
��%����B���-8Y��,-�D%
� z &����������
�H���!��

������TD� $�& �����
������
����S��

�hßD�
� �(�������
�S37���
��%U8M�@,Z�
�B����)
�B�.&5

����& ��0[G4

� �U��

�
�����
%
���#����R#���
�(37� $��g& ���
��%@��������8M��&=

� &=m�� %h8�'J��

�H�����������B�������������
���D���u0	l9�S��

�Q����

��$	
����
%F6���)M� �ZßD�
�����������
�!&����Z8Y�7,-��$��Q

� ��)
�V�
�
�V��$9��

�Z�(���
%
� �#��6F8M� &����
���S��

��'���� �����Z,.��$��S��)���& �Z�V��$E

�B�E��3��
$����������
��� + 0

ð�ÆkñIÄfÁ:»\ëI½0KãÄFÀ�Æ�º�Ækí�Æ�¿fñUÉfÆ�Ê:Äf¸Mº�Ækí�¸
À�ÆVÂI¿>ÂI¿aºVÂFÂ�ì	Ê�ò

1ML��5ÿ	��:�N':
�
:
���
���/L��
�������'%&L'�
�	�����O%Sÿ��
��P�P	Q�RA���ST "������U���-��ÿ��
�'���Jÿ��
�.ÿ>���! �ÿ�%&RJ(7��ÿ	V
�!�,�- W.�. ÿ0���XY "�������ÿ��
��Z0������:
� ÿ
��[
��:'���'%5ÿ��
�'P\�UR+(;:
�#�uÿ��9(7�=ÿ	V
�9�,�>8�10�-] Z�P����! ?8�8�Z����^_ "������/���3��ÿ	�
�'�
�Jÿ��
��`����! W`�%a��ÿ>.�Z��\ W.
.
`A���b RJ(;:
���uÿ
�9(;:
���cZ��M.
��RJ(;:
���uÿ
�9(;:
���cZ��- 1�� <1�1 <1	S <1�T <
dfe!g3h>ikj�lnm	o�lqp6r�j�s�m	ikt3jvu�w!uOx\uOy9z'xf{
|ag-j!}~g-j����Fl
�Am	o!lqp;t3�k�kt��/ikj!�
� r�l
��m	ikt-j����
�3�/� i m	o�g>�Oe!�&g3����g���g-��g>�!g-��g-h&l�m	l
����o�t���h>g-j-�0m	ikh>l���}�t9l
�

g9��m	o�l��kt9t-����m	g-��m	ikj��&p;��t3h��kikj�l��&��r�j+�
�+��m	o�l��kt9t-����m	g-��m	ikj��&p;��t3h��kikj�l��M��r�j+�
s'��m	o�l�s
t-j-m	��t-�It3p�m	o�l�����t-�3��g-h���l
g-s�o��kikj�l?�-�

�9��� ikj�l?�9� � o-��ik�/������l � r�ik��l�}+�
� ��� ikj�l��9� � o�gOm���t-r��k}2o�g3���+l
jI��ikp �Og-��ikg3���kl>¡0��g-��r�j���ik�-j�l�}�kik¢3lW�Og3��ikg-���kl¤£3� � o-�#�
¥��/� o�g3mU}�t9l��/u�w!u'x9uOy9z'x�{�|/}�t9�

ð�ÆkñIÄfÁ�» ¦N½ K ìNÁ�ÂM¹"ºk»
ÌbÏ�Ê ÂIºkÉNÆ�¿fñ ÉNÆVÊ:Äf¸Mº�Ækí#¸�À�ÆkÂI¿
D(¸M¿f¸Yº�ÐNÊ ¸
¹"ºV»IESÂI¿XºkÂFÂMì!Ê�ò

5.4 Productivevisualizations¢��f��

�Q����,-�g���D��

���N&������ + ��$('9��� ����� 6����K��

���N������� ����

�g�����
%
���#�
���S)
$��D%
�
& �B� + ��)
$�� + $���,ï���^

�B�Z�:3��F0�W\�h%
�[�
���J�
��& � ������$('
�
� � %.���J��T
��,-)
���4)
$�� + $���,Ò�V��$	��

�4�����
%
� ���L���E���=��$(�	3��B��
F0	G4

�
�=����m>&����28M� + �B��� �2���<�U����,-)
������)M� & � z &����������2���S�U)
$�� + $���,8M�
������B���
$ 0

5.4.1 Visualizing the student’s solution¢��	������T
��,-)
���g�����4���B���������������������E���D������
����!& ���
��%S8M�Q�
��� %Z���
�h)
$�� + $���,æ%
����� ����)
,-� �#�9� �#�D��$����
,.���#�937�Z,-� �#���B����c9iyd±q;w:��tu0
iv�C& ���#�=�����
�C�U)M�������B8
�����B�j'}�V��$.��

�b�(���
%
� �#�h���^� �#��� $@

���@��3��
& �#%
�U���
%2�����������B��� �b�B���<8M�
����D�����
$ 0¯c9iydHR �<& �D%
�/� %
�B����$C34���
8
�
���B�H��)M� & �k�����;'C�V��$4��

�B�HmD�B�
%����!�
��� + ��0¢��#'K)
$�� + $���,-,-��� + ������� + �
,-� �#�f��
����	$���ßD�
��$�� �N��

�Q�(���
%
� �#�N���
�
�����B�D��)h����$��
&����
$�� �7���
%h& ��,Z8
���
���
���B� + ��

� ,~3H�B��
h

�B�7� ��$��B��� $
mD�
��3���� % + �K3��B���N8M� + �#�D%��V��$H��

����&������ + ��$('�04GH

��,-��������,-)Y��$(*
�=���#�h)Y�������@���.��
����h��

�[������� + �
,.���#�.$�� ßD�
��$����h��

�������
%
� ���h���
& ��,-)
������� �B'b%
� ��� + �U���
%\��,.)
�B� ,.���#�K��

�.)
$�� + $���,{3H�B��

�����Z���
��T���,-)
���H���S�V�������:3a��$Q������,.)
�k�����H�������=��$(�g3��B��
F0Ll��
�9��T���,-)
���
& ���
��%K8Y�L���H��,-)
��� ,-� �#�N�H)
$�� + $���,]��
����N����$(���F��

�g& ������� �#�N�������
��$�$���'S�����
& �Q��

�4����,-)
��� ���!����$(����� + ��� + ��$��B��

,-�	$���ßD�
��$��4$��)M��������� +��

��� + �43��B��
C���D��)C����$��
&����
$�� � 0

5.4.2 Visualizing the assignment¢��b����$�����%�']��� +�+ � ����� %¶���]��

�^)
$������B���
�[���
8
����&��������F6Z���k��� $
������$��
��� +

�:3`���D��)>����$��
&����
$����.37��$�mY6Q��

�������
%
���#�h& ���
��%}��,J*
)
��� ,-� ���H����� $('h����,-)
��������$(����� + ��� + ��$��;��

,�6#��0 + 0"������� &��������h����$(��0
GH

�B��6!

��34�5�#��$ 6	�B�Z�@�#��$('/&=
�������� � + ��� + �=����m[����$��<�
�:���B& �.)
$���*
+ $���,.,-� $ 6M8
���E�B��&����[8M�Z���B%
� %���� $('<,Z�
&5
�8�'���%
%
��� + �-��������*
�����������������J3�

�����H,.�����.)M�����#���Q��$��H%
� ��& $���8M� %h���.�	� + �
$���sE���E��

�
����T#�������f������� + �
,.� ���H%
����& $���)����B���F0

GH

�B�L34��'S��

����� + ��$��B��

,±�B� + �B��� �J���E��

�H�(���
%
� �#�Q���
%.

�H&����
& ���
& � ����$������C���^��,-)
��� ,-� �#���B� + ��

�@$�� +
#�ZmD���
%^���4���D��)^����$��
&5*
���
$�� �7���-,.��m��9��

�E��� + ��$��B��

,~37��$�m.���@��

�K)
$�� + $���,.,-��� + �k����*

ð�ÆkñIÄfÁ�»v§I½¨K@¿¶»DÎF¸MÌ/ì"ºk»>ÂI¿±ÈFÂJ©õÀ:Â2»#ÎFì"ºk¸YÆ�¿³Ê »
ºk»�Å�À�ÆkÂI¿
Ê ÂMÁ:À.Å#ºV»#¸�Á�º�ÐXÄNÊ:Æ�¿fñ\¸/ÉNÆVÊ:Äf¸Yº�ÆVí�¸
À�ÆkÂI¿Lò

ð�ÆkñIÄfÁ:»�ªF½�·�©SÂUÃ	Æ)«"»DÁ�»�¿MÀ2©�¸#ÐNÊZÀ:Â\Á�»#ÉM»DÁ�Ê »�¸\Ê�À:Á�Æ�¿fñNò

+ ��� + ��0	¢4�L����,-�7)M���B�#�L���M��

�4�(���
%
��� ��6��B�L�B�L���������#���k���D���E8Y�H��8
���
���@%
� ��� + �[��

�J��� + ��$��;��

,.�����D�
6F8
���K�5�#���b������

�J8M� + ���
�
��� + 6f�B����4��� $('@� %
�
&������B���E���-��,-)
��� ,-� ����� + �B��� �<��� + ��$��;��

,�0

5.5 Discerning visualizations¢��<���2��T
��,-)
���[&������[�����
����� + �����������B�������������
�@���^& ��,.)���$��
%
�BoI� $����#�Em#���
%
�9���L���������������
��������

�S�=��,.�����
8�?(� &���6M37�Z�
���Z$��5*
��� $����B� + �h����$���� + 0Kiv�E���E�h����,-)
���S)
$�� + $���,-,.�B� + �=����m<��
����E&����
8M�������B��� %>�B�},.���#'^%
�BoI� $�� ���.34��'D��0}�	� + �
$�� � %
��,.���
����$������ �
�y37��%
�;oI� $�� �#��3H� '��K����$������ $����@�<����$���� + 0CG4

�h%
� ,-���
����$����������
�����������
$������B'@,Z�
&5
<,-��$��K�
�
%
��$����=���
%���8
���S�����J�����������B��� � %<)
$���*
�����#�=���������@��
��������H�J�������B�F)
��&����
$��K���Bm��9

� $���0

W2

� �Z?��
�(�����#��m#��� + ���H��

�K%
�BoI� $�� ����)
$�� + $���,r& �D%
� ��$������ $��(*
��� + �E�(��$���� + �B�L���"ßD�
�B���4��8#�D�����
�"��
����"��

��'-��$��48M����
-���D��)J����$��
&5*
���
$�� � 6N���
%[�B�E&����[8Y�S��� $('[%
�;A.& �
�B�E�V��$K�h�
�:�D��& �Z)
$�� + $���,-,-� $
���<����'[,Z�
&=
/,-��$��-��8Y�������B��0JG4

�h���
��,.����� %b)
$�� ��� �#�=���������b���
��

�����B���������������������J���D���M&����.& ���
& $�������� ����

��%
�;oI� $�� �
& � �Q����,Z�
&5

��
����7��

�9�����
%
� ���H& ���@%
�-������� ����,-� �#�g��
����Q3������Y$�� ��&=
@��

�9�B����� �
���;T^���H��

�@�=��TD���
��,S'a�=��ä����;å
�����uÓ�� � 0UGH

�C�����
%
���#�-& ���|���������B'
$�� & � + �
��� ��6#��
����Q���������������.���-��

��$�� +
��Q����%
�����	� + �
$�� � � $�� ßD�
��$������T#��$���,.� ,-��$('E����$N���
�B'K���
�g&5
���$���&���� $!���
%K��

�Q���#��)����
�;'K�
� � %
�
��� + �-��

$���� +
�
������	���!��

�S����$��B� + 3�

��$��Z����������

������

��$���������*
�������\��

�@�
� � %^����$S,.��,.��$('/���Z8
� +�+ � $J���
%U��

�@�B�D��)^�
��� %
�Z���

����
%
���E��

�E3�

�����E����$��B� + 0

¢������
����

� $K�5T
��,.)
�B�-���Q�C%
����& � $��
��� + ���B���������������������[37�J&����
& ���
���B%
� $E)
$�� + $���,-�9%
����� + ��

�Z����,.���=����m����b���b�B����$������;�#��34��'
���
%[���[�.$�� &��
$����B����34��'�0�GH

� $��Z��$��S,h����'<%
�BoI� $�� ���9��T
��,-)
��� �
��8Y�����H�=����m#�4��
����H&����<8Y�K�����;�#��%<8M����
@34��'�� 0

PQ�
����%
��� + ���V���=��à5���V�#Ô>ä��V�=å
���;��è����u��Ó����[& ���28M�b��������� $@����$h��

�
������&=

� $����Q

�.& �����B� &������V$�� ß#�
� �#���;' + �B��� �\���
��37� $��K���<)
$���8
��� ,-�
�V$���,ï��

�C�(���
%
� �#���J���
%|&=

�D����� �S��

�C8M� �(�-���
� �J�V��$Z��

�.��������*
������� ��%\��T���,-)
��� � 0@l��
�-3H� '[���<,h��m��J��

�-�����
%
� ���S����� �/,.��$��
� � + � + � %>���U��

�<�������������������|���Z���b�����J

��,´�����B���h��

�C)
$���8
�B� ,
���
%
�)M� �
%
� �����B' z $��(��07G4

� ��

�K&������B�D��mC���H��

�S%
�;oI� $�� �#����������*
�������
�E�������B���������������������
�9���
%[%
����&��
������

�Z)
$����K���
%�& ���
�E���L

���
�:3H�<�����������B���C&���,-)���$�� %C���Z��

�K����

��$H)M��������8
�B���B����� � 0

GH

�B��m#���
%<���!�D������������� �����B���
�4& ���<8M��%
���
���B���Z�����������B�������������
���D���I��
�����& ���
& � ����$������ ���������
�B,h������� + ��

�K& �#%
������$��
&5���
$�� ��0Liv�
&����F6�

��34�5�#��$ 6�8M�L,.��$��	8Y� �
� z & �k���#8�'K�Q�����������B�������������9��
����N�(�=��'��
���<�Z,.��$��E��8
����$���&��H������� �I��

�:3���� + ��

�K,.�����@)
$����
& ��)������4���f��

�
��� + ��$��B��

,�0

6. IMPLEMENT ATION OF THE VISUAL-
IZATIONS OF DIFFERENT CATEGORIES¢�������$�����%�'@���=����� %F6
,-�����4���f��

�E�����������B�������������
�H���������k��8
���E���

��

� z ����%[���L������$��D%
�
&�����$('�)
$�� + $���,.,-��� + ��$��@���V� åD�=�uà�������ä��Jä�����å��
��� ��è����u��Ó��
�J��������� �f� � 0gl9�h��

�E���5�#���I���N��� ��$��
�B� + %����=�S����$��
&����
$����
���
%}��� + ��$��B��

,.� 6LG!$���m#�k�[)
$��:�D��%
� �J�Mà�Ó#î5�k�5�Z�j��Ó�� ä:�V�DÔ/ä:�V�=å
��� ��è����
�u��Ó��
�@�����5�#���!� � 09G4

�S�Mà�Ó#î5�k�5�Z�j��Ó�� ä:�V�DÔCä��V�=å
���;��è����u��Ó��/��T
��,-)
��� �
���7%����=�<����$��
&5���
$�� �Z��$��.%
�BoI� $�� ���S�V$���,{��

�.���
� ��)
$�� ��� ����� %\���
��

���Z)���)M� $Z����� �^��

��� +
U��

�@��%
����8M�

���
%^��

� ,ã���Z��

�@�=��,-�
��& & ��$�%
��� + ���-P7���#��,�R �7�=��TD���
��,S'�0

c9�B���������������������@���D�����4��
����9�����B�:3���

�K& �D%
�h����H�����

� $�%
������$�� %
)���$(���J�����B� � ���b8M�C� %
�B����%]�u��� ���B���-�|q �:tH���
%|c9iydrq;w:�:tH�V��$J����*
���=���
& � � 6Q������8
�B��%
����� ����)
��� + ���B���������������������
�Z���/��

�<&������ + ��$���� �
åD�u�V�;��è��V�#ÔXä:�V�=å
��� ��è����u��Ó��
�=6���à�Ó�î������Z�j��Ó�� ä:�V�#Ô2ä�����å����;��è�������Ó����U���
%
�Mà�Ó���å
� ����ä��4ä��V�=å
���;��è����u��Ó�����0"����$��g��$���%
�B�����������#)
$�� + $���,-,.�B� + �5TD*
� $�& ����� ������0 + 0!���J)Y� �h���
%-)���)M� $ � &����.8M�H,.�BTD� %Z3��B��
Z�����������B������*
�������Z���D�����L)
$��:�D��%
��� + ��

���L�V�������
$��4���K)
$��#%
�
& ��,-��$��4���
)
)Y��$(���B���
������&5

�B� + ����$Q��� �B�V*u������$��
��� +#� ,h����� $�������0L�D�
)
)M��$(����� + ��

�B�7m#���
%@���
�=����mD��3H�B��
������������B�������������
�9���9�
���E)Y��������8
���Z8�'����D�����9���Bm��Z�	������

q �:tM��
����7%
�Z�
����¬(�
�
%
� $��(�=���
%I­S��

����� + �B&����F��

���D��������������� %h)
$���*
+ $���,<0

ij�}�����������B�������������
�h���
)
)M��$(���B� + ���#��$��#%
�
&�����$('})
$�� + $���,-,.�B� + 6
��

��&������ + ��$���� ���V��� åD�=�uà������Vä��9ä��V�=å
���;��è����u��Ó��������
%�åD�u�V� ��è��V�DÔJä:�V�=å
��� �
��è����u��Ó��
��)
�B�
������,.�E�D�����������B�����������
�����<��

��&������ + ��$���� �H�Mà�Ó#î������Z�
��Ó�� ä:�V�DÔ/ä��V�=å
���;��è����u��Ó����C���
%^�Mà�Ó���å
���u�Vä��Cä:�V�=å
��� �kè ���u��Ó��
�C&����|8Y�
,h�����
�;'>���
�B,h����� %}���X�b���#���H��
����h��

�:3H�h

�:3r��

��)
$�� + $���,J*
,.�B� + ����$��
&5���
$�� �Z34��$�m/���^& �D%
�@������� ��0\ij�|����,-�h&������ �J���U��

�
&������ + ��$���� �U�����5�5��à5�
���#Ô}ä��V�=å
���;��è����u��Ó����/���
%2�Mà�Ó���å
� ����ä��/ä:�V�=å
��� �
��è����u��Ó��
�Z��

�-���
��,.���������[�
� � %
�E���C��

�:3³��

�-8M�
����D�����
$K���L��

�
��� + ��$��;��

,Ò���-�E

� +

� $g�B����� �M���
%J��

�4���D�����"8
�
���B�g�V��$L& �#%
�H�D������*
�����������������
�E��$��Z�
���E� �
��� +
F0�ij�[��

�Z,-��$��J��%������
& � %b)
$�� + $���,J*
,.�B� + & ���
$�������6Y��

�������������B�������������
�9��$��S���V�����[�
����%[)���$(����& �
�k��$��B'
���<

� +

� $H������� ��0

ij�����B�F��

�E�D������������� �����B���C&������ + ��$���� �H��T�&��)��S�V�V�;åD�=��à����u�Vä��Kä:�V�=åD�
��� �kè ���u��Ó��
�7��

�4�5A.& ��� �
&5'J������

�7�D������������� �����B���Z& ���J8M�H��,-)
$��:��� %
8#'<��%
%
��� + ����,-������$(�����	���#��� �B��� + � �
& �E���h$�� & � + �
��� �K��

��& ��$�$�� &��
���
��37� $@���
%X�
�������k'>��

���(���
%
� �#�h3�

� �X�;�@���C��&=

������� %F0pGH

���
37���
�B%<$�� ß#�
��$���,-��$��K��oI��$(���V$���,¯��

�E�����������B�������������@���D���F%
����� �B*
��)Y� $�� 6�8
���7�B�g34���
��%h��,-)
$��:���H��

��ßD�������B�j'.���I��

���D������������� �����B���F0

G4

� $��E��$����
�S�D�����������B�����������-���D�����7� ����������8
�B����
����Q37���
��%.���
)�*
)Y��$(�9�����f��

�K���B���������������������<&������ + ��$���� ��)Y��$�����&����B'�0HG4

�S�
��� %
�9���
��

�S%
�BoI� $����#�9&������ + ��$���� �9��$������h%
�;oI� $�� �#����
����98
�
���B%
��� + �-���#���
���K���
)
)M��$(�Q���������M��

� ,±���"��� $('J&=
�������� � + ��� + 0	¢��Q�E&����
��� ßD�
���
& �
���N�����M��

� ���9�V�������
$�� �7$�� ßD�
�B$�� %C�V$���,n��

���������������������������.���D���Y��,J*
)
��� ,-� �#���B� + ���
�K8M� & ��,-� �H�k��8Y���
$������
�437��$�mM0

¢��J�V�����
$��h34��$�m/���U��

���J���
8�?(� &5�J37�<��$��@)
�k���
�
��� + ���[& ����*
& � ����$����������h

�:3X��

��%
�;oI� $�� �#�Q�����������B�������������.&������ + ��$���� �Q&����@��$
��

���
��%/8Y�.�
��� %\���b������&5

�B� + ���
%U

��3n��

����$��
��� + �-��

���
��%/8Y�
)
�k���
�
� %<8#'h��

�K���
�(��$��
&�����$ 0

7. CONCLUSIONSG4

���Q)���)M� $7)
$�� ��� �#����%@��&������ + ��$��������������-��
����7%
�;����%
� �L��

�����B*
����������� �����B���
�H��& &���$�%
�B� + ���Z��

�K������� �F���!& � + �
�B���B���E%
�5�#������)
,.� ���
����%
� z �
� %�����PQ���D��,<R �4�=��TD���
��,S'�0LG!�h�������
$��������F��

�K%
�BoI� $�� ���
�������������������������>&������ + ��$���� �h��$��[��&����������B'>��&5

���5����8
����64��

��)���)Y� $
�������.)
$�� ��� �#����%���%
�����9����

�:3p���h8
�
���B%������������B�������������
����������&5

������� �u0

iv�C���C�������^)M�������B8
�������^,h��m��[��TD� $�& ����� �@���|���
)
)Y��$(�<��������

�
������� ���	���YPQ���#��,<R �N�=��T����
��,S'����-���
��$�,h���D34��'��
����� + ��)M� �-���
%
�@)���)Y� $ 6F���D�
0ZG4

�J8Y� �
� z �S���b�
����� + ���B���������������������
�E�B�\�����!��

�
&������ + ��$���� �Q3H���7���Z���
)
)M��$(�4��

�9�(���
%
� �#���73H

�-
�� �#�9%
�BA-& �
�B����� �
���<)M� $�& ���B����� +

�:3���

�K)
$�� + $���,O37��$�mD��0

WX

� �h)
$��#%
�
& ��� + �
��3}�������������������������-,.����� $��k������6�,-��$���������� ��*
�������/��

���
��%/8M�.)�����%/���b��

�.)M� %�� + � + ��& ���"������� �L���Q��

�J�D���������B*
�������������
��0}W2

� �}%
� ��� + �
��� + ��

���
���������D������������� �����B���
�-���>��

�
& ���
$������B����� �u6���

���B�
����$��
&�����$L��

���
��%h�������E�=��m��H&���$��H��
����7�����
��

�
%
�BoI� $�� ���!&������ + ��$���� �N���D��

�g�
�=� + �g���D�����������B�������������
�!��$��L& �:��� $�� %F0

8. REFERENCESq;w�t��7�D%
�53��B����6
������� $����������������I)
$���?(� &��H����$48Y��������$
)
$�� + $���,-,.��� + ��m#������� 0I���u�B�f® ¯!¯��"�L�W°k�=Ó��#�5�"���Vè-°B�I�5�u6
�D�)���� ,Z8M� $���x�x�sD0

q �:tK�[��& $���,.��%
�k�Z�	�k����
F0
�#�u�;�±® ¯�¯��"�"��°B�-����à�Ó��.�������#°k�=Ó��&¯O²4�����-¯�6F�D�)���� ,Z8M� $���x�x#sD0

q ��tKP90M�Y0�PQ���D��,<6
�U0�¥J0�¡L� + � ��
���$(��6�¡H0��
0
���
$�����6�W³0
1S0�1������u6
���
%C¥Z0�¦K$���
#37��

�u0W³��:��Ó��MÓ��ZáCÓ	´&µH��å������u��Ó��M���
¶ îc· �����u�Vä��5��¸�¹K���M�#î�Ó�Ó���º'®�»LÓ�Ô��
�����Vä��&¼SÓ��-���V��0�¥E�����B%
��& ¦K��'<�7��,-)�����'�6
ij�
&�0B6�����3¾½g��$�mM6fw�¤�s � 0

q ��tK��0M�4��$(��� $ 6��
0�¡L� + �B����
F6
¦J0
¢��k��*j������m���6��U0
¥E�B&5mM6
W³0������
��6
êS0����
���B� $ 6M���
%��
0Y�D

����$�%F0�1��:3]��
����B�I37�
������� ���7��

����¿ÁÀ�»ÃÂ â º-Ä�» â µÆÅHåD�V�����u�V�Ç¸�È<Ó�à=���V�DÔZÔ�à�Ó�å:�
à=�j��Ó�à5�u�F´5à�Ó��Éº9³N�	» â µpÓ��Çº=�
�YÓ�ä����u��Ó��/���M�h�j�������YÓ��BÓ�Ô�á.�V�
�=Ó����MåD�y�5àK��� �u�5�Y�5�Z����å������u��Ó��
6M�#s���� � ç�w�x���ÞYw:����6���x�x��
0

q s:tK¡H0
e!��
#���B�
� �F6�¦J0�¢��k��*j������m��
6
���
%<1S0 *v�U0���Ê��$(�D���
� �F0
¢
�����
%�'@���N��

�K%
�BA.& �
�;����� �H���!�
������& �K)
$�� + $���,.,-� $�� 0
º!³N�	» â µÆËJÌ!Ì!Í\¸FÎ7à�Ó��5�������V�DÔ��KÓ�´9���
��Ï!Ì����2À��
��å
��� â º\Ä>» â µ
»LÓ��3´ ��à��5�Y�5�SÓ��nº=�
�YÓ�ä����u��Ó��/���Y�5³Y���5�#�YÓ��BÓ�Ô�á.�V�
»LÓ����MåD�y�5à â � �u�5�Y�5�&µ4��å
�=�����uÓ���6M)�� + � �Kw ��ÞYw� �6����
�
�S��x�x�sD0

q � tEeg0��[����,-�u6DcZ0
¦���$����D��$(�=��6
¢S0
¦K��$�

���
� �F6Y�
0
����m����
%
��$ 6
lZ0M�D�)
) Ê����Ê��6M���
%�d!0Y�D�B�B�����(���u0�c9���������f��� + ��$��;��

,
����,Z�
�k���������@�5T�� $�& �B���K��'D����� ,O3��;��
<��������,.������&K������� ����,.� ����ç
G?Ð�¢�¦EeN¢E�D0�º=�O´ Ó�à5�-���u��� �E�V�Çµ4��å
�=�����uÓ���6M�
�v� � ç � � ��Þ��� �
6��x�x��
0

q �:tE¢S0M����$����
��6
�S0���'��B��� $ 6�¡H0M�D�������
� �F6M���
%��\0MPQ� ��*u¢�$��u0
c9����������������� +)
$�� + $���,-�43��;��
<��� �B��������0�ÎQà�Ó��=�=�����V�DÔ���Ó�´E�����
º=�
�y��à5�M���u��Ó��M���¤È�Ó�à=�:�V�DÔq»LÓ��O´��5à����Y�=�SÓ��ÇÀH��ä����M�5���UöN�V�=å
���
º=�
�y��à7´����=���¤ÀKöfº>ËJÌ!ÌOÑ�6Y����'<��x�x��
0

q �tEGK0
�9��)
� 6�ÒZ0IÐ�Ê����������� + 6DcZ0�¢��B,.�(��$��
,�6#W³0�¥E���
�F6
Ð�0��	�B� ����&=

� $ 6M�90
1��
�
%

����
��� �F6�¢S0
¦K��$�

���
� �F6�eg0������B,.�u6
�U0���& �9�����B'�6M�Y0ÓÐH�D% + � $ 6M���
%��
0
cL� ������ßD�
� ��*uiv���
$�8
��%
��0
¡"T�)
����$���� + ��

�K$������E���f�����������B�������������<���
%<� � + � + � ,.���#���B�
& ��,.)
����� $4��& �B� �
& �K� %
�
&����������F0 â º-Ä�» â µÆÅ4å��V���������
6
�#s��v� � ç�w���w5ÞYw:s��D6
���
�
�S��x�x���0

q ¤�tEGK0
eg0
�9��)
��6��
0ÓÐ�0�¡g� + ���F6
���
%<eL0
eg0
����$(�����F0���
����h*Q���
� �#�D��$����
,.� ���4���.��&����B��� �B'@� � + � + �K�(���
%
� �#���H���@37� 8�*v8�������%
��� + ��$��B��

,~�����������B�������������
��0�À�»ÃÂ â º-Ä�» â µÆÅ4å��V���������Ç¸
Î7à�Ó��5�=�����V�DÔ��KÓ�´E���
�K���#�Và5�uá�� ÔLà5��� â º-Ä>» â µ��y���5�#�����=���
�=á�����Ó��=�Vå��æÓ���»LÓ����MåD�y�5à������u���Y�=�Z����å������u��Ó�� â º\Ä>» â µ
Õ Ì!Ì�6M���
�(w � ç�w�x�¤:ÞMw�w���6
��x�x�x�0

q;w�x�tE¢S0ÓÐ���8
���
� 6��
0ÓÐ����
����$�� ��6M���
%<�S0IÐ����
�#��$�� ��0�eN����$��
��� +���
%@������&5

�B� +)
$�� + $���,.,-��� + ç	¢¶$������B��3p���
%<%
����& �
���������F0
»LÓ����MåD�y�5à â � �u�5�Y�5�&µ4��å
�=�����uÓ���6Nw��
�v� � ç�w����:ÞMw:���D6���x�x���0

q;w�w�tK¡H0M�D�����:34��'C���
%��
0M�D)Y��

$�� $ 0 â ��å���á��V�DÔh���
�>ÖKÓ�ä:���5�
Î7à�Ó�Ô�à����Z�.�5à50�eN��3�$����
& ��¡L$���8����
,r¢������#& �k����� ��6�1���������%����B��6
����3p��� $�����'�6fw�¤� �¤
0

q;w:�:tE¢S0�GE0
c9��$(�=���
� �F6�¡H0
eN��
������
� �F6����
%�1S0 *j�U0��ÓÊ��$(�D���
� �F0
c9iydH6M�Z�D���������F�B�#��� $�)
$�������$��V��$H�B����$��
��� + ������$��D%
�
&�����$('
)
$�� + $���,-,.��� + 3��B��
��H�E�Z0�ÎQà�Ó��=�=�����V�DÔ���Ó�´E�����>×L� ´=���
×L���
���V���-¯+Å���� �u��� â ���q»LÓ��3´ ��à����M�5�SÓ��Ø»LÓ����MåD�j��à â ���u���Y�=�
µH��å
�=���u��Ó���6�)�� + � �Kw:��¤�ÞMw����
6
���:��� ,Z8M� $���x�x�sD0

q;w���tEeg0�¡H0�W2���
�����:3�0
dL$�� + $���,.,-��� +)M� %�� + � + 'hÞ@�
)
��'�&=

����� + ��&����F�:��� $(�D����3�0 â º-Ä�» â µÆÅHåD�V�����u�V�
6Y��
�u� � 6�D�)���� ,Z8M� $Kw:¤�¤ � 0

7. Publications reprinted

Publication (iii)

Ahoniemi, T., Lahtinen, E. Visualizations in Preparing for Programming Exercise

Sessions In: The Proceedings of The Fourth Program Visualization Workshop, June

2006, Florence.

113

Visualizations in Preparing for Programming
Exercise Sessions

Tuukka Ahoniemi1 Essi Lahtinen2

Institution of Software Systems
Tampere University Of Technology

Tampere, Finland

Abstract

Visualizations are widely researched and used in teaching but the results of their benefits in learning are
vague. We introduce an experiment of using visualizations in learning introductory programming. The
aim was to support students in their preparation for the exercise sessions by using visualizations. The
students’ preparation consists of two phases that both are supported: reviewing the subject and a homework
assignment. Thus this is also a novel approach to using programming visualizations and integrating them
to the course content.
The experiment shows positive results especially among the students with no prior programming experience
and the students who consider the programming course challenging. We conclude that integrating the use of
visualizations to students’ preparation for exercise sessions leads to better learning, more meaningful study-
ing, and ultimately to better preparation. Therefore we also suggest this as a possible way for integrating
visualizations to the course.

Keywords: Computer Science Education, Programming, Visualizations, Novice Programmers

1 Introduction

The learning problems in programming are often connected to more advanced issues

than individual concepts, so the learning materials and situations should also be

directed to develop more advanced programming skills [5]. One of the biggest

learning problems of the novice programmers is that they have to handle abstract

concepts of which they do not have a concrete model in their everyday life [7]. Thus,

providing interactive visualizations as extra material for the students is a good way

to concretize the subject in the beginning.

The most common use of visualizations is demonstrating a code example as an il-

lustrative visualization. We wanted to make students participate in the visualization

and integrate the use of visualizations to the students’ preparation and homework

1 Email: tuukka.ahoniemi@tut.fi
2 Email: essi.lahtinen@tut.fi

Electronic Notes in Theoretical Computer Science 178 (2007) 137–144

1571-0661 © 2007 Elsevier B.V .

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.01.043
Open access under CC BY-NC-ND license.

assignments for their weekly exercise sessions. The effects of this approach were

tested in a real learning situation by in-class tests.

2 Background

The research done on the field of visualizations has resulted in instructions on how

to build visualizations so that they will be pedagogically as beneficial as possible.

For instance, Naps et al. recommend that the visualizations should engage the

student to participate in the visualization actively [6]. As possible ways to do this

it is suggested, e.g., that the visualizations should enable the user to provide his

own input for the program and that there should be an interactive prediction in the

visualization tool [8]. To increase the interactivity of the visualizations they can

also be built to support all six stages of cognitive development listed in Bloom’s

taxonomy [4].

Despite all these recommendations and ideas on how to improve visualizations,

the reports on their usage are diverse. A wide study conducted by Hundhausen et

al. states that it is more important how the visualizations are used than what their

content is [3]. In an other publication, Hundhausen reports that visualizations can

actually distract the students’ attention away from the subject [2]. On the other

hand according to Ben-Bassat Levy et al. visualizations benefit the students with

learning problems. This was also our main interest of research [1].

3 The Experiment

This experiment took place on an introductory course for programming (CS1) in

Tampere University of Technology. The prerequisites for the course are limited to

only basic knowledge of computer literacy and it is the first programming course

for the students. The programming language used on the course is C++. There

are weekly lectures and exercise sessions. The students ought to complete a small

homework assignment prior the exercise session. The homework assignment requires

them to familiarize themselves with the basics of the new subject. This usually also

means reviewing the content of the lectures with the course material.

The idea of visualizations was familiar to the students already before the exper-

iment. We had supported the students’ own studying by providing visualizations

on the course web page. The printed course material contains web addresses of the

visualization examples and the visualization tool – VIP [9] – was also demonstrated

on a lecture.

The experiment took place on the fourth and the fifth week of the course. On

the first week of the experiment (the fourth week of the course) the exercise sessions

dealt with loop structures and on the second week arrays. These weeks were chosen

because both of the subjects are typically difficult for novice students [5] and they

are easy to visualize.

T. Ahoniemi, E. Lahtinen / Electronic Notes in Theoretical Computer Science 178 (2007) 137–144138

Fig. 1. Organization of the experiment.

3.1 The Method

We used two random groups of about 30 students who had enrolled for the excer-

sise sessions. The target group used visualizations when preparing for the exercise

session and the reference group did not. The organization of the experiment is

illustrated in Figure 1.

3.1.1 Settings before the Exercise Session

Both groups had the printed course material for reviewing before the exercise ses-

sions. Besides the printed course material, the students in the target group were

provided an extra web page with instructions on how to review with the visualiza-

tion examples and links to the examples. On both weeks the reviewing material

contained two illustrative visualizations [4] to clarify the concepts.

The actual homework assignments were exactly the same for both groups. The

only difference was that the students worked on them using different tools. The

reference group had the assignment available on the course web site. Most students

in the reference group had used pen and paper to write the code and the answers

to the questions. Some of them had also used a regular code editor and a compiler.

The web page provided for the target group contained the homework assignment

as text just like for the other students. In addition, there was a link to a visualization

tool where the student could start working on the code. VIP [9] contains a code

editor where the student can write his own solutions, compile them and run them

as a visualization.

3.1.2 Settings in the Exercise Session

On the experiment weeks, there was a short written test in the beginning of the

exercise sessions to measure the students’ learning. The students were not notified

about the test in advance. They were not allowed to look at the materials and they

returned their answers anonymously. The task was to write really small programs

similar to the ones they had implemented in their homework assignments. The

time was limited to only five minutes because the tasks tested the very basics and

therefore would have been easily implemented in the time – assuming the subject

was well learnt. We also wanted to have more variation inside the groups by limiting

the time. Only the best students would complete the whole test.

Besides the small test, all the students responded to a short survey for back-

ground information, e.g., about their previous programming experience and how

they felt about their progress on the course. Also the amount of time used, both

on reviewing the subject and on doing the actual homework assignment, was asked.

The students in the target group also answered another survey concerning the use

T. Ahoniemi, E. Lahtinen / Electronic Notes in Theoretical Computer Science 178 (2007) 137–144 139

Fig. 2. The focused subset (highlighted with grey) was the novices and the strugglers of both groups. The
amounts of students are shown in the table.

of the visualizations as a supporting tool for exercise preparation. The survey form

was attached to the test so that the background information can be connected to

the test answers.

3.2 The Homework Assignment

The exercise sessions in the first week dealt with loop structures. In the homework

assignment there was a simple example of a while-loop. The task was first to find

out what the piece of code does and to understand how it works. Then the students

had to modify the code to implement an other kind of a functionality. The task

reaches the level application (3) of Bloom’s taxonomy of cognitive development,

since it requires ability to apply one’s knowledge in a new situation. Thus the

assignment version implemented in the visualization tool is a utilizing visualization

[4].

The subject in the second week was arrays. To widen the perspective of visualiza-

tional aid we chose this homework assignment differently: The students familiarized

themselves with a given complex loop structure handling two arrays and answered

questions related to it. The task requires identifying and analyzing the components

of the code, so it is on the level analysis (4) of Bloom’s taxonomy. Thus the version

implemented in VIP is an analyzable visualization [4].

4 Results

On the first week, there were 21 students present in the exercise session of the target

group and 27 students in the reference group, i.e. alltogether 48 students. On the

next week the corresponding numbers are 21, 22 and 43.

As visualizations are mainly targeted for the novices and the students who have

learning difficulties, we constricted the comparison of the groups to only the novices

(no previous programming experience) or the ones finding the course subjects so far

difficult or very difficult (here called the strugglers). The division and the numbers

of the students in the groups is illustrated in Figure 2.

The results are divided into two parts: the effects on learning results and the

effects on studying behaviour. The first represents the students’ knowledge on the

subject measured in the test as the second represents how the students prepared

for the exercise session.

According to the results from the first week, the use of visualizations benefits

learning: we found a statistically significant difference of the mean values of the

test grades getween the groups. The results from the second week are analogous

and support the results from the first week. Because of the smaller difference in the

second week, this section mainly concentrates on representing the results from the

T. Ahoniemi, E. Lahtinen / Electronic Notes in Theoretical Computer Science 178 (2007) 137–144140

Fig. 3. Results from the first week of the experiment concerning the novices and struglers: (a) Distribution
of the grades of the first task of the test and (b) Time spent on reviewing.

first week.

4.1 The Effects on Learning Results

The effects on learning results were analyzed by rating the students’ answers for the

test. For example, on the first week all three tasks were graded on a linear scale

with points from 0 to 4 resulting the maximum of 12 points. On the second week

the maximum was only 8.

The loop tasks seemed to be difficult for the students to complete in the given

five minutes. The mean result was altogether only 3.5 out of 12 points (standard

deviation 2.5). An independent samples T-test was used to analyze the difference

between the groups. The means for the focused subset of novices and strugglers

are 3.6 points (standard deviation 2.2) for the target group and only 1.7 points

(standard deviation 1.5) for the reference group. This shows a significant statistical

difference (p < 0.05). Even if the comparison is done to the whole groups (instead

of only the focused subset) there is a small analogous difference between the groups.

In the next week, the corresponding means of the novices and strugglers are 3.1

points out of 8 points (standard deviation 2.3) for the students in the target group

and 2.3 points (standard deviation 1.9) for the ones in the reference group. The

trend is same as on the earlier week.

As the students carried out the tasks in the test sequentially, they all started

with the first task. Figure 3a shows the percentage values of each grade in this task.

Only the novices and the strugglers are taken into account. Almost all students in

the target group (10 out of 12 = 83%) got at least one point and even 42% full

4 points as the reference group had the same numbers in 53% and 6%. The same

phenomenon can be observed in the results of the second week.

4.2 The Effects on Studying Behaviour

Since the novices and the strugglers were the only ones whose learning results are

different, it is logical that they are the only ones’ whose studying behaviour was

influenced by the visualizations. Thus this subsection concentrates only on the

novices and strugglers of the groups.

According to the students’ answers to the survey about their preparation, the

students in the target group had used more time than the students in the reference

group. Both the time spent on reviewing the subject and the time spent on doing

T. Ahoniemi, E. Lahtinen / Electronic Notes in Theoretical Computer Science 178 (2007) 137–144 141

the homework assignment were higher. The difference was bigger in reviewing the

subject. The comparison between the time usage on reviewing the subject in the

first week of the experiment is shown in Figure 3b.

More than a third of the students in the reference group spent less than 5 minutes

in reviewing. More than 90% of the students in the target group spent longer than

5 minutes. It is clear that the students using the visualization tool concentrated

longer even though the statistical significance between the groups can not be stated.

Also the feedback of the survey about visualizations as a preparation tool re-

sulted in plain positive feedback. Students wrote comments like ”Though having

read the specified course material, I really understood the subject after using the

visualization examples.”

4.3 Comparing the Results of the Two Weeks

The experiment was not done in a strictly controlled situation but in a normal

teaching group so some circumstances varied between the two weeks of the experi-

ment. E.g., there were more absent students on the second week. The subjects on

the two weeks were different so we also had a new type of homework assignment

and a different test on the second week. All of these factors have influenced the

results.

On the first week, the homework assignment was a utilizing visualization and on

the second week an analyzable visualization. One important reason for the difference

in the results can be that utilizing visualizations engage the student to produce his

own code where as analyzable visualizations engage the student to observe the code

intensively. The test performed in the class room was about producing their own

code. So on the first week the preparation and the test were more similar than on

the second week.

The in-class test was not announced in advance so on the first week of the ex-

periment no one expected it. On the second week the students might have assumed

that there could be a test again. Thus the students may have prepared better for the

exercise session. This can also be one of the reasons why the statistical difference

was not achieved on the second week.

5 Discussion

Even if the circumstances between the weeks of the experiment varied, it is advan-

tageous that the experiment was done in a real learning situation. We captured

the students’ experiences in a situation where they act as they would act normally

when studying. Thus the results can better be applied to planning teaching in the

future.

The results show that the use of visualizations helped the students who have

most challenges in learning programming (the novices and the strugglers). They

learnt more if they used visualizations when preparing for the exercise sessions. The

students who had earlier experience in programming already had a mental model

about the subject and thus the use of visualizations was not so helpful. Also the

T. Ahoniemi, E. Lahtinen / Electronic Notes in Theoretical Computer Science 178 (2007) 137–144142

students who felt that the subject was easy could form the mental model without

using visual materials. Hence, they did not benefit of the use of visualizations so

much either.

Another result was that the students who used visualization examples along

with the normal course material spent more time on reviewing the subject than the

others. Studying obviously became more interesting as a new visual perspective

was provided.

So what really can be concluded from the results is that visualizations do aid

learning, but it is not sure whether this results directly of their usage. It can

also result from the fact that when using visualizations, the studying itself is more

interesting and the students use more time on it and thus learn better. However,

it is not important, if the visualizations improve the learning results directly. The

most important result is that they do improve them.

The difference between the two weeks of the experiment – the week when the stu-

dents did a utilizing visualization exercise and the week when they did an analysable

visualization exercise – also supports the recommendation from Naps et al. that the

visualization should engage the student to work actively [6]. Utilizing visualization

makes the student produce their own code where as analysable visualization only

makes them analyze code written by someone else. The engagement to the visual-

ization is more intense with a utilizing visualization. Also the learning results from

the week when the utilizing visualization was used are better.

Using visualizations in students’ preparation for exercise sessions had definitely a

positive outcome because of the better learning. The exercise sessions ran smoother

because students were better prepared due to the increase in their motivation. This

also shows that using visualizations in preparing for exercise sessions is a working

way of integrating visualizations to the rest of the course content.

The problems and considerations of this kind of approach are technical issues

and the time spent by the teacher. Implementing tasks with visualizations requires

quite advanced tools that have to be available for every student. Also preparing

the tasks with a visualization tool takes more effort from the teacher than without

a visualization tool.

When planning new ways to use visualizations in a course the teacher should

also bear in mind that not all want to use new kinds of learning tools. As the use

of visualizations mainly benefit the novices and the strugglers, it can be annoying

for the students that do not need it. Some of the students might not like visual

learning style or just have their own idea on how to work. Thus we recommend that

the use of visualization tools is optional.

6 Conclusions

Using program visualizations improve the learning of students with no earlier pro-

gramming experience and the students who have difficulties in programming. We

cannot say whether the better learning results originate from the pedagogical im-

pact of the visualizations or from the fact that the visualizations made the students

T. Ahoniemi, E. Lahtinen / Electronic Notes in Theoretical Computer Science 178 (2007) 137–144 143

study for a longer time. Either way, using visualizations improved the students’

learning and preparation for the exercise sessions which was the purpose. There-

fore, we recommend both using visualizations in teaching and using the exercise

sessions to integrate the visualizations to the other parts of the course.

References

[1] Ben-Bassat Levy, R., M. Ben-Ari and P. A. Uronen, The Jeliot 2000 program animation system,
Computers & Education 40 (2003), pp. 1–15.

[2] Hundhausen, C. D., Integrating algorithm visualization technology into an undergraduate algorithms
course: Ethnographic studies of a social constructivist approach, Computers & Education 39 (2002),
pp. 237–260.

[3] Hundhausen, C. D., S. A. Douglas and J. T. Stasko, A meta-study of algorithm visualization
effectiveness., Journal of Visual Languages & Computing 13 (2002), pp. 259–290.

[4] Lahtinen, E. and T. Ahoniemi, Visualizations to Support Programming on Different Levels of Cognitive
Development, Proceedings of The Fifth Koli Calling Conference on Computer Science Education (2005),
pp. 87–94.

[5] Lahtinen, E., K. Ala-Mutka and H.-M. Järvinen, A study of the difficulties of novice programmers,
ITiCSE 2005, Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (2005), pp. 14–18.

[6] Naps, T., G. Rössling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,
M. McNally, S. Rodger and J. Velazquez-Iturbide, Exploring the role of visualization and engagement
in computer science education, SIGCSE Bulletin 35 (2003), pp. 131–152.

[7] Robins, A., J. Rountree and N. Rountree, Learning and teaching programming: A review and discussion,
Computer Science Education 13 (2003), pp. 137–172.

[8] Rössling, G. and T. L. Naps, A Testbed for Pedagogical Requirements in Algorithm Visualizations,
ITiCSE 2002, Proceedings of the 7th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (2002).

[9] Virtanen, A. T., E. Lahtinen and H.-M. Järvinen, VIP, a visual interpreter for learning introductory
programming with C++, Proceedings of The Fifth Koli Calling Conference on Computer Science
Education (2005), pp. 125–130.

T. Ahoniemi, E. Lahtinen / Electronic Notes in Theoretical Computer Science 178 (2007) 137–144144

7. Publications reprinted

Publication (iv)

Lahtinen, E., Ahoniemi, T. Kick-Start Activation to Novice Programmers - A Visualization-

Based Approach In: The Proceedings of PVW 2008 - Fifth Program Visualization

Workshop, July 2008 Madrid, Spain.

123

Kick-Start Activation to Novice Programming
— A Visualization-Based Approach

Essi Lahtinen1 and Tuukka Ahoniemi2

Department of Software Systems
Tampere University of Technology

Tampere, Finland

Abstract

In the beginning of learning programming students have misconceptions of what programming is. We have
used a kick-start activation in the beginning of an introductory programming course (CS1) to set the record
straight. A kick-start activation means introducing the deep structure of programming before the surface
structure by making the students solve a certain type of problem in the first lecture. The problem is related
to a realistic computer program, simple enough for everyone to understand and allow students to participate
in debugging. A visualization-based approach helps making the example more concrete for students.
In this article we present the concept kick-start activation and one concrete example. To support the exam-

ple, we have also developed a visualization using the visualization tool JHAVÉ. We got positive feedback
on the example and suggest further development of kick-start activations in order to make the beginning of
learning programming more motivating for students.

Keywords: Teaching programming, Novice programmers, Visualizations, Kick-start activation.

1 Introduction

Students who enroll to introductory programming courses (CS1) have plenty of mis-

conceptions about the nature of programming and some students do not know what

programming is at all. The course typically starts with the teacher trying to correct

the misconceptions by emphasizing that programming is more problem-solving and

thinking than typing program code. The concept of an algorithm is introduced, as

well as some tools for implementing algorithms and designing programs, such as

pseudocode or flow charts.

A classical first example of an algorithm is a recipe in a cook-book. A recipe is

a relatively unambiguous, detailed set of instructions. If you follow the instructions

carefully you will have a food portion as the result. However, there are problems

1 Email: essi.lahtinen@tut.fi
2 Email: tuukka.ahoniemi@tut.fi

Electronic Notes in Theoretical Computer Science 224 (2009) 125–132

1571-0661/© 2008 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.12.056

with this example. Firstly, it is not at all related to computers. Thus students

might feel that the teacher is stating the obvious or even explaining nonsense when

he/she is talking about cooking and algorithms instead of programming. Secondly,

even though comparing cooking recipes and algorithms gives a clear idea on what an

algorithm is, it does not really help to understand what a programmer does. There

is no occupation where the job is to develop new recipies. Thus, the underlying

idea of programming is not delivered to the students. Thirdly, the methaphor also

does not help in explaining the programming process for the student. There are

no concrete examples on important phases like designing, testing nor debugging.

The student might still continue carrying the misconception of programming being

merely the implementation of an algorithm.

We introduce a different way to start the course: kick-start activation. In this

approach, we get into the deep structure of programming before the surface structure

is even introduced. Our target audience is especially the students who do not know

anything about programming before the kick-start activation.

In this article we first present the idea of a kick-start activation in Section 2.

Then we introduce our example and explain how we use it in Section 3. Section

4 presents the visualization and feedback. Finally, discussion and conclusion are

included in Section 5.

2 Criteria for a Kick-Start Activation

In our opinion, to make the opening of the course interesting for students, one needs

to get directly into the real problems, i.e., a problem that requires an algorithmic

solution. In the case of programming this means skipping the surface structure, such

as the syntax of the programming language, and starting from the deep structure of

programming, i.e., a problem that the students solve themself. We call this kind of

an introduction kick-start activation because it is a fast-forward jump-in approach

and it engages students in the example since they solve the problem.

Our main criterion for the example presented in the kick-start activation is that

it has to be based on a real computer program. The benefits of a real programming

example are:

• In addition to introducing the concepts of algorithms, pseudo code and flow charts

one can also introduce· problem solving and the phases of programming,
· the idea of testing algorithms and the idea of testing programs, and
· what the work of a programmer is like.

• It helps to explain the difference of human thinking and the way the computer

works.

• The execution of the algoritm can be explained and demonstrated with a com-

puter.

• One can also show a an implementation in a programming language to give an

example. Students can identify the control structures of the pseudo code from the

program code. Even if the students do not understand theprogramming language

E. Lahtinen, T. Ahoniemi / Electronic Notes in Theoretical Computer Science 224 (2009) 125–132126

syntax yet, it gives them a concrete example on what a programming language

looks like.

• It can be concretized by a program visualization that the students can run.

Our second criterion is that the kick-start activation needs to be simple enough

so it can be understood by everyone. We decided that it has to be an example

that relates to everyday life. Besides that we chose not to use a real programming

language nor any terms, pictures, or other details that relate to computers. For

example, we did not want []-operators in the algorithm or memory addresses in

the pictures. These would just add extra details that are irrelevant at this stage.

Instead of using a programming language it is easier to fade out the surface structure

of programming by using a natural-language-like pseudo code presentation and flow

charts. To concretize the pseudo code and flow chart we developed a visualization

that illustrates how the algorithm would be run by a computer if the computer

could understand it.

The third criterion for a kick-start activation was to make students take part

in the example. As programming is much more thinking and problem-solving than

using the programming language syntax, there are numerous programming related

activities that students can try already in the beginning of the course. For instance

testing an algorithm is a task that can be given to a student. One practical way

of doing this is developing a buggy version of an algorithm that the students can

debug.

3 Our Example: Hyphenating Finnish Words

The topic of our kick-start activation was the hyphenation rules of the Finnish

language. Word processors have spell checking and automatic hyphenation, i.e.,

computer programs are hyphenating Finnish words. In addition, every student

knows how to spell 3 so the topic is general enough.

The exact rules for hyphenating Finnish are not common knowledge in Finland

even if it is easy to hyphenate Finnish for everyone who knows how to speak the

language. Fortunately the rules are simple enough to be explained to students

in a few sentences. Still, it is non-trivial to build a hyphenation algorithm. The

algorithm requires a loop structure to go through the letters of the hyphenated word

and a couple of if-statements to choose which hyphenation rule to apply.

For example, the first of three hyphenation rules called the consonant rule states

the following: if there is a vowel followed by one or more consonants, a hyphen is

placed directly before the last consonant. The window on the right hand side in

Figure 1 presents the algorithm based on the rules. The consonant rule can be

identified in the marked area of the figure.

A word is a data structure that can be understood even without knowing the

data type string. A word can also be drawn like a line of alphabet building blocks

(See the window on the left hand side in Figure 1). Introducing the computer

3 In this situation actually: in Finland every student knows how to spell Finnish.

E. Lahtinen, T. Ahoniemi / Electronic Notes in Theoretical Computer Science 224 (2009) 125–132 127

memory or other similar details for the student is unnecessary. Drawing the data

structure as a line of building blocks actually allows us to visualize the addition of

a hyphen: a picture animation where a block with the character ‘-’ slides and slips

in between the blocks of the word.

On the lecture, our intention was to highlight that designing and testing the

algorithm with pen and paper is a big part of programming. To describe this

clearly we used a three step example:

(i) First we quickly designed a hyphenation algorithm. Though it seemed to be

correct the hasty design had on purpose produced a buggy solution.

(ii) Then the students tested the algorithm and hopefully found the error. After

this we discussed how important it is to understand the problem before you

start designing the algorithm.

(iii) Finally, we explained the hyphenation rules deeper for the students and de-

signed a new algorithm properly. The final result was a correctly working

algorithm.

The example included two algorithms. We call these the premature algorithm (pro-

duced in step 1) and the mature algorithm (produced in step 3).

The purpose of the testing phase was to activate the students. They were actu-

ally performing a programming related task even if they thought they did not know

any programming yet. The idea is that the students can use the visualization to

run and test the algorithm. The testing could of course be done using only pen and

paper, but the visualization is handy in it. We gave a link to the visualization to the

students for later use so that they could revise the lecture using the visualization.

4 The Visualization

There are many program visualization tools available for presenting basic program-

ming structures for novice programmers for instance, Jeliot 3 [4] for Java, VIP [12]

for C++, and Ville [7] and Planani [9] for multiple different languages. These visu-

alization tools work on program code level, so they assume that the student already

understands some programming language and thus are not suitable for our target

audience. There is also a visualization tool called RAPTOR [1] where the students

can construct flow charts and the tool will visualize them for the student. The

RAPTOR flow charts are also close to the program code level, e.g., the tool shows

the content of variables and arrays.

We needed a completely syntax-free common purpose visualization tool where

we can write the algorithm in a few Finnish sentences and draw the building blocks

exactly according to our needs. Thus, the existing program visualization tools did

not suit our purposes. However, in the field of algorithm visualizations there was

one tool flexible enough: JHAVÉ [6] and its Gaigs support class package. With

a bit of imagination we were able to use this algorithm visualization tool slightly

unorthodoxically and produce the hyphenation visualization.

The info screen of JHAVÉ’s execution window is normally used for showing

E. Lahtinen, T. Ahoniemi / Electronic Notes in Theoretical Computer Science 224 (2009) 125–132128

algorithm specific instructions written in HTML. The tool allows the use of images

as a part of the HTML page with the <image> tag. This feature let us implement

the flow chart animation with a set of fixed images. The images were then presented

in the correct order by showing a particular image in each state of the program.

With the possibility of using HTML and images in JHAVÉ, one could design many

sorts of examples as the technical implementation is limited solely to the creation

of the images.

Using JHAVÉ, we implemented two different presentations of the hyphenation

algorithm visualization: a pseudo code view and a flow chart. Both of these pre-

sentations also contain a window with the alphabet building block picture of the

hyphenated word. Screenshots can be seen in Figure 1 and Figure 2. There were

two different algorithms that we visualized: the premature and mature. Since there

are two different presentations of both the algorithms we actually had four different

visualizations.

The student can control the visualization using the step and step-back buttons.

The execution of the algorithm is visualized by coloring the nodes in the flow chart

or the lines of the pseudo code synchronously with the steps. As the program is

hyphenating words, the state of the word in each step is visualized in the window

with the alphabet building block picture on the left hand side. There are pictures

of two words: the original word without the hyphens and the result where the

hyphens are added as the algorithm proceeds. The visualization also colors the

alphabet building blocks that the algorithm is handling.

4.1 Student Engagement

According to research on the field of visualizations, student engagement is vital

for learning when a student uses visualization [11]. Naps et al. [5] present a Vi-

sualization Engagement Taxonomy that describes six levels of learner engagement

with visualization technology. On top of the lowest level of existing engagement—

Viewing—are the more active levels: Responding and Changing an existing visual-

ization and Constructing and Presenting ones own visualization.

As the algorithm is given fixed in the hyphenation algorithm visualization, the

student engagement is enhanced by allowing the student to provide his/her own

input word for the algorithm. This corresponds to the level Change of the Visual-

ization Engagement Taxonomy [5]. To attain the level Response also, the flow of

the program is interrupted with pop-up questions querying about the next behavior

of the program.

4.2 Student Feedback

We evaluated the visualization with a quantitative survey after the lecture where we

used it. We handed in a questionnaire on paper for the students. We received alto-

gether 113 responses. 71 of the respondents (63%) had no programming experience

before the course.

The feedback was generally positive since 53% of the respondents said that the

E. Lahtinen, T. Ahoniemi / Electronic Notes in Theoretical Computer Science 224 (2009) 125–132 129

Fig. 1. The flow chart version of the visualization.

Fig. 2. The pseudo code version of the visualization with an activating pop-up question.

visualization looked nice (agree or totally agree), 86% thought that is was useful for

learning (agree or totally agree), and only 5% thought that it disturbed the lecture

(agree or totally agree).

We performed a cross tabulation and a χ2-test for some of the variables and found

out that the students with no earlier programming experience thought that the vi-

E. Lahtinen, T. Ahoniemi / Electronic Notes in Theoretical Computer Science 224 (2009) 125–132130

sualization was more useful for learning than the students who had programmed

before coming to the course. This difference is statistically significant (p < 0, 05).

The reason is also obvious: the students with earlier programming experience al-

ready had an understanding on how algorithms and flow charts work so they do not

need the visualization for understanding the hyphenation algorithm. This result

shows that we managed to help the students who were the target audience of the

visualization.

After all, the most important feedback was that our students were listening to

the hyphenation example intensively on the lecture. Two teachers tried the example

and both of them could sense a notable difference in the lecture situation compared

to the cook-book example.

5 Discussion and Conclusions

The kick-start activation received positive feedback both from the students and

the teachers who used it. We think that our approach was successful because the

criteria were designed carefully and there was a visualization tool that aided both

presenting the example and understanding it. This example could be used as a

source of ideas for other topics to build kick-start activations of.

There are not many program visualization tools available for our target

audience—the students who do not know anything about programming yet. In

addition to our visualization we have found a system called SICAS [3] that could

probably also be used for presenting a kick-start activation. It is based on similar

principles and allows students to construct their own flow charts and visualize them.

However, currently it is not used the same way we used our visualization.

The conceptual framework of programming knowledge developed by McGill and

Volet [2] suggests that in addition to syntactic and conceptual knowledge a pro-

grammer also needs strategic knowledge of programming. Reports on the state of

field show that visualizations are often used for only presenting programming con-

cepts [10]. The scope of our visualization is more in the strategic knowledge since

it focuses on the programming phases: testing and design.

In the development of the visualization we also emphasized student engagement

in the levels of the Visualization Engagement Taxonomy [5]. The visualization is

most activating when the student is guided to use it in the three step lesson we

described in Section 3. This requires either a teacher to explain the hyphenation

problem and the need for debugging the first version of the algorithm or the student

to read this from the material by himself. The idea of connecting a visualization

to a certain study material is similar to the one presented in an ITiCSE working

group report about hypertextbooks [8]. We think that the visualization of the

mature version of the algorithm could also be used without the debugging phase

just for presenting the concepts algorithm, pseudo code, and flow chart. This way

the example would be less challenging and the activation of the student would be

left only to the pop-up questions.

The best possibility for activating students would be to make them correct the

E. Lahtinen, T. Ahoniemi / Electronic Notes in Theoretical Computer Science 224 (2009) 125–132 131

bug or build a completely new correct algorithm after finding the bug from the

premature version of the algorithm. This can, however, be very challenging for a

novice student so we did not try it. It would be an interesting future work idea to

build a visualization tool where the student could build the correct algorithm by

modifying the flow chart. Another idea for future work is that we could implement

different kinds of premature algorithms. There could be easier and more difficult

bugs for the debugging task.

6 Acknowledgments

Special thanks to Prof. Thomas Naps (University of Wisconsin, Oshkosh) for

his enormously useful guidance with visualizations in common and help with the

JHAVÉ visualization tool. Nokia Foundation has partly funded this work.

References

[1] Giordano, J. C. and M. Carlisle, Toward a more effective visualization tool to teach novice programmers,
in: SIGITE ‘06: Proceedings of the 7th conference on Information technology education (2006), pp.
115–122.

[2] McGill, T. and S. Volet, A conceptual framework for analyzing students’ knowledge of programming,
Journal on research on Computing in Education 29 (1997), pp. 276–297.

[3] Mendes, A. J., A. Gomes, M. Esteves, M. J. Marcelino, C. Bravo and M. A. Redondo, Using simulation
and collaboration in cs1 and cs2, SIGCSE Bull. 37 (2005), pp. 193–197.

[4] Moreno, A., N. Myller, E. Sutinen and M. Ben-Ari, Visualizing programs with Jeliot 3, Proceedings of
the International Working Conference on Advanced Visual Interfaces AVI 2004 (2004).

[5] Naps, T., G. Rössling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,
M. McNally, S. Rodger and J. Velazquez-Iturbide, Exploring the role of visualization and engagement
in computer science education, SIGCSE Bulletin 35 (2003), pp. 131–152.

[6] Naps, T. L., J. R. Eagan and L. L. Norton, JHAVé - An environment to actively engage students in
web-based algorithm visualizations, ACM SIGCSE Bulletin , Proceedings of the thirty-first SIGCSE
technical symposium on Computer science education SIGCSE ‘00 32 (2000), pp. 109–113.

[7] Rajala, T., M.-J. Laakso, E. Kaila and T. Salakoski, VILLE – A language-independent program
visualization tool, in: Proceedings of The Seventh Koli Calling Conference on Computer Science
Education, 2007.

[8] Rössling, G., T. Naps, M. S. Hall, V. Karavirta, A. Kerren, C. Leska, A. Moreno, R. Oechsle, S. H.

Rodger, J. Urquiza-Fuentes and J. Ángel Velázquez-Iturbide, Merging interactive visualizations with
hypertextbooks and course management, in: ITiCSE-WGR ‘06: Working group reports on ITiCSE on
Innovation and technology in computer science education (2006), pp. 166–181.

[9] Sajaniemi, J. and M. Kuittinen, Visualizing roles of variables in program animation, Information
Visualization 3 (2004), pp. 137–153.

[10] Shaffer, C. A., M. Cooper and S. H. Edwards, Algorithm visualization: a report on the state of the field,
in: SIGCSE ‘07: Proceedings of the 38th SIGCSE technical symposium on Computer science education
(2007), pp. 150–154.

[11] Stasko, J. T. and C. D. Hundhausen, Algorithm Visualization, in: Computer Science Education Research
(2004), pp. 199–228.

[12] Virtanen, A. T., E. Lahtinen and H.-M. Järvinen, VIP, a visual interpreter for learning introductory
programming with C++, Proceedings of the Fifth Finnish/Baltic Sea Conference on Computer Science
Education (2005), pp. 129–134.

E. Lahtinen, T. Ahoniemi / Electronic Notes in Theoretical Computer Science 224 (2009) 125–132132

7. Publications reprinted

Publication (v)

Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O. Review of Recent Systems for

Automatic Assessment of Programming Assignments In: The Proceedings of 10th

Koli Calling International Conference on Computing Education Research, October

2010, Koli, Finland.

133

Review of Recent Systems for Automatic Assessment of
Programming Assignments

Petri Ihantola
Department of Computer
Science and Engineering

Aalto University
petri@cs.hut.fi

Tuukka Ahoniemi
Digia Plc
Finland

tuukka.ahoniemi@digia.com

Ville Karavirta
Department of Computer
Science and Engineering

Aalto University
vkaravir@cs.hut.fi

Otto Seppälä
Department of Computer
Science and Engineering

Aalto University
oseppala@cs.hut.fi

ABSTRACT

This paper presents a systematic literature review of the re-
cent (2006–2010) development of automatic assessment tools
for programming exercises. We discuss the major features
that the tools support and the different approaches they are
using both from the pedagogical and the technical point of
view. Examples of these features are ways for the teacher
to define tests, resubmission policies, security issues, and so
forth. We have also identified a list of novel features, like
assessing web software, that are likely to get more research
attention in the future. As a conclusion, we state that too
many new systems are developed, but also acknowledge the
current reasons for the phenomenon. As one solution we
encourage opening up the existing systems and joining ef-
forts on developing those further. Selected systems from our
survey are briefly described in Appendix A.

1. INTRODUCTION
Assessment provides the teacher with a feedback chan-

nel that shows how learning goals are being met. It also
ensures for an outside observer that students achieve those
learning goals. Assessment provides both means to guide
student learning and feedback for both the learner and the
teacher about the learning process – from the level of a whole
course down to a single student on some specific topic being
assessed.
Students often direct their efforts based on what is as-

sessed and how it affects the final course grade [6, Chap-
ter 9]. Continuous assessment during a programming course
ensures that students get enough practice as well as get feed-
back on the quality of their solutions. Providing quality
assessment manually for even a small class means that feed-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ’10, October 28-31, 2010, Koli, Finland
Copyright 2010 ACM 978-1-4503-0520-4/10/10 ...$10.00.

back can not be as instant as in one-to-one tutoring. When
the class size grows, the amount of assessed work has to
be cut down or rationalized in some other way. Automatic
assessment (AA), however, allows instant feedback without
the need to reduce exercises.

Why do so many automatic assessment systems exist, and
why are new ones created every year? Many systems share
common features and it would seem that systems already
exist that fulfill most assessment needs.

One clear reason for the variety of tools has to do with
their availability and lifespan. Tools are often created as
a part of a thesis or for a particular course. They are fin-
ished enough for studying a research question or to support
the needs of one particular course, but are not suitable for
distribution. It is rather common that the very first ver-
sion of a tool was something that the teacher did quickly
for his/her very own purpose. These tools might get pub-
licized if some research was the original motivator, but as
they never emerge as supported pieces of software, similar
systems get implemented again and again. Correspondingly,
there are far less systems that are widely adopted than there
are papers about new tools.

We argue that presenting a big picture about the recently
developed and currently available AA systems would help
both teachers find the tools they might be searching and
developers avoid reinventing the wheel. Literature survey is
one way to achieve this. In this survey, our goal is to serve
teachers who need to give grades to large classes. This is
where the automatic grading of programming assignments
can free the teachers’ time significantly for doing something
else, that can not be automated [9].

Related research, with focus on related surveys, is pre-
sented in Section 2. The exact research questions and the
methodology used in this survey are described in Section 3.
Results are introduced in Section 4. Selection of AA sys-
tems, also mentioned in Section 4, are presented in Ap-
pendix A. Conclusions, some recommendations based on
the data, and our expectations related to the future trends
in automatic assessment of programming assignments are
discussed in Section 5.

2. RELATED WORK
Tools are an actively researched approach to support teach-

ing programming. For example, a survey by David Valentine
found that 18% of the papers published in SIGCSE confer-
ence between 1983 and 1993 were tools papers, whereas be-
tween 1994 and 2003 the number was 24.6% [78]. In the
Survey of Literature on the Teaching of Introductory Pro-
gramming by Pears et al. [55] from 2007, tools were the
single largest group among papers classified between tools,
curricula, pedagogy, and programming languages. Analysis
by Sheard et al. [68] from 2009 also supports the importance
of both assessment and tools. Top three themes in their clas-
sification of CS education research papers were: 1) ability
/ aptitude / understanding (40%), 2) teaching / learning /
assessment techniques (35%), and 3) teaching / learning /
assessment tools (9%).
Pears et al. have also summarized that tools that support

teaching programming can be divided into:

• visualization tools (e.g. Animal [60], Jeliot [49], and
Tango [73]),

• automated assessment tools (e.g. TRAKLA2 [40], WEB-
CAT [16], and BOSS [37]),

• programming support tools (e.g. BlueJ [5]), and

• microworlds (e.g. Karel [54], and Alice [12]).

As stated before, our focus is on tools for automated assess-
ment of programming assignments.
There are a few surveys of AA in the context of program-

ming assignments. A Survey of Automated Assessment Ap-
proaches for Programming Assignments [1] by Kirsti Ala-
Mutka from 2005 concentrates on what features of program-
ming assignments are automatically assessed whereas Douce
et al. [14] review the history of the field from 1960s to 2005.
One of the main findings by Ala-Mutka is that dynamic anal-
ysis – that is, assessment based on executing the program
– is often used to assess functionality, efficiency, and test-
ing skills. Static checks that analyze the program without
executing it are used to provide feedback from style, pro-
gramming errors, software metrics, and even design. Tools
that cover both static and dynamic testing are also well pre-
sented in the survey. There are many features to assess, and
Ala-Mutka concludes that the selected AA approach should
always be pedagogically justified. Although we believe a lot
has been done since 2005, a recent survey from 2009 by Liang
et al. [42] provides little new to the work of Ala-Mutka.
ITiCSE 2003 working group led by Carter conducted a

survey among CS educators (not only programming) to get
a snapshot of AA practices and an analysis of respondents’
perceptions of automatic assessment [9]. One interesting
finding was that the teachers who were not familiar with AA
considered its potential more limited than the respondents
with experience from AA.
Not all programming exercises can be automatically as-

sessed. Several articles discussed how to design good as-
signments from the pedagogical standpoint. However, how
to deal with the restrictions set by the automatic assess-
ment is not often addressed. Forǐsek investigated Interna-
tional Olympiads in Informatics1 (an event similar to the
ACM International Collegiate Programming Contests2) and

1http://ioinformatics.org/
2http://cm.baylor.edu/

found that certain types of assignments they used were un-
suitable for automatic assessment [17]. Forǐsek presents con-
crete examples of bad assignments (i.e easy to cheat tests)
and heuristics on how to detect them. Greening, on the
other hand, suggests that programming assignments should
be more open in nature instead of satisfying a strict set of
specifications often required by automatic assessment [25].
Furthermore, we believe that the very fact that the assess-
ment is automatic is likely to change how some students ap-
proach the exercise. Knowingly submitting a weak or even
incorrect solution that gets accepted by a machine is quite
likely more socially acceptable than trying to cheat a person.

Some of the research outside CS education research will
also help us understand when to apply AA and when not to.
For example, what kind of problems in code can be detected
automatically and what not has been investigated (e.g. [45]).

3. RESEARCH QUESTION AND METHOD
Based on the previous section, we conclude that the trends

and improvements in automatic assessment of programming
assignments from the last five years have not been system-
atically collected. Thus, the following research questions are
addressed in this paper:

1. What are the features of automatic assessment systems
reported in the literature after 20053?

2. What future directions are indicated?

To answer the questions, a systematic literature review
was carried out. This means that an explicit procedure in
selecting the systems and papers was applied (see [7] for
details): to be included, a paper must have presented an
AA system providing summative, numerical feedback from
programming assignments or described results from using
such system.

By programming assignments we mean assignments where
students write code and submit it for assessment. Therefore
AA of diagrams (e.g. [76]), AA of algorithm simulation (e.g.
[40]), and other visualization based approaches (e.g. pro-
viding formative feedback based on visualizations) are not
included. In addition, we only included systems where first
hand experience was reported. This means that classical
systems often mentioned in the related work section (e.g.
CourseMarker [30], Assyst [34], etc.) are left out – unless
experiences from those systems were reported in the litera-
ture we surveyed.

We collected the data by searching for phrases (’auto-
matic’ OR ’automated) AND (’assessment’ OR ’grading’)
AND ’programming’ from the conference proceedings and
journals through ACM Digital Library and IEEE Xplore.
We then applied the inclusion criteria to the abstracts and
finally read all the remaining papers. Search terms were
collectively decided after first manually examining (read-
ing the abstract and scanning the rest) all the articles of
ITiCSE proceedings and three journals: Computer Science
Education, Olympiads in Informatics, and Transactions on
Computing Education (formerly Journal on Educational Re-
sources in Computing) between 2006 and 2010.

Because of our inclusion criteria, not all of the systems
included in this survey are first published after 2005. A

32005 is when the survey of Ala-Mutka was carried out.

system might have been published earlier but an evaluation
study or something similar after 2005.
We applied an iterative process to find the consensus about

how to group features of the systems (i.e. subsections of
Section 4). We read a selection of papers, made the first
version of categories, read more papers and revised the cat-
egories. This was repeated until no significant features lead-
ing into new categories were found. Some of our results are
explained by our background in automated assessment. As
a short summary, our attitudes towards automation are pos-
itive, we have all used AA several years in our courses, and
we have been developing AA and other educational systems.

4. RESULTS
In this section, we introduce the features identified in the

literature survey. Systems are cited, but the focus is on
features, not on systems.

4.1 Programming Languages
A majority of the systems are either targeted only for Java

or have support for Java. This fits well with the trend of Java
being one of the most used introductory programming lan-
guages. Other popular languages supported by the systems
include C/C++, Python, and Pascal. Pascal was especially
used in most of the competition platforms, where a typical
language support also included C/C++ and Java. In ad-
dition, we found examples of not so main stream teaching
languages like Assembler [36, 43] and shell scripts [70].
Some of the systems are language independent. Especially

if the assessment is based on output comparison, any lan-
guage that can be executed on the same environment can
be automatically assessed after the system is configured to
compile and execute solutions in that language.

4.2 Learning Management Systems
Extending the existing learning management systems (LMS)

like Moodle4 to better fit into the special needs of CS ed-
ucation seems to draw increasing interest (e.g. [56, 62, 63],
the forthcoming ITiCSE’10 working group, and many oth-
ers). One argument supporting LMS–AA integration is to
avoid reimplementing all the course management features.
As a LMS hosting several (not only programming) courses
has a huge number of users, it is a tempting target for at-
tackers. Malicious code executed in such an environment
is always a serious threat. Therefore, securing AA systems
integrated into LMSs is extremely important. Despite the
challenges, we believe that there are more pros than cons
in this approach and that there is an increasing demand to
bring automatically assessed exercises into LMSs.
We found the following AA extensions to LMSs: CTPrac-

ticals [27] to bring VHDL and Matlab exercises into Moo-
dle, Automatic Grader [74] to assess students’ Java assign-
ments in Sakai5, AutoGrader [29, 51] to support Java assign-
ments in Cascade6, WeBWorK-JAG [21, 22, 23] to bring au-
tomatically assessed Java exercises into WeBWorK7, SISA-
EMU [36] to provide Assembler programming assignments
through Moodle, and finally VERKKOKE [2] to bring socket
programming and routing into any LMS with SCORM sup-

4http://moodle.org/
5http://sakaiproject.org/
6http://www.cascadelms.org/
7http://webwork.maa.org/

port (e.g. Moodle). In addition, EduComponents [3, 4]
brings programming exercises to Plone8, a content manage-
ment system, not a fully featured LMS.

4.3 Defining Tests
Assessing the functionality of students’ code is still the

most often used approach to grade programs. The ways to
do this can be divided between the use of industrial testing
tools and various specialized solutions. Examples of using
industrial tools were:

• XUnit based approaches were used in several systems
(e.g. [3, 72]). In some cases students even created their
own tests with JUnit [15].

• Acceptance testing frameworks, (e.g. EasyAc-
cept [66, 67]) where tests are defined in a natural-
language-like scripting language. Tests are easy-to-
read requirement specifications as well as used for the
assessment at the same time.

• Webtesting frameworks like Watir9 in AWAT [75]
and Selenium10 in Electronic Commerce Virtual Lab-
oratory [11].

Specialized solutions included:

• Output comparison is the traditional approach used
by many of the systems we found. Survey of Ala-
Mutka [1] already reported several variations of out-
put comparison including running the model solution
and student’s code side by side and the use of regular
expressions to match the output.

• Scripting can mean almost everything, and at the
same time it is the most commonly reported way to
define tests. For example, a script can be a shell script
compiling the program, running it, and comparing the
output to a file containing the expected output.

• Experimental approaches like comparing program
graphs of a student’s solution to the pool of known
correct answers [50, 80] or deriving test cases with a
model checker [33] were also reported.

4.4 Resubmissions
Practice is important in learning programming and there

should be room for mistakes and learning from them. AA
can help as it can give feedback despite the limited human re-
sources. However, to prevent mindless trial-and-error prob-
lem solving, the number of resubmissions should be con-
trolled [44]. Here are some examples of how the problem of
trial-and-error can be tackled.

• Limiting the number of submissions, in addition
to having deadlines, is the trivial approach supported
by most of the current systems.

• Limiting the amount of feedback is another clas-
sical way to force students think after a failed submis-
sion. However, this can also create confusion among
students. Especially, students not familiar with AA
(who do not trust AA yet) may feel that the feedback

8http://plone.org/
9http://watir.com/

10http://seleniumhq.org/

provided by the system is erroneous if they are not
able to understand why their submission was judged
wrong [26].

• Compulsory time penalty after each submission
can be used to direct students behavior [1]. Moreover,
length of this penalty can grow exponentially after each
failed attempt [35].

• Making each exercise slightly different is an in-
teresting concept used in QuizPACK by allowing pa-
rameterized, automatically assessed random assignments
for C programming [8]. Trial-and-error makes no sense
when you need to start from scratch to submit again.

• Programming contests provide a completely alter-
native approach where the assignment specification is
visible only for a short period of time during which
the assignment needs to be completed while competing
against time (and others). This approach is adopted to
education, for example, in Mooshak [26]. The competi-
tion aspect has been proven to be an excellent motiva-
tion for the students [41] but also generates a number
of problems. How to teach students good scheduling
of software development process if they are encouraged
to perform as fast as possible at least partly regardless
of the quality of the work?

• Various hybrid approaches and modifications are
also possible. For example, Marmoset [72] supports
both unlimited and limited number of submissions.
First, there is a public test set to check the basic func-
tionality. These tests can always be executed and re-
peating submissions are not penalized. Second, there
are release tests that can only be asked n-times. Feed-
back from the release tests is also limited to force stu-
dents to think before asking tests to be executed.

4.5 Possibility for Manual Assessment
It is often a good idea to combine both manual and au-

tomated assessment. Teaching assistants (TAs) can provide
extra feedback by manually assessing a submission or they
can override the grades, etc. From the tools we surveyed,
we were able to identify two levels of manual intervention
(no support for manual intervention being the third).

• To enable the teacher to view the student sub-
missions is the lightest way to support manual inter-
vention. In this approach, the tool itself does not pro-
vide any features for the marking but at least makes it
possible to manually assess the same submission. Of-
ten the same effect can be achieved by logging into the
assessment system and fetching the submissions from
the database or filesystem where they are stored. How-
ever, supporting this through the AA system makes it
possible to separate the roles of TAs from administra-
tors of the AA system.

• Combining manual and automatic feedbackmeans
TAs feedback and automated assessment can both ex-
ist at the same time and support each others. This is
supported in Web-Cat [16], for example.

None of the systems clearly described that they would
allow TAs to completely override the automatic feedback

but we still expect some systems to support this. However,
this can easily create confusion among both teachers and
learners if the origins of the grade are not transparent.

4.6 Sandboxing
Since the programming assignments are typically graded

by running the students’ solutions on the server side, se-
curing the server against possibly malicious or just incorrect
code is important. A good discussion on the possible attacks
against a grading server can be found in [18]. However, as
important as this topic is, a large portion of the included
articles ignored this. The following approaches to secure
execution of students’ code were mentioned in the articles:

• Proper sandboxing. Relying on existing solutions
to securely run programs is a common approach. This
can be done by using multiple tools like Systrace (used
in EduComponents [3]), linux security module (used
in [48]), Java security policy (used in [48]), ptrace

(used in Moe [46]), and chroot (used in CTPracti-
cals [27]).

• Static analysis. Security can also be addressed by us-
ing custom solutions. For example, Algorithm Bench-
mark uses regular expressions to try to filter out ma-
licious code [10].

• Grading on the client. Some systems deal with
sandboxing by doing the grading on the client side
in students’ own computers. Mailing It In [65] uses
client’s email software to launch tests on client side,
whereas E-Commerce virtual laboratory [11] uses Selenium-
RC to push tests back to the client that did the sub-
mission.

Additional security feature implemented in some systems
is to have a different server for running the student programs
instead of doing it all on the same machine as the rest of the
system. This is done, for example, by EduComponents [3].

In addition to securing AA systems, sandboxing can help
when assessing the performance of students’ programs. Sand-
boxes can be configured to limit the available memory or
CPU time to ensure assessed solutions are efficient enough
(e.g. [27, 79]).

4.7 Distribution and Availability
It is surprising, and quite disappointing, to see how few

systems are open-source, or even otherwise (freely) available.
In many papers, it is stated that a prototype was developed
but we were not able to find the tool. In some cases, a
system might be mentioned to be open source but you need
to contact the authors to get it.

4.8 Specialty
Quite often the driving force for the development of a

completely new tool is a revolutionary idea of something
that has not yet been done. Or at least this is the case with
tools that get researched and published. Specialities of AA
systems identified during the survey included:

• Automatic assessment of GUIs has been identi-
fied already in the survey of Douce [14] and is still of
interest. New systems are still developed [24] and the
existing ones are extended to meet the special require-
ments of GUI exercises [77].

• SQL tutoring systems have existed since the late 90’s.
New systems for this specialty were recognized also in
this survey (e.g. [13, 38])

• Concurrent programming assignments are often ex-
tremely error prone and problems may be hard to de-
tect. Testing concurrency is demanding and special-
ized tools are developed to help (e.g. [52]).

• Web-programming and testing both functionality
and security of the websites students implement is get-
ting more attention together with the web-programming
getting a stronger position in the curricula. These
systems are typically testing a web site (HTML +
JavaScript) ignoring how the server side of the site
is implemented (e.g. [11, 19, 28, 32, 75]).

• Letting students do the quality assurance, either
by writing tests for themselves (e.g. [77]) or reviewing
code of others (e.g. [61]) is often well grounded to the
pedagogical needs.

5. DISCUSSION AND CONCLUSIONS
In this paper, we have surveyed the recent developments

of automatic assessment tools for programming assignments.
We have done this by systematically collecting relevant ar-
ticles published in years 2006-2010 to get a sense what has
happened in the field since the previous literature reviews
on the topic were conducted. The systems included can be
roughly divided into two categories: 1) automatic assess-
ment systems for programming competitions and 2) auto-
matic assessment systems for (introductory) programming
education.
To answer our first research questions, we have discussed

the key features of AA systems in Section 4. From these, we
think that the differences in how tests are defined, how re-
submissions are handled, and how the security is guaranteed
were the most significant.
Based on the data we collected, it is possible to make

some recommendations how new AA systems could get more
widely adopted. First, we recommend that authors describ-
ing new systems should explain more explicitly how the sys-
tem actually works and provide more examples. For ex-
ample, instead of stating that the assessment is based on
scripts, examples should be provided.
In addition, security of the assessment systems should get

more attention. Use of proper sandboxing based on exist-
ing security solutions should be encouraged and use of home
baked static analysis should be avoided. The latter can leave
the system vulnerable, since, for example, the filtering of
code using regular expressions is error-prone. Ultimately the
security needs to be provided in a way that makes installing
the system as easy as possible without compromising secu-
rity. However, configuring a sandbox can be complicated.
Preferably, initial security configuration should not rely on
teachers’ skills. For example, writing a proper Java security
policy is doable (although letting AA system to provide such
policies is better) but setting up a secure linux playground
with chroot, for example, is demanding and teachers might
be tempted to make shortcuts. In fact, we believe that lack
of sandboxing, or the difficulties in configuring the sandbox,
is often one of the obstacles in adopting a system.
The lack of open-source systems might be one of the rea-

sons for the constant development of new tools – that are

also likely to remain in-house. We understand people do not
want to publish something unfinished but at the same time
this slows down new ideas from spreading wider. Thus, we
argue that by open-sourcing the existing tools to some popu-
lar online version control repository like GitHub11 or Google
Code12, the tools could be much more willingly adopted by
others.

To answer our second research question, we expect new
research to emerge from the following fields, from where the
first steps were identified in this survey:

• Integrating automatic assessment into LMSs. As an-
other possible path, some of the assessment systems
can grow into LMSs if they are modular enough and if
they get the momentum behind them. For example, we
see that Web-CAT with the various assessment mod-
ules already implemented into it is a good candidate
to become a CS specific LMS.

• Putting more effort into security of automatic assess-
ment systems. This is also related to the LMS inte-
gration because having multiple courses hosted on one
platform makes this a more tempting target to hack.

• Automatic assessment of web applications students im-
plement. This can be seen to continue the GUI and
SQL testing efforts that have longer traditions. The
new aspect we expect to get more importance is secu-
rity/penetration testing of students’ web applications.

There seems to be a steady interest in developing new
automatic assessment tools. Sometimes the need to imple-
ment yet another system can be challenged and one should
ask whether the new feature could be added directly into
an existing open source system as in Web-CAT [77], for
example. In addition, to increase the adoption of existing
systems and thus avoiding the reinvention of the wheel, we
strongly suggest automatic assessment system developers to
make their systems open source making it easier for others
to contribute.

6. FUTURE WORK
Classification presented in Section 4 can be further im-

proved. For example this could be a starting point for a
more formal Delphi study [64] with more experts deciding
on the categories. Outcome could result in a taxonomy on
automatic assessment of programming assignments.

In this survey, we had quite narrow scope. There are many
systems closely related to AA we did not cover: systems de-
signed for formative/visual feedback (e.g. [31]), peer review
systems (e.g. [71]), and systems to provide feedback on mis-
conceptions and problem solving strategies (e.g. [59]) – to
name a few. Identifying the types of systems that can coop-
erate in an AA setup is essential for understanding how AA
systems should be improved from the technical perspective.

Many of the papers we surveyed reported educational ex-
perimentations and results of comparing different approaches
in automatic assessment. Combining those results with the
features of AA systems (presented in this paper) is some-
thing we are looking next. This is important for improving
AA systems from the pedagogical perspective.

11http://github.com/
12http://code.google.com

7. REFERENCES
[1] K. Ala-Mutka. A survey of automated assessment approaches

for programming assignments. Computer Science Education,
15(2):83–102, 2005.

[2] A. Alstes and J. Lindqvist. Verkkoke: learning routing and
network programming online. In ITiCSE ’07: Proceedings of
the 12th annual SIGCSE Conf. on Innovation and technology
in computer science education, pages 91–95, New York, NY,
USA, 2007. ACM.

[3] M. Amelung, P. Forbrig, and D. Rösner. Towards generic and
flexible web services for e-assessment. In ITiCSE ’08:
Proceedings of the 13th annual Conf. on Innovation and
technology in computer science education, pages 219–224, New
York, NY, USA, 2008. ACM.

[4] M. Amelung, M. Piotrowski, and D. Rösner. Educomponents:
experiences in e-assessment in computer science education. In
ITICSE ’06: Proceedings of the 11th annual SIGCSE Conf.
on Innovation and technology in computer science education,
pages 88–92, New York, NY, USA, 2006. ACM.

[5] D. J. Barnes and M. Kölling. Objects First with Java - A
Practical Introduction using BlueJ, Thid edition. Prentice
Hall / Pearson Education, 2006.

[6] J. Biggs and C. Tang. Teaching for Quality Learning at
University : What the Student Does (3rd Edition). Open
University Press, 2007.

[7] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil. Lessons from applying the systematic literature
review process within the software engineering domain. J. Syst.
Softw., 80(4):571–583, 2007.

[8] P. Brusilovsky and S. Sosnovsky. Individualized exercises for
self-assessment of programming knowledge: An evaluation of
quizpack. J. Educ. Resour. Comput., 5(3):6, 2005.

[9] J. Carter, J. English, K. Ala-Mutka, M. Dick, W. Fone,
U. Fuller, and J. Sheard. ITICSE working group report: How
shall we assess this? SIGCSE Bulletin, 35(4):107–123, 2003.

[10] M.-Y. Chen, J.-D. Wei, J.-H. Huang, and D. T. Lee. Design
and applications of an algorithm benchmark system in a
computational problem solving environment. In ITICSE ’06:
Proceedings of the 11th annual SIGCSE Conf. on Innovation
and technology in computer science education, pages 123–127,
New York, NY, USA, 2006. ACM.

[11] J. Coffman and A. C. Weaver. Electronic commerce virtual
laboratory. In SIGCSE ’10: Proceedings of the 41st ACM
technical symposium on Computer science education, pages
92–96, New York, NY, USA, 2010. ACM.

[12] S. Cooper, W. Dann, and R. Pausch. Alice: a 3-d tool for
introductory programming concepts. In CCSC ’00:
Proceedings of the fifth annual CCSC northeastern Conf. on
The journal of computing in small colleges, pages 107–116, ,
USA, 2000. Consortium for Computing Sciences in Colleges.

[13] M. de Raadt, S. Dekeyser, and T. Y. Lee. Do students sqlify?
improving learning outcomes with peer review and enhanced
computer assisted assessment of querying skills. In Proceedings
of the 6th Baltic Sea Conf. on Computing education research,
pages 101–108, New York, NY, USA, 2006. ACM.

[14] C. Douce, D. Livingstone, and J. Orwell. Automatic test-based
assessment of programming: A review. J. Educ. Resour.
Comput., 5(3):4, 2005.

[15] S. H. Edwards and M. A. Pérez-Quiñones. Experiences using
test-driven development with an automated grader. J. Comput.
Small Coll., 22(3):44–50, 2007.

[16] S. H. Edwards and M. A. Pérez-Quiñones. Web-cat:
automatically grading programming assignments. In ITiCSE
’08: Proceedings of the 13th annual Conf. on Innovation and
technology in computer science education, pages 328–328, New
York, NY, USA, 2008. ACM.

[17] M. Forǐsek. On the suitability of programming tasks for
automated evaluation. Informatics in education, 5(1):63–76,
2006.

[18] M. Forǐsek. Security of programming contest systems. In
Informatics in Secondary Schools, Evolution and
Perspectives, Vilnius, Lithuania, 2006.

[19] X. Fu, B. Peltsverger, K. Qian, L. Tao, and J. Liu. Apogee:
automated project grading and instant feedback system for web
based computing. In SIGCSE ’08: Proceedings of the 39th
SIGCSE technical symposium on Computer science
education, pages 77–81, New York, NY, USA, 2008. ACM.

[20] G. Gárcia-Mateos and J. L. Fernández-Alemán. A course on
algorithms and data structures using on-line judging. SIGCSE
Bull., 41(3):45–49, 2009.

[21] O. Gotel and C. Scharff. Adapting an open-source web-based
assessment system for the automated assessment of
programming problems. In WBED’07: Proceedings of the sixth
Conf. on IASTED International Conf. Web-Based Education,
pages 437–442, Anaheim, CA, USA, 2007. ACTA Press.

[22] O. Gotel, C. Scharff, and A. Wildenberg. Extending and
contributing to an open source web-based system for the
assessment of programming problems. In PPPJ ’07:
Proceedings of the 5th international symposium on Principles
and practice of programming in Java, pages 3–12, New York,
NY, USA, 2007. ACM.

[23] O. Gotel, C. Scharff, and A. Wildenberg. Teaching software
quality assurance by encouraging student contributions to an
open source web-based system for the assessment of
programming assignments. SIGCSE Bull., 40(3):214–218, 2008.

[24] G. R. Gray and C. A. Higgins. An introspective approach to
marking graphical user interfaces. In ITICSE ’06: Proceedings
of the 11th annual SIGCSE Conf. on Innovation and
technology in computer science education, pages 43–47, New
York, NY, USA, 2006. ACM.

[25] T. Greening. Computer Science Educational Futures: The
Nature of 2020” Foresight. In Computer Science Education in
the 21st Century, pages 1–6. Springer Verlag, 1999.

[26] P. Guerreiro and K. Georgouli. Combating anonymousness in
populous cs1 and cs2 courses. In ITICSE ’06: Proceedings of
the 11th annual SIGCSE Conf. on Innovation and technology
in computer science education, pages 8–12, New York, NY,
USA, 2006. ACM.

[27] E. Gutiérrez, M. A. Trenas, J. Ramos, F. Corbera, and
S. Romero. A new moodle module supporting automatic
verification of vhdl-based assignments. Comput. Educ.,
54(2):562–577, 2010.

[28] F. Gutierrez. Stingray: a hands-on approach to learning
information security. In SIGITE ’06: Proceedings of the 7th
Conf. on Information technology education, pages 53–58, New
York, NY, USA, 2006. ACM.

[29] M. T. Helmick. Interface-based programming assignments and
automatic grading of java programs. In ITiCSE ’07:
Proceedings of the 12th annual SIGCSE Conf. on Innovation
and technology in computer science education, pages 63–67,
New York, NY, USA, 2007. ACM.

[30] C. Higgins, T. Hegazy, P. Symeonidis, and A. Tsintsifas. The
coursemarker cba system: Improvements over ceilidh.
Education and Information Technologies, 8(3):287–304, 2003.

[31] C. D. Hundhausen and J. L. Brown. An experimental study of
the impact of visual semantic feedback on novice programming.
J. Vis. Lang. Comput., 18(6):537–559, 2007.

[32] W.-Y. Hwang, C.-Y. Wang, G.-J. Hwang, Y.-M. Huang, and
S. Huang. A web-based programming learning environment to
support cognitive development. Interacting with Computers,
20(6):524 – 534, 2008.

[33] P. Ihantola. Creating and visualizing test data from
programming exercises. Informatics in education, 6(1):81–102,
2007.

[34] D. Jackson and M. Usher. Grading student programs using
assyst. In SIGCSE ’97: Proceedings of the twenty-eighth
SIGCSE technical symposium on Computer science
education, pages 335–339, New York, NY, USA, 1997. ACM.

[35] T. Janhunen, T. Jussila, M. Järvisalo, and E. Oikarinen.
Teaching Smullyan’s analytic tableaux in a scalable learning
environment. In Proceedings of the Fourth Finnish / Baltic
Sea Conf. on Computer Science Education, volume
TKO-42/04 of Research Report Series of Laboratory of
Information Processing Science, Helsinki University of
Technology, pages 85–94. Otamedia, December 2004.

[36] D. Jimenez-Gonzalez, C. Alvarez, D. Lopez, J.-M. Parcerisa,
J. Alonso, C. Perez, R. Tous, P. Barlet, M. Fernandez, and
J. Tubella. Work in progress-improving feedback using an
automatic assessment tool. In Proceedings of 38th annual
Frontiers in Education Conf., pages S3B–9 –T1A–10, oct.
2008.

[37] M. Joy, N. Griffiths, and R. Boyatt. The BOSS online
submission and assessment system. In ACM Journal on
Educational Resources in Computing, volume 5, number 3,
September 2005. Article 2. ACM, 2005.

[38] H. Ke, G. Zhang, and H. Yan. Automatic grading system on sql
programming. In Scalable Computing and Communications;
Eighth International Conf. on Embedded Computing, 2009.
SCALCOM-EMBEDDEDCOM’09. International Conf. on,
pages 537 –540, sept. 2009.

[39] R. Kolstad. Infrastructure for contest task development.
Olympiads in Informatics, 3:38–59, 2009.

[40] A. Korhonen, L. Malmi, and P. Silvasti. TRAKLA2: a
framework for automatically assessed visual algorithm
simulation exercises. In Proceedings of the Third Annual
Baltic Conf. on Computer Science Education, pages 48–56,
Joensuu, Finland, 2003.

[41] T. Lehtonen. Javala – addictive e-learning of the java
programming language. In Koli Calling 2005 – Fifth Koli
Calling Conf. on Computer Science Education, pages 41–48,
2005.

[42] Y. Liang, Q. Liu, J. Xu, and D. Wang. The recent development
of automated programming assessment. In Computational
Intelligence and Software Engineering, 2009. CiSE 2009.
International Conf. on, pages 1 –5, dec. 2009.

[43] M. Lingling, Q. Xiaojie, Z. Zhihong, Z. Gang, and X. Ying. An
assessment tool for assembly language programming. In
Computer Science and Software Engineering, 2008, volume 5,
pages 882 –884, dec. 2008.

[44] L. Malmi, V. Karavirta, A. Korhonen, and J. Nikander.
Experiences on automatically assessed algorithm simulation
exercises with different resubmission policies. Journal of
Educational Resources in Computing, 5(3), September 2005.

[45] M. V. Mäntylä and C. Lassenius. Drivers for software
refactoring decisions. In ISESE ’06: Proceedings of the 2006
ACM/IEEE international symposium on Empirical software
engineering, pages 297–306, New York, NY, USA, 2006. ACM.

[46] M. Mareš. Perspectives on grading systems. Olympiads in
Informatics, 1:124–130, 2007.

[47] M. Mareš. Moe – design of a modular grading system.
Olympiads in Informatics, 3:60–66, 2009.

[48] B. Merry. Using a linux security module for contest security.
Olympiads in Informatics, 3:67–73, 2009.

[49] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari. Visualizing
programs with Jeliot 3. In Proceedings of the International
Working Conf. on Advanced Visual Interfaces, pages 373 –
376, Gallipoli (Lecce), Italy, May 2004. ACM.

[50] K. A. Naudé, J. H. Greyling, and D. Vogts. Marking student
programs using graph similarity. Comput. Educ.,
54(2):545–561, 2010.

[51] P. Nordquist. Providing accurate and timely feedback by
automatically grading student programming labs. J. Comput.
Small Coll., 23(2):16–23, 2007.

[52] R. Oechsle and K. Barzen. Checking automatically the output
of concurrent threads. In ITiCSE ’07: Proceedings of the 12th
annual SIGCSE Conf. on Innovation and technology in
computer science education, pages 43–47, New York, NY,
USA, 2007. ACM.

[53] J. O’Kelly and J. P. Gibson. Robocode & problem-based
learning: a non-prescriptive approach to teaching programming.
In ITICSE ’06: Proceedings of the 11th annual SIGCSE
Conf. on Innovation and technology in computer science
education, pages 217–221, New York, NY, USA, 2006. ACM.

[54] R. E. Pattis, J. Roberts, and M. Stehlik. Karel the robot (2nd
ed.): a gentle introduction to the art of programming. John
Wiley & Sons, Inc., New York, NY, USA, 1994.

[55] A. Pears, S. Seidman, C. Eney, P. Kinnunen, and L. Malmi.
Constructing a core literature for computing education
research. SIGCSE Bulletin, 37(4):152–161, 2005.

[56] A. Radenski. Digital cs1 study pack based on moodle and
python. In ITiCSE ’08: Proceedings of the 13th annual Conf.
on Innovation and technology in computer science education,
pages 325–325, New York, NY, USA, 2008. ACM.

[57] M. A. Revilla, S. Manzoor, and R. Liu. Competitive learning in
informatics: The uva online judge experience. Olympiads in
Informatics, 2:131–148, 2008.

[58] P. Ribeiro and P. Guerreiro. Increasing the appeal of
programming contests with tasks involving graphical user
interfaces and computer graphics. Olympiads in Informatics,
1:139–164, 2007.

[59] M. M. T. Rodrigo, R. S. Baker, M. C. Jadud, A. C. M. Amarra,
T. Dy, M. B. V. Espejo-Lahoz, S. A. L. Lim, S. A. Pascua,
J. O. Sugay, and E. S. Tabanao. Affective and behavioral
predictors of novice programmer achievement. In ITiCSE ’09:
Proceedings of the 14th annual ACM SIGCSE Conf. on
Innovation and technology in computer science education,
pages 156–160, New York, NY, USA, 2009. ACM.

[60] G. Rößling and B. Freisleben. ANIMAL: A system for
supporting multiple roles in algorithm animation. Journal of
Visual Languages and Computing, 13(3):341–354, 2002.

[61] G. Rößling and S. Hartte. Webtasks: online programming
exercises made easy. SIGCSE Bull., 40(3):363–363, 2008.

[62] G. Rößling, M. Joy, A. Moreno, A. Radenski, L. Malmi,
A. Kerren, T. Naps, R. J. Ross, M. Clancy, A. Korhonen,
R. Oechsle, and J. A. V. Iturbide. Enhancing learning
management systems to better support computer science
education. SIGCSE Bull., 40(4):142–166, 2008.

[63] G. Rößling and T. Vellaramkalayil. A visualization-based
computer science hypertextbook prototype. Trans. Comput.
Educ., 9(2):1–13, 2009.

[64] G. Rowe and G. Wright. The delphi technique as a forecasting
tool: issues and analysis. International Journal of Forecasting,
15(4):353–375, October 1999.

[65] J. A. Sant. ”mailing it in”: email-centric automated assessment.
In ITiCSE ’09: Proceedings of the 14th annual ACM SIGCSE
Conf. on Innovation and technology in computer science
education, pages 308–312, New York, NY, USA, 2009. ACM.

[66] J. P. Sauvé and O. L. Abath Neto. Teaching software
development with atdd and easyaccept. In SIGCSE ’08:
Proceedings of the 39th SIGCSE technical symposium on
Computer science education, pages 542–546, New York, NY,
USA, 2008. ACM.

[67] J. P. Sauvé, O. L. Abath Neto, and W. Cirne. Easyaccept: a
tool to easily create, run and drive development with
automated acceptance tests. In AST ’06: Proceedings of the
2006 international workshop on Automation of software test,
pages 111–117, New York, NY, USA, 2006. ACM.

[68] J. Sheard, S. Simon, M. Hamilton, and J. Lönnberg. Analysis of
research into the teaching and learning of programming. In
ICER ’09: Proceedings of the fifth international workshop on
Computing education research workshop, pages 93–104, New
York, NY, USA, 2009. ACM.

[69] M. Sitaraman, J. O. Hallstrom, J. White, S. Drachova-Strang,
H. K. Harton, D. Leonard, J. Krone, and R. Pak. Engaging
students in specification and reasoning: ”hands-on”
experimentation and evaluation. In ITiCSE ’09: Proceedings
of the 14th annual ACM SIGCSE Conf. on Innovation and
technology in computer science education, pages 50–54, New
York, NY, USA, 2009. ACM.

[70] A. Solomon, D. Santamaria, and R. Lister. Automated testing
of unix command-line and scripting skills. In Information
Technology Based Higher Education and Training, 2006.
ITHET ’06. 7th International Conf. on, pages 120 –125, july
2006.

[71] H. Sondergaard. Learning from and with peers: the different
roles of student peer reviewing. In ITiCSE ’09: Proceedings of
the 14th annual ACM SIGCSE Conf. on Innovation and
technology in computer science education, pages 31–35, New
York, NY, USA, 2009. ACM.

[72] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K.
Hollingsworth, and N. Padua-Perez. Experiences with
marmoset: designing and using an advanced submission and
testing system for programming courses. In ITICSE ’06:
Proceedings of the 11th annual SIGCSE Conf. on Innovation
and technology in computer science education, pages 13–17,
New York, NY, USA, 2006. ACM.

[73] J. T. Stasko. TANGO: A framework and system for algorithm
animation. IEEE Computer, 23(9):27–39, 1990.

[74] H. Suleman. Automatic marking with sakai. In SAICSIT ’08:
Proceedings of the 2008 annual research Conf. of the South
African Institute of Computer Scientists and Information
Technologists on IT research in developing countries, pages
229–236, New York, NY, USA, 2008. ACM.

[75] M. Sztipanovits, K. Qian, and X. Fu. The automated web
application testing (awat) system. In ACM-SE 46: Proceedings
of the 46th Annual Southeast Regional Conf., pages 88–93,
New York, NY, USA, 2008. ACM.

[76] P. G. Thomas, N. Smith, and K. G. Waugh. Computer assisted
assessment of diagrams. In ITiCSE ’07: Proceedings of the
12th annual SIGCSE Conf. on Innovation and technology in
computer science education, pages 68–72, New York, NY,
USA, 2007. ACM.

[77] M. Thornton, S. H. Edwards, R. P. Tan, and M. A.
Pérez-Quiñones. Supporting student-written tests of gui
programs. In SIGCSE ’08: Proceedings of the 39th SIGCSE
technical symposium on Computer science education, pages
537–541, New York, NY, USA, 2008. ACM.

[78] D. W. Valentine. CS educational research: a meta-analysis of
SIGCSE technical symposium proceedings. In SIGCSE ’04:
Proceedings of the 35th SIGCSE Technical Symposium on

Computer Science Education, pages 255–259, New York, NY,
USA, 2004. ACM Press.

[79] T. Verhoeff. Programming task packages: Peach exchange
format. Olympiads in Informatics, 2:192–207, 2008.

[80] T. Wang, X. Su, Y. Wang, and P. Ma. Semantic
similarity-based grading of student programs. Inf. Softw.
Technol., 49(2):99–107, 2007.

APPENDIX

A. LIST OF TOOLS
This appendix briefly describes publicly available (to down-

load or with a demo site where to experiment) tools found
in this survey. Many papers did not have explicit statement
about the availability of the system, and in many cases we
failed to find a site. There were also cases where university’s
public version control where the system was distributed no
longer existed. It should be noted that some of the tools we
failed to find could be available by asking the authors. This
was not done. References found in this survey and the URL
from where more information can be retrieved are mentioned
for each system.

AutoGrader [29, 51] is a subproject of Cascade LMS. It
has been used to assess Java, but according to authors it
can be extended to other languages. Tests are executed
through Java reflection similarly to what JUnit does.
http://www.cascadelms.org/autograder/ (GPL like)

AWAT [75] is an environment for web programming as-
signments where students only submit an URL of a
site they developed. Teacher defines which components
should exist on the web-page and tests by using the
Watir Ruby library both combined into an Excel sheet.
Testing is then performed by using Internet Explorer
from the submission server.
Open source, contact authors

CTPracticals [27] is a Moodle module to bring automat-
ically assessed VHDL exercises into Moodle. Exter-
nal test script and sandboxing are both configurable
through the Moodle UI. The framework can also be ex-
tended to other programming languages. For example,
there are Matlab exercises on the demo site.
http://guac.ac.uma.es/demo (login credentials in [27])

EasyAccept [66, 67] framework provides a natural-language-
like scripting language to write tests for Java programs.
Requirements are presented in a form of acceptance
tests.
http://easyaccept.sourceforge.net/ (GPL)

EduComponents [3, 4] is a set of components to the
Plone CMS for creation, management and assessment
of programming assignments. It has different backends
for different programming languages which allow (de-
pending on the language) unit testing, comparison to a
model answer or more formally defined testing.
http://plone.org/products/ecautoassessmentbox/

(GPL)

Linuxgym [70] supports exercises and examinations of
unix scripting skills. An extensive exercise definition
language is also included.
http://linuxgym.com/ (GPL)

Moe [46, 47] (originally MO-eval) is a modular environ-
ment for programming contests with sandbox, queue
manager, and submitter for managing submissions, and

different graders (that can be combined). The aim is
make various modules interchangeable.
http://mj.ucw.cz/moe/ (GPL2)

Mooshak [20, 26, 58] has its origins in programming con-
tests, although it has also been used in teaching. One
of the specialties of Mooshak is that results of the as-
sessment can be publicly shown to other students.
http://code.google.com/p/mooshak/ (Artistic License/GPL)

Peach3 [79] is a highly configurable system for program-
ming education and contest hosting.
http://peach3.nl/ (Artistic License v2)

ProtoAPOGEE [19] is a prototype of a proposed sys-
tem to grade web sites like AWAT. APOGEE relies on
Watir test library and it can also take series of screen-
shots from the web site being assessed. Screenshots can
then be used as feedback to explain why a test failed.
http://vlab.gsw.edu/Projects/APOGEE/ (sources and
video for academic research or evaluation)

Resolver [69] combines formal verification and traditional
programming assignments. There are exercises where
students need to demonstrate their understanding of
formal specifications by writing tests and exercises where
students write programs verified against formally ex-
pressed contracts.
http://www.cs.clemson.edu/~resolve/ (GPL3)

RoboCode [53] supports Java and .NET assignments where
students’ programs compete with each other. Grades
can be based on the results of the competition.
http://robocode.sourceforge.net/ (Eclipse Public Li-
cense)

USACO’s [39] competition hosting environment has been
developed by the USA Computing Olympiad. The sys-
tem also offers web based problem development tools
to aid in creating competition problems.
http://train.usaco.org/usacogate (demo)

UVA Online Judge [57] is mainly intended as a program-
ming contest training site. Users can practice on the
large number of existing problems and submit their an-
swers in multiple languages. It is also used for hosting
online programming competitions.
http://uva.onlinejudge.org (demo)

VERKKOKE [2] is an online teaching environment for
socket programming/routing. It generates individual
programming assignments which the student completes
and submits. One of the specialties is the SCORM inte-
gration with LMS systems (e.g. Moodle and Optima).
http://www.tml.tkk.fi/Research/VERKKOKE/ (MIT)

Web-CAT [15, 77] is a system where students are required
not only to submit source code, but also unit test their
own code. Part of the grade is based on the test cover-
age achieved by students’ own tests. Web-CAT has a
plugin architecture for different graders, static analysis,
support for other languages, etc.
http://web-cat.cs.vt.edu/WCWiki (Affero GPL)

WeBWorK-JAG (Java auto-grader) [21, 22, 23] is an ex-
tension module to the WeBWorK exercise delivery plat-
form. The module allows checking Java programs with
JUnit.
http://csis.pace.edu/~scharff/webwork

7. Publications reprinted

Publication (vi)

Ahoniemi, T., Lahtinen, E., Reinikainen, T. Improving Pedagogical Feedback and

Objective Grading In: The Proceedings of SIGCSE'08, March 2008, Portland, Ore-

gon, USA.

143

Improving Pedagogical Feedback and Objective Grading

Tuukka Ahoniemi
Institute of Software Systems

Tampere University of
Technology

Tampere, Finland

tuukka.ahoniemi@tut.fi

Essi Lahtinen
Institute of Software Systems

Tampere University of
Technology

Tampere, Finland

essi.lahtinen@tut.fi

Tommi Reinikainen
Institute of Software Systems

Tampere University of
Technology

Tampere, Finland

tommi.reinikainen@tut.fi

ABSTRACT
It is important for learning that students receive enough of
educational feedback of their work. To get the students to
be seriously disposed to the feedback it has to be personal,
objective and consistent. In large classes ensuring such feed-
back can be difficult. Grading rubrics are a solution to the
objectivity and consistency.
ALOHA is an online grading tool based on rubrics which

all the graders have to use. Particularly, ALOHA provides
features that make the grading process more convenient for
the graders and the teacher. By facilitating the graders work
ALOHA allows them to focus more on feedback writing.
To test the effectiveness of ALOHA in objectivity and

consistency we did a comparative statistical analysis on the
distribution of grades. The results supported the assump-
tions showing improvement resulting in similar distribution
of grades amongst different graders who used the tool.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Algorithms, Design, Human Factors

Keywords
Grading; Rubrics; Programming; Assessment; Teaching

1. INTRODUCTION
Novice level programming courses in Tampere University

of Technology tend to be large courses with hundreds of
students. On one hand we need to provide profound and
personalized feedback for novice students to enhance learn-
ing but on the other hand we need to keep our workload
maintainable.
Computer-aided assessment (CAA) is a way to facilitate

the workload [5]. Its use can be divided into fully automatic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003 ...$5.00.

assessment and semi-automatic assessment. Using fully au-
tomatic assessment is efficient but can not be used for ev-
erything. The novice students need feedback from a human
being in things like design and coding style. [3]
Semi-automatic assessment is a compromise between au-

tomatic and manual assessment: automatic tools are used
for some parts of the grading and manual assessment for oth-
ers [2]. As many good tools like BOSS, ASSYST, Ceilidh,
Scheme-Robo, and CourseMarker [5] exist for automatically
assessing the program correctness, our work focuses on fa-
cilitating the manual assessment, which usually requires the
use of multiple graders in mass courses.
Our object was to facilitate the manual assesment process

by automating its repetitive routines and to achieve con-
sistency and objectivity between graders. We present gen-
eral features and ideas implemented in a grading tool called
ALOHA, briefly introduced in our earlier work [1]. We will
also present a statistical analysis regarding the benefits of
the tool from the perspective of consistency and objectivity
of the grades.

2. PROBLEMS OF GRADING
One problem with large courses is that many student sub-

mission resemble each other. As the grader is supposed to
inspect dozens of these submissions it is likely that with-
out care the objectivity would suffer. For instance his mood
could affect the grading as well as the order in which he
is grading the submissions—a mediocre submission can ap-
pear brilliant if it preceeds a couple of lousy ones. Also the
grader can in a rush forget to check some parts of the work
for some submission resulting in biases in grading.
According to Habeshaw et al. [7], the only definite way to

grade objectively is by using only objective tests (multiple-
choice questions etc.), but doing so would not be desirable
in courses where a major part of the learning is based on
the student programming by himself. To ensure consistency
among graders, they need to be properly trained for the
job and they are required to use marking schemes to direct
their attention to the appropriate things in a student’s work
[7]. Becker suggests a similar approach and also defines the
schemes as rubrics [4].
The use of rubrics increases objectivity because the as-

sessment is split into small enough parts. The grader can
concentrate on a single aspect of the work instead of giving
a general grade for the final work. The total grade can later
be derived from the grades given to the parts.
As many of the submissions are alike they also have the

same mistakes and the grader keeps repeating the same im-

Figure 1: The user roles in ALOHA and their main functionalities.

provement ideas over and over again. It is convenient for
the grader that he can easily reuse the feedback phrases he
has written earlier. However, the feedback should not be
generic multipurpose phrases but detailed, personal com-
ments pointing out particular sections of that work. The
feedback should help the students to improve their work or
to suggest what to do differently.

3. DESCRIPTION OF ALOHA TOOL
Earlier we used traditional rubrics in grading but unlike

Becker we did not let the students see the filled rubrics.
All graders did not use the rubrics properly but might have
formed the grade before even filling the rubric. The pur-
pose of ALOHA1 is to provide the rubrics online in a way
that each grader has to fill them correctly and in a coher-
ent way. ALOHA also helps the grader in creating feedback
by providing the opportunity to use, edit and personalize
ready-written phrases.
ALOHA is run on a separate server and is used through

a web browser (resulting in platform indepency). Each user
has access to certain roles in the system: administrator,
teacher and grader. The borders between the different user
roles are absolute, meaning that if a teacher wishes to grade
a work, he must first have the appropriate role. This is done
to distinguish the different user types from one another and
to ensure that only the grader has the power to give the
grade. The main functionality for each role is represented
in Figure 1.
The teacher is responsible for adding graders and stu-

dents to a course and assigning student submissions for the
graders. The rubric is defined by creating an XML file that
defines the structure the grading process should follow. It
also defines some template feedback phrases for the graders.
Finally, after a submission is graded, the teacher can send
the related feedback to the students or student groups ei-
ther individually or all-at-once. The only role that has the
ability to actually send the feedback is the teacher.

3.1 Grading with ALOHA
After the grader has logged in to the tool, he is presented

with a list of student submissions the teacher has assigned
to him. This is called the work list. Each submission has a
state which describes whether the grading of the submission
is yet to be started, in an unfinished state or finished and
accepted. The grader chooses one of the submissions on his
work list and is taken into the grading view, shown in Figure
2.

1Arvostelutyökalu Laitoksen Ohjelmointikurssien HArjoi-
tustöille

3.1.1 Grading Hierarchy
The grading view represents the grading rubric. The grad-

ing is based on a hierarchy shown in the left of Figure 2
consisting of categories (in the Figure: Documentation, Dy-
namic tests, etc.) Each category is divided into subcategories
(First document, Final document, etc.) These are given a
grade based on the grading items related to it (”First doc-
ument returned?”, etc.) Each grading item has a collection
of phrase templates that the grader can add to the feedback
text of that subcategory and personalize.

3.1.2 Semi-Automatic Phrasing
The phrase templates form one of the main features in

ALOHA called semi-automatic phrasing. This means that
the grader can choose suitable phrases to be added directly
to the feedback text. This is an idea which was also found
useful by the creators of Agar [10]. When a phrase is se-
lected, it is copied as text into one of the Positive/Negative/
Neutral -feedback forms, depending on the type of the phrase
(each phrase is classified as one). The text in the form is
editable so the grader may modify it if he wishes. Often the
idea is that the phrase the grader chooses from the list of
phrases is purposefully incomplete and the grader manually
completes the phrase, thus personalizing the feedback.

3.1.3 Forming the Grade
After all the grading items in one page have been given

a value and the grader is satisfied with the feedback text,
he must finish the grading of the subcategory by selecting a
grade for that subcategory. The grader does this by looking
at the values selected for each grading item. The item values
do not force any certain grade. Their purpose is to show the
grader how well the submission faired in this subcategory.
To help in selecting the appropriate grade, the teacher may
have provided a hint for that subcategory.
ALOHA uses the grade of the subcategory to award the

submission a number of points for that particular subcate-
gory. The relationship between the grade and the amount
of points is defined by the teacher while configuring the as-
signment. After the grade has been given, the grading of
this subcategory is finished and that subcategory is marked
as ready.
The grader continues to grade the submission subcate-

gory by subcategory until he has finished them all. At this
point, the grader is offered an option to finish the grading of
the entire submission. By selecting to finish the grading, he
is taken to preview the final feedback and shown the final
grade suggestion. The final feedback is composed from all
the individual phrases the grader chose and personalized or
wrote himself during grading the subcategories. The final

Figure 2: Screenshot of the grading view in ALOHA

grade suggestion is similarly calculated by using the indi-
vidual grades given to each subcategory. The calculation
formula defined by the teacher takes the weighting of sub-
categories into account.

3.2 Customization
ALOHA offers some important customization features.

For the teachers, it offers a chance to define the grading
scale individually for each assignment. This is done by im-
plementing an assignment-specific plugin that defines the
grades, possible sanctions for submitting late etc. by each
grading automatically. The plugin is implemented in PHP,
just like the rest of the system. Instead of just plain grade
limits based on points the more complex plugin-based so-
lution allows more freedom for the teacher. The categories
of the rubric can also be given different weightings in the
XML file. Certain graded aspects of the submissions can be
defined more valuable than others (e.g. programming style
could be weighted more important than the functionality of
the program).
For graders, ALOHA gives a lot of freedom in grading

student work. ALOHA suggests a final grade based on the
points given by the grader and the teacher-defined config-
uration of the assignment. The grader may then choose to
accept the suggested grade as the final grade or to change
it to any other possible grade (with explanation).
Another important feature for graders is the possibility to

edit the phrases offered by the teacher through the assign-
ment configuration, as well as defining their own phrases.
This functionality exists because the teacher cannot pre-
empt all possible phrases needed to grade a student work.
Finally, the grader is can edit the final feedback, which

is eventually sent to students. This is not restricted so the
grader has free hands to do what ever is most educative.

4. FIRST EXPERIENCES
This grading process was introduced during spring semester

2006 on four courses in TUT. Two of the courses were intro-
ductory course on programming and others a course on mo-
bile programming and a course on advanced object-oriented
programming.

4.1 User Opinions
The general opinion towards the process and the tool

amongst the graders was positive. They liked to think about
ALOHA as a check list for the important issues and the
grade suggestion was found useful. The best-liked features
were the semi-automatic phrasing and creating personalized
feedback mails while filling out the rubrics.
If the grading scale was narrow (e.g. 0-3) the grade sug-

gestion of ALOHA was not found as useful as when the scale
was broader (e.g. 0-6). This is obvious because the grader
can ”see” if a submission is to be given 2 or 3 much easier
in a narrow scale than in a broad scale.
Some graders had used the predecessor tool of ALOHA–

Arvostin–and found the grader’s customization possibilities
described in Section 3.2 as a good add to an already good
basic idea. Only one long-term grader found the process
useless and said: ”It took me much more time to grade,
because I had to go through all the grading items”. As a
teacher who wants a consistent grading, this comment actu-
ally sounds very positive towards the tool.
The teachers liked the tool because of its benefits for the

grader but they also saw the unpleasant side of the cus-
tomization possibilities: it required much more effort to cre-
ate the grading for a new assignment because of the large
XML-template, submission listings and implementing the
grading plugin. Still, this was the first time the tool was
used and learning took time too. On the other hand teachers

found themselves saving time because of the administration
features of ALOHA.
No profound study of student satisfaction towards feed-

back by ALOHA has been conducted. This is mostly be-
cause the tool has been used so far mainly in elementary
programming courses so the students have not received any
different sort of feedback for comparison. Nevertheless the
students have said the feedback was useful for them for fur-
ther courses.

4.2 Statistical analysis of the Objectivity
We compared the grading distributions of the same course,

Programming 2, in two years. In both years there were
nine graders. The assessment criteria were the same in both
years. The grading scale was from zero to six points. In ad-
dition to program functionality the graders evaluated pro-
gramming style, design and documentation. The submis-
sions were divided amongst the graders randomly.
In the first year (2003) the grading was done without any

tool. The graders were given similar rubrics to the ones
ALOHA uses but printed in paper. No one could follow
if the graders used them. In the second year (2006) the
graders used ALOHA in the grading. We analyzed statisti-
cally only the submissions carried out without any special
arrangements (165 students in 2003 and 109 in 2006). For
the 2006 data we analyzed the grades ALOHA suggested.
Possible changes in the final grades are not taken into ac-
count. The grades in 2003 were decided only by the grader
himself.
Figure 3 shows the distribution, mean, and standard de-

viation of the grades of all nine graders in 2003. Figure 4
shows the same information from year 2006.
The mean values of the grades given by different graders

were analysed by variance analysis (One-way ANOVA). The
distributions of the grades given by all graders can be esti-
mated to be close enough to normal distribution so that
variance analysis can be used.
In the group of graders using ALOHA there were no sta-

tistically significant differences between the graders (p >
0.05). When the tool was not used there is a statistically
significant difference (p < 0.05) between the grades given
by the most lenient grader (”R” in Figure 3) and the ones
given by the two strictest graders (”O” and ”V”).

5. DISCUSSION
The statistical analysis shows improvement in grading ob-

jectivity resulting in statistically insignificant differences amongst
the graders. On the basis of only one comparison between
two years this result cannot be generalized so that the use of
online rubrics tool would be a solution for objective grading.
A more sound proof would require statistics on inter-grader
reliability using a common set of assignments. This would
however require the extra resources to have multiple graders
to grade the same submissions.
When not using ALOHA, most of the graders had graded

coherently. The problems were limited to only a couple of
graders whose grading was stricter or more lenient. On the
basis of these results the tool seems to get these stricter or
lenient graders to use similar distribution of grades than the
others.
Other rubric-based assesment tools exist, but most of the

research carried out on them is about peer-reviewing [8, 9]
and some even on self-evaluation [6]. Thus many of the ex-

isting tools are designed so that they could be used by the
students also. The tools, like RRAS [9] or Aropä [8], do
not have features to facilitate the creation of the written
feedback, like the successful phrasing feature of ALOHA.
By leaving the possibility of students’ own use out, we have
been able to provide more features to aid the course staff.
Thus, we should be able to facilitate our graders’ work and
give students more pedagocically valuable feedback on their
work. A CAA-tool called Agar [10] has a similar idea but
unlike Agar, ALOHA concentrates only on the manual grad-
ing instead of providing also automated tests and thus differs
from ALOHA in many ways.
One considerable idea on the usage of ALOHA is not to

let the graders know the grading scale but grade only with
the points so that the graders do not have any idea nor
effect on the forming of the final grade. This also allows the
teacher to set the grade limits based on a certain wanted
distribution. The downside of this is that it constricts the
authority of the grader. Experienced graders may feel that
their work is interfered if they do not get to decide about
the grade themselves.
The tool is useful in courses where there are several graders

but with only one grader the benefits are mostly limited to
the more comfortable grading process. Of course if the grad-
ing takes several days of time the tool might help the grader
to stay consistent throughout the whole process. Still, the
construction of a grading template for just one person might
require too much effort compared to its benefits.
The objectivity aspect of ALOHA is not that useful when

an assignment is graded with the scale accepted/rejected
(especially if almost every student should pass the assign-
ment). The feature that calculates the actual grade is then
obsolete but ALOHA can still be used to calculate possible
bonus points. Nevertheless, the tool can be used to write
good, consistent feedback texts.
From the teachers point of view ALOHA is useful for two

reasons: maintaining the objectivity and ensuring that each
student will receive a personalized feedback email. From the
graders perspective ALOHA is most useful because of facil-
itating the grading process with the phrase templates and
customization features. We paid high attention on listening
to the graders’ opinions during the development process and
accomplished a system that the graders are willing to use.
So far ALOHA is used only in programming courses, but

its usage is actually not at all binded to programming nor
even computer sciences. The limiting issue is that the build-
ing of a grading for an assignment requires moderate pro-
gramming skills. Because it does not really have to be the
teacher himself who does this, the tool could be used in other
disciplines too for example to grade project works or essays.

6. CONCLUSIONS
We have introduced few problems related to using multi-

ple graders which is common in mass courses. ALOHA was
built to facilitate these problems concerning consistency and
objectivity in grading but also to make the grading process
more comfortable for the grader. Despite many tools exist
to support fully automatic assessment, we found ALOHA to
be unique with its features in supporting manual assessment
and especially the creation of written feedback.
The tool has been taken to use and it seems to make the

grading process more convenient for the graders and also for
the teacher. To test the objectivity we analyzed the grading

Figure 3: Distribution of grades by graders (O to W) using only traditional rubrics (quite similar to the ones
in ALOHA)

Figure 4: Distribution of grades by graders (A to I) using rubrics in ALOHA

distributions of the same course in two years statistically
and the results indicated that ALOHA removes the problem
of couple of graders who are clearly either stricter or more
lenient than the others.

7. REFERENCES
[1] T. Ahoniemi and T. Reinikainen. ALOHA - a grading

tool for semi-automatic assessment of mass
programming courses. In Proceedings of the 6th Baltic
Sea Conference on Computing Education Research,
2007.

[2] K. Ala-Mutka and H.-M. Järvinen. Assessment
process for programming assignments. Proceedings of
the IEEE International Conference on Advanced
Learning Technologies (ICALT’04), 2004.

[3] K. M. Ala-Mutka. A survey of automated assessment
approaches for programming assignments. Computer
Science Education, 15(2):83–102, June 2005.

[4] K. Becker. Grading programming assignments using
rubrics. In ITiCSE ’03: Proceedings of the 8th annual
conference on Innovation and technology in computer
science education, pages 253–253, New York, NY,
USA, 2003. ACM Press.

[5] C. Douce, D. Livingstone, and J. Orwell. Automatic

test-based assessment of programming: A review. J.
Educ. Resour. Comput., 5(3):4, 2005.

[6] H. J. C. Ellis. Self-grading: an approach to supporting
self-directed learning. In ITICSE ‘06: Proceedings of
the 11th annual SIGCSE conference on Innovation
and technology in computer science education, pages
349–349, New York, NY, USA, 2006. ACM Press.

[7] S. Habeshaw, G. Gibbs, and T. Habeshaw. 53
Problems With Large Classes. Technical and
Educational Services Ltd., Bristol, U.K., 1992.

[8] J. Hamer, C. Kell, and F. Spence. Peer assessment
using Aropä. In ACE ‘07: Proceedings of the ninth
Australasian conference on Computing education,
pages 43–54, Darlinghurst, Australia, Australia, 2007.
Australian Computer Society, Inc.

[9] A. Trivedi, D. C. Kar, and H. Patterson-McNeill.
Automatic assignment management and peer
evaluation. J. Comput. Small Coll., 18(4):30–37, 2003.

[10] T. Winters and T. Payne. Computer aided grading
with Agar. In H. R. Arabnia, editor, FECS, pages
245–251. CSREA Press, 2006.

7. Publications reprinted

Publication (vii)

Ahoniemi, T., Karavirta, V. Analyzing the Use of a Rubric-Based Grading Tool

In: The Proceedings of ITiCSE 2009, June 2009, Paris, France.

151

Analyzing the Use of a Rubric-Based Grading Tool

Tuukka Ahoniemi
Department of Software Sciences
Tampere University of Technology

Finland
tuukka.ahoniemi@tut.fi

Ville Karavirta
Department of Computer Science and

Engineering
Helsinki University of Technology

Finland
vkaravir@cs.hut.fi

ABSTRACT
Over the years, a lot of research has focused on how to as-
sess programming courses. For programming courses, semi-
automatic assessment combining automatic and manual feed-
back has been shown to be a good solution. In this paper, we
will focus on the manual assessment part and analyze the use
of a rubrics-based grading tool on larger courses with multi-
ple graders. Our results show that the use of such tools can
support objective grading with high-quality feedback with
reasonable time usage. Finally, we will give some pointers
for teachers intending to adopt such tools on their courses.

Categories and Subject Descriptors
K.2.1 [Computing Milieux]: COMPUTERS AND EDU-
CATION—Computer and Information Science Education

General Terms
Human Factors

Keywords
Grading; Rubrics; Programming; Assessment; Mass courses

1. INTRODUCTION
The authors, like many other Computer Science educa-

tionalists, have taken the long path of search for the best
practices to give programming education, or more precisely,
how to assess programming courses. The courses are often
held as mass courses with hundreds of students. The search
is thus an on-going struggle between doing as much as pos-
sible automatically, for instance, using Computer Aided As-
sessment (CAA) tools, and still retaining the personal touch
for the students by providing formative assessment.

Formative assessment has been found to be critical for
students’ learning [6]. However, formative assessment is not
widely used [7], mainly due to the increasing student/staff
ratio, demands outside teaching (research, administration,
etc), and increasing concern with attainment standards [11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE ’09 Paris, France
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

For programming courses, Semi-Automatic Assessment (SAA)
has shown to be a good combination of easing the teacher’s
workload while still supporting the students well enough [3].
In SAA, the students’ programming projects are tested with
CAA tools for their correctness. Besides correctness, auto-
matic assessment can also be extended to measure static
parts, like coding style or algorithmic performance. After
the program is functioning ”well enough”, a teaching assis-
tant (or the teacher him/herself) reads the code, now fo-
cusing on other things like program design and individual
implementational Tips&Tricks. As a result, the student re-
ceives personal feedback but the grader has not had to waste
time on testing the program. So, Semi-Automatic Assess-
ment is a combination of CAA and manual grading.

Multiple good CAA tools exist (see [8]) for the aid of the
automatic part but this paper is about facilitating the other
part: the manual grading. To put it short, the following
problems have been the basis for the original work, more
widely presented in [1]:

• Consistency: The mass courses often hold not only
many students, but many graders. How to obtain con-
sistency amongst them? The grading should not be
affected by who is the grader.

• Objectivity: All student submission should be graded
with the same criteria and each criterium proven to be
taken into account. So, the grader shouldn’t just read
the student submission through and in his mind decide
the grade with ”his gut feeling”.

• Writing good feedback over and over again: Especially
in elementary programming courses, the submissions –
and thus the feedback written about them – resemble
each other. This can be facilitated to make the grader
more efficient and the feedback better.

Habeshaw et al. [9] argue that to ensure consistency among
graders, they need to be properly trained and required to use
marking schemes to direct their attention to the appropri-
ate things. Becker suggests a similar approach to be used
for programming assignments, and also defines the schemes
as rubrics [5]. The idea of rubrics is to divide the grading
into small enough parts so that each part can be objectively
graded following given instructions.

The use of computer-assisted grading rubrics has been
shown to help in solving the first two problems [1] and also
to improve the speed of assessment [4]. To make the use
of rubrics more convenient as well as combining the writ-
ing of the feedback to them, we have previously developed
a grading tool called ALOHA [2].

After two full years of the use of ALOHA tool, it is time
to evaluate how it has served its original purpose in helping
with the three previously mentioned problems. However, the
ALOHA tool itself serves here only as an example. What
this paper is about is what the title says: Analyzing the Use
of a Rubric-Based Grading Tool.

In this paper, we introduce a few relevant measurements
we have performed for a set of gradings done with ALOHA.
What is measured is not the students, but the behaviour of
the teaching assistants (TA) who used the tool. Each mea-
surement has a certain purpose resulting into a discussion
on the different ways of using the tool. As a general result
of this paper, we will provide results on the effectiveness of
the tool as well as instructions on what to take into account
when taking such a tool into use.

2. ALOHA IN BRIEF
To get the idea of what was the concrete use case in this

study, we briefly introduce the main idea of the tool we used:
ALOHA. The tool with all its features is explained in more
detail in previous work [2].

The purpose of ALOHA is to provide grading rubrics on-
line in a way that each grader has to fill them correctly and
in a coherent way. ALOHA also helps the grader in creat-
ing feedback during the grading process. For the teacher,
the tool is also a useful tool for general management of the
submissions and the feedback process (e.g. assigning sub-
missions for graders, sending feedback mails, and collecting
grades).

After logging into the tool, the grader is presented with a
list of student submissions the teacher has assigned to him.
The grader chooses one of the submissions and is taken into
the grading view, shown in Figure 1.

The grading view represents the grading rubric. The grad-
ing is based on a categorized hierarchy shown in the left of
Figure 1. As the grader is going through the hierarchy, he se-
lects the suitable grade for each small grading item of which
the whole grade is eventually formed. At the same time, the
grader will write the feedback for that part of the grading
either manually or using predefined phrase templates. These
templates are created by person responsible for the rubric
(typically, the teacher).

The phrase templates form one of the main features in
ALOHA called the semi-automatic phrasing. This means
that the grader can choose suitable phrases to be added di-
rectly to the feedback text. When a phrase is selected, it
is copied as text into one of the Positive/Negative/Neutral
-feedback forms, depending on the type of the phrase (each
phrase is classified as one). The text in the form is ed-
itable so the grader may modify it if he wishes. Often the
idea is that the phrase the grader chooses from the list is
purposefully incomplete and the grader manually completes
the phrase, thus personalizing the feedback. After the whole
submission is graded, the grader needs to accept the com-
plete grade and the generated feedback text with the possi-
bility to yet modify it, as a whole.

3. MEASUREMENTS
In this section, we present all the measurements we con-

ducted and what we were hoping to see from their results.
The results itself are also combined to this section.

3.1 Experiment Settings

The use scenario here is the grading process of the sec-
ond elementary programming course in Tampere Univer-
sity of Technology (CS1 level) held in spring 2008. In the
course, the students create individually a larger program-
ming project. The grading is done semi-automatically so
that the students submit their work to a CAA system, which
checks the functionality and static coding style measure-
ments. After reaching sufficient level, each submission is
manually read and assessed by a teaching assistant using
ALOHA.

The manual assessment process is profound and should
take from 30 minutes up to two hours of the teaching assis-
tant’s time. Each of the nine TAs had 16 to 18 submissions
to grade resulting into altogether 150 student submissions.
As a result of the grading, all the students were supposed
to receive a well-written, personalized feedback mail and a
grade between 0 to 6, 1 meaning passed and 6 being the best
possible grade (quite rare).

To monitor the use and TAs’ grading behaviour, we made
ALOHA to log every action that was done. The whole data
we analyzed then consists of a vast amount of timestamped
actions, grades, and feedback mails. Of those we measured
the following: objectivity between different graders, different
time usage measurements, and the (statistical) quality of
the feedback. To reinforce our findings we also performed
statistical analyses for the results.

3.2 Objectivity in Grading
As explained in Section 1, one of the problems with mul-

tiple graders is objectivity: the grade should not be affected
by who is the one assessing it. Rubrics are designed to solve
this problem. In the first evaluation of ALOHA, the effect
on achieving this was measured and successfully found to be
positive [1]: In this same course, before using ALOHA there
was a statistically significant difference between the grades
given by a couple of the TAs. After introducing ALOHA the
next year, there were no longer such statistically significant
differences.

To confirm these results from previous years, we replicated
this measurement. We performed a one-way anova test for
the mean grades given by different TAs. We wanted to see
if there were the kind of differences that someone would
generally give better grades than others or vice versa. The
results are presented in Table 1 combined with the previous
results for comparison.

The result of this measurement remained positive as this
year showed no statistically significant differences between
the graders (p=0.1561). This means that now with mea-
sured use of two years, a rubric based tool has a positive
effect on achieving objectivity.

3.3 Time Spent Using the Tool
As we wanted to know more about how the teaching as-

sistants use the tool, we analyzed the time spent on various
tasks in the grading process. The tasks we were interested in
were the time spent on grading a single grading page (such
as the one shown in Figure 1) and the time spent on modi-
fying the final feedback. In addition, the total time of these
will be examined. The results of this analysis are presented
in Table 2 (outliers have been removed from the data). How-
ever, it should be noted that these times are not equal to
the actual time spent on grading the works, but it does give

Figure 1: Screenshot of the grading view in ALOHA

Table 1: Means and standard deviations of grades
given by graders in three years (Y1-Y3). Scale is 0-
6. Years 2 & 3 used ALOHA. Statistically significant
difference marked with *. The TAs were different in
each year.

Y1 Y2 Y3
Mean St.d Mean St.d Mean St.d

*5.3 1.0 4.6 1.2 4.6 1.4
4.5 1.3 4.2 0.9 4.5 1.1
4.2 1.3 4.1 1.4 4.3 1.2
4.2 1.1 4.0 1.0 4.1 1.2
4.1 1.2 3.8 1.4 4.0 1.0
4.1 1.5 3.8 1.6 3.9 1.6
4.0 1.1 3.8 1.3 3.6 1.7

*3.4 1.5 3.6 1.8 3.6 1.8
*3.2 1.8 3.4 1.3 3.5 1.5

us a rough minimum estimate of it. Besides the rough time
estimate these results also give us an examination on how
differently the tool is actually used.

The measurement for the time it takes TAs to fill a single
grading page of the rubric is the time between the page being
opened and the feedback being saved. As can be seen from
the table, there were quite significant differences in the time
spent on a grading page (in fact, there were even statistically
significant differences). However, there was no correlation
between the time spent on grading and the grades that were
given.

One interesting thing we observed was how the time for
grading page changes while the TA grades more assignments.
The time for category grading decreased for all but one
(TA6). This suggests that the tool is useful, since it makes
grading faster with experience. However, the time change
was not too radical for us to be concerned about the quality
of the grading.

Another timing statistics we measured was the time used

to customize the final feedback that is sent to students via
email. Here, there were small differences between the TAs.
Some assistants did little customization at this point, which
can suggest that the ALOHA tool worked well while grad-
ing the categories. On the other hand, we feel that the TA
should at least read through the final feedback and make
sure it is formatted correctly. Thus, we feel that there is
room for improvement in the tool. Currently, the assistant
has to click on a link to go and modify the final feedback.
This should be improved to include the feedback modifica-
tion functionality on the final acceptance page of the grad-
ing.

The total times for grading one assignment are the sum of
the total time used for assessing all the grading pages of one
assignment and the time used to modify the final feedback.
The total times are, of course, varying radically. This, how-
ever, is quite expected and nothing to be too alarmed about
since some of the graders might use the tool only at the end
of the grading after reading the code, and some use it paral-
lel. In fact, informal discussions with the TAs confirm these
different behavior patterns. More detailed inspection of dif-
ferent behaviors cannot be done through analyzing usage
logs, but would require studying their actual work.

3.4 Days on Task
To get some sense on when the assistants use the sys-

tem, we examined the number and distribution of the days
they used ALOHA for grading. These are displayed in Ta-
ble 3 (we have left out days after the initial grading deadline,
since there were only few extended deadlines and resubmis-
sions). The most positive notion we can make is that most
of the TAs started the assessment earlier than the last few
days before the assessment deadline (on the beginning of
the last week shown). In addition, they worked on several,
often consecutive days. Only TA4 labored through all the
assignments in just three days, two days being right before
the deadline. This kind of behaviour is human, but it should

Table 2: Statistics of the time used for a grading page, final feedback, and the total time for one assignment.
Teaching Mean time for Mean time for Mean of total time for
Assistant grading page (s) final feedback (s) assignment (min:sec)

TA1 137 51 38:14
TA2 144 236 41:14
TA3 100 268 43:58
TA4 71 471 24:05
TA5 76 51 23:37
TA6 43 160 17:36
TA7 58 41 15:02
TA8 60 81 16:27
TA9 74 95 22:57

be discouraged by the course personnel due to the inevitable
grader fatigue that can affect grading.

3.5 Quality of Feedback
The overall quality of the feedback is a subjective mea-

surement and would basically require qualitative analysis.
A couple of quantitative measurements can, however, be
done to get some indisputable measurements of the feedback
which are affecting the overall quality.

3.5.1 Amount of Lines
The overall length of one feedback mail can be used as one

quantitative measurement for the quality of the feedback.
Longer feedback of course does not mean a better feedback,
but a good feedback requires at least a proper amount of
text. Also, if the feedback mail is long, the student feels
that the assistant has used time and effort for the grading
and really wants to help the student. This is an important
aspect of how the students value the given assessment.

We measured the amount of lines in each feedback mail.
The average length of all the feedback mails was as high as
113 lines (multiple pages of text). So, it can easily be con-
cluded that in general the feedback was of high quality con-
cerning this measurement. There were differences between
the graders in this category. Some of the assistants wrote
noticeably longer feedback than others, even as long as 269
lines! However, even the shortest feedback mails were a bit
over 60 lines, which can still be found as a proper amount of
feedback (especially if the submission had nothing wrong).

3.5.2 Percentage of Predefined Phrases
To get insights on how much the assistants customize the

feedback for students, we measured the amount of personal-
ized feedback. A typical approach to this would be to assess
it qualitatively, introducing some subjectivity. We took a
completely different approach, though.

As mentioned, ALOHA includes the possibility to use pre-
determined phrases for the feedback, the the semi-automatic
phrasing. Similarity of a document consisting of only the
predetermined phrases with the amount of personalized feed-
back can be measured by using a plagiarism detection sys-
tem. We used a system called Nalkki [10], developed at the
Tampere University of Technology. A feedback with min-
imum personalization will then score high against the ”all-
phrases-document” on the plagiarism measure and a person-
alized feedback will have a lower score. However, this again
is not directly correlating with quality as the phrases itself
should be of high quality too. A high use of them might
indicate that the grader is using the tool more efficiently.

On the other hand, a too high value tells that the feedback
is not really personalized at all and the student might spot
that, especially if comparing the feedback with peers.

The overall percentage of predefined phrases in all feed-
backs was a bit over 50%. Here, we also observed great
differences between the graders: some of the assistants had
an average percentage of over 70% where as couple had
used predefined phrases (without any modifications) only
for around 30%. We find this range of values quite accept-
able and understandable, but as one of the assistants had
some feedbacks with the value as high as 90%, there might
be more than just efficient use of the tool. This part requires
more guidance, control and most easily more phrases that
really require manual additions.

A positive observation was that there was no correlation
at all with the length of the feedback and the amount of
predefined phrases. On the basis of these numerical results
this means that a long feedback can also be written with the
efficient use of the semi-automatic phrasing feature.

4. DISCUSSION AND CONCLUSIONS
So, how can the data collected and the results of the analy-

sis be used? The separate measurements themselves provide
interesting statistics from the different ways of using the tool
as well as proof of the effectiveness of the tool. The results
indicate that different graders have indeed different work-
ing methods. Some prefer reading the submission first as a
whole and some read it parallel to writing the feedback and
grading it. This is rather obvious, but despite these different
habits, our results confirm the following:

• All the graders used well enough time with the tool.
None of the teaching assistants used too much time
with the tool. In addition, the time required for grad-
ing one assignment decreased as the number of graded
assignments increased.

• The TAs wrote proper feedback combining the provided
phrases and personalized feedback.

• The grading remained objective – the previously exist-
ing problem of non-objective grading amongst multiple
TAs seems to be extinct.

Together these results show that, in general, a rubric-
based tool with convenience features (here, semi-automatic
phrasing) strongly supports the manual grading process. Thus,
the original goal and purpose of the tool – objective grading
with high-quality feedback in reasonable time – is met.

Table 3: Days used for grading the assignments. X marks a day the TA graded assignments. The dates mark
the first day of a week, starting from Mondays (day/month).

TA 2
6
/
5

2
/
6

9
/
6

1
6
/
6

Days

TA1 XXXXXXX XXXXXXX XXXXXXX XXXXXXX 9
TA2 XXXXXXX XXXXXXX XXXXXXX XXXXXXX 9
TA3 XXXXXXX XXXXXXX XXXXXXX XXXXXXX 6
TA4 XXXXXXX XXXXXXX XXXXXXX XXXXXXX 3
TA5 XXXXXXX XXXXXXX XXXXXXX XXXXXXX 9
TA6 XXXXXXX XXXXXXX XXXXXXX XXXXXXX 5
TA7 XXXXXXX XXXXXXX XXXXXXX XXXXXXX 9
TA8 XXXXXXX XXXXXXX XXXXXXX XXXXXXX 7
TA9 XXXXXXX XXXXXXX XXXXXXX XXXXXXX 10

Based on the benefits indicated by our results, we firmly
suggest the use of this kind of tool for the teachers respon-
sible for courses with multiple graders. Besides aiding in
grading management, it aids in ensuring objectivity and a
proper level of feedback. However, creating a good grading
template which includes the rubric and the phrases requires
effort. Once it’s done for one course, it can be reused be-
tween different years with only small modifications.

We also received good experience on collecting data from
the use of a grading tool. When designing a new grading
tool it is also a good idea to integrate data collection to
the tool itself, providing immediate statistics for the teacher
on the grading process. One should also consider letting the
graders themselves access the statistics to monitor their own
work compared to other graders. In the future, we intend
to do further research into what the TAs’ grading process is
like. However, if the monitoring is too detailed and the data
is not interpreted discretely, there is the risk of the graders
feeling a lack of trust and that their work is being monitored
too much.

While our results provide sufficient insurance on every-
thing running as hoped, one must remember that the teach-
ing assistants in focus were well trained both for the tool and
for the general guidelines for the grading. Thus, we want to
conclude with a few important points for teachers intending
to use rubrics-based grading tool to help them acquire the
benefits reported in this paper:

• The rubric and the phrases for semi-automatic phras-
ing need to be designed carefully. For large parts, the
given feedback is based on the phrases in the rubric.

• The graders need to be well instructed to know how
they are expected to use the tool, what sort of feedback
they are expected to write, and how to assess.

• A rubric-based grading tool can be a really good aid
for the whole course staff, but it does not replace the
independent responsibility and skills of the graders.

5. ACKNOWLEDGMENTS
Tuukka Ahoniemi is funded by Digia Plc and partly by

the Foundation of Nokia.

6. REFERENCES
[1] T. Ahoniemi, E. Lahtinen, and T. Reinikainen.

Improving pedagogical feedback and objective grading.
In SIGCSE ’08: Proceedings of the 39th SIGCSE

technical symposium on Computer science education,
pages 72–76, New York, NY, USA, 2008. ACM.

[2] T. Ahoniemi and T. Reinikainen. Aloha - a grading
tool for semi-automatic assessment of mass
programming courses. In Baltic Sea ’06: Proceedings
of the 6th Baltic Sea conference on Computing
education research, pages 139–140, New York, NY,
USA, 2006. ACM.

[3] K. Ala-Mutka and H.-M. Järvinen. Assessment process
for programming assignments. Advanced Learning
Technologies, 2004. Proceedings. IEEE International
Conference on, pages 181–185, 30 Aug.-1 Sept. 2004.

[4] L. Anglin, K. Anglin, P. L. Schumann, and J. A.
Kaliski. Improving the efficiency and effectiveness of
grading through the use of computer-assisted grading
rubrics. Decision Sciences The Journal of Innovative
Education, 6(1):51–73, January 2008.

[5] K. Becker. Grading programming assignments using
rubrics. In ITiCSE ’03: Proceedings of the 8th annual
conference on Innovation and technology in computer
science education, pages 253–253, New York, NY,
USA, 2003. ACM.

[6] P. Black and D. Wiliam. Assessment and classroom
learning. Assessment in Education: Principles, Policy
& Practice, 5(1):7–74, 1998.

[7] F. J. R. C. Dochy and L. McDowell. Assessment as a
tool for learning. Studies In Educational Evaluation,
23(4):279–298, 1997.

[8] C. Douce, D. Livingstone, and J. Orwell. Automatic
test-based assessment of programming: A review. J.
Educ. Resour. Comput., 5(3):4, 2005.

[9] S. Habeshaw, G. Gibbs, and T. Habeshaw. 53
Problems With Large Classes. Technical and
Educational Services Ltd., Bristol, U.K., 1992.

[10] P. Sirkkala and S. Puonti. Nalkki-project - tool for
plagiarism detection using the web. In R. Lister and
Simon, editors, Seventh Baltic Sea Conference on
Computing Education Research (Koli Calling 2007),
volume 88 of CRPIT, pages 229–230, Koli National
Park, Finland, 2007. ACS.

[11] M. Yorke. Formative assessment in higher education:
moves towards theory and the enhancement of
pedagogic practice. Higher Education, 45(4):477–501,
2003.

	Introduction
	Thesis within Computer Science Education Research
	Research Questions
	Organization of the Thesis

	Introduction to Visualization Systems
	What Are Visualizations?
	Algorithm Visualizations
	Program Visualizations
	Usage and Effectiveness of Visualizations in Education
	Early Studies on AV Effectiveness
	Integration to Course Infrastructure
	Effects in Cognitive Process
	How Visualizations Are Used
	Teachers' Attitudes towards Visualizations

	Summary

	Towards Deeper Cognitive Levels with Visualizations
	Engagement Taxonomy
	Bloom's Taxonomy of Cognitive Development in CS Education
	Summary

	Tools-Assisted Assessment in Programming Courses
	Assessment and Programming
	Computer-Assisted Assessment
	Semi-Automatic Assessment
	Rubric-Based Assessment Tools
	Summary

	Summary of the Included Publications
	Conclusions
	Efficient Integration of Visualization Systems
	Facilitating the Assessment of Programming Assignments
	Summary of the Results
	Generalization and Limitations of the Work
	Benefits of the Work

	References
	Publications reprinted

