447 research outputs found

    Interpretable statistics for complex modelling: quantile and topological learning

    Get PDF
    As the complexity of our data increased exponentially in the last decades, so has our need for interpretable features. This thesis revolves around two paradigms to approach this quest for insights. In the first part we focus on parametric models, where the problem of interpretability can be seen as a “parametrization selection”. We introduce a quantile-centric parametrization and we show the advantages of our proposal in the context of regression, where it allows to bridge the gap between classical generalized linear (mixed) models and increasingly popular quantile methods. The second part of the thesis, concerned with topological learning, tackles the problem from a non-parametric perspective. As topology can be thought of as a way of characterizing data in terms of their connectivity structure, it allows to represent complex and possibly high dimensional through few features, such as the number of connected components, loops and voids. We illustrate how the emerging branch of statistics devoted to recovering topological structures in the data, Topological Data Analysis, can be exploited both for exploratory and inferential purposes with a special emphasis on kernels that preserve the topological information in the data. Finally, we show with an application how these two approaches can borrow strength from one another in the identification and description of brain activity through fMRI data from the ABIDE project

    Modeling image databases using Xml schema

    Full text link
    This thesis presents a model for still images in order to support content-based querying and browsing by hierarchical tree structures and object relational graphs. We use the extensible markup language (XML) schema to illustrate and exemplify the proposed model because of its interoperability and flexibility advantages. Of primary interest is the notion of complex types and referential integrity to fully describe the physical and semantic properties of images. XQuery is used to support query processing. We further show how these complex types of XML schema can be used to overcome the shortcomings of reported image database descriptions in the literature

    Active object recognition for 2D and 3D applications

    Get PDF
    Includes bibliographical referencesActive object recognition provides a mechanism for selecting informative viewpoints to complete recognition tasks as quickly and accurately as possible. One can manipulate the position of the camera or the object of interest to obtain more useful information. This approach can improve the computational efficiency of the recognition task by only processing viewpoints selected based on the amount of relevant information they contain. Active object recognition methods are based around how to select the next best viewpoint and the integration of the extracted information. Most active recognition methods do not use local interest points which have been shown to work well in other recognition tasks and are tested on images containing a single object with no occlusions or clutter. In this thesis we investigate using local interest points (SIFT) in probabilistic and non-probabilistic settings for active single and multiple object and viewpoint/pose recognition. Test images used contain objects that are occluded and occur in significant clutter. Visually similar objects are also included in our dataset. Initially we introduce a non-probabilistic 3D active object recognition system which consists of a mechanism for selecting the next best viewpoint and an integration strategy to provide feedback to the system. A novel approach to weighting the uniqueness of features extracted is presented, using a vocabulary tree data structure. This process is then used to determine the next best viewpoint by selecting the one with the highest number of unique features. A Bayesian framework uses the modified statistics from the vocabulary structure to update the system's confidence in the identity of the object. New test images are only captured when the belief hypothesis is below a predefined threshold. This vocabulary tree method is tested against randomly selecting the next viewpoint and a state-of-the-art active object recognition method by Kootstra et al.. Our approach outperforms both methods by correctly recognizing more objects with less computational expense. This vocabulary tree method is extended for use in a probabilistic setting to improve the object recognition accuracy. We introduce Bayesian approaches for object recognition and object and pose recognition. Three likelihood models are introduced which incorporate various parameters and levels of complexity. The occlusion model, which includes geometric information and variables that cater for the background distribution and occlusion, correctly recognizes all objects on our challenging database. This probabilistic approach is further extended for recognizing multiple objects and poses in a test images. We show through experiments that this model can recognize multiple objects which occur in close proximity to distractor objects. Our viewpoint selection strategy is also extended to the multiple object application and performs well when compared to randomly selecting the next viewpoint, the activation model and mutual information. We also study the impact of using active vision for shape recognition. Fourier descriptors are used as input to our shape recognition system with mutual information as the active vision component. We build multinomial and Gaussian distributions using this information, which correctly recognizes a sequence of objects. We demonstrate the effectiveness of active vision in object recognition systems. We show that even in different recognition applications using different low level inputs, incorporating active vision improves the overall accuracy and decreases the computational expense of object recognition systems

    Geometric and photometric affine invariant image registration

    Get PDF
    This thesis aims to present a solution to the correspondence problem for the registration of wide-baseline images taken from uncalibrated cameras. We propose an affine invariant descriptor that combines the geometry and photometry of the scene to find correspondences between both views. The geometric affine invariant component of the descriptor is based on the affine arc-length metric, whereas the photometry is analysed by invariant colour moments. A graph structure represents the spatial distribution of the primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs represent connectivities by extracted contours. After matching, we refine the search for correspondences by using a maximum likelihood robust algorithm. We have evaluated the system over synthetic and real data. The method is endemic to propagation of errors introduced by approximations in the system.BAE SystemsSelex Sensors and Airborne System

    Persistent Homology Tools for Image Analysis

    Get PDF
    Topological Data Analysis (TDA) is a new field of mathematics emerged rapidly since the first decade of the century from various works of algebraic topology and geometry. The goal of TDA and its main tool of persistent homology (PH) is to provide topological insight into complex and high dimensional datasets. We take this premise onboard to get more topological insight from digital image analysis and quantify tiny low-level distortion that are undetectable except possibly by highly trained persons. Such image distortion could be caused intentionally (e.g. by morphing and steganography) or naturally in abnormal human tissue/organ scan images as a result of onset of cancer or other diseases. The main objective of this thesis is to design new image analysis tools based on persistent homological invariants representing simplicial complexes on sets of pixel landmarks over a sequence of distance resolutions. We first start by proposing innovative automatic techniques to select image pixel landmarks to build a variety of simplicial topologies from a single image. Effectiveness of each image landmark selection demonstrated by testing on different image tampering problems such as morphed face detection, steganalysis and breast tumour detection. Vietoris-Rips simplicial complexes constructed based on the image landmarks at an increasing distance threshold and topological (homological) features computed at each threshold and summarized in a form known as persistent barcodes. We vectorise the space of persistent barcodes using a technique known as persistent binning where we demonstrated the strength of it for various image analysis purposes. Different machine learning approaches are adopted to develop automatic detection of tiny texture distortion in many image analysis applications. Homological invariants used in this thesis are the 0 and 1 dimensional Betti numbers. We developed an innovative approach to design persistent homology (PH) based algorithms for automatic detection of the above described types of image distortion. In particular, we developed the first PH-detector of morphing attacks on passport face biometric images. We shall demonstrate significant accuracy of 2 such morph detection algorithms with 4 types of automatically extracted image landmarks: Local Binary patterns (LBP), 8-neighbour super-pixels (8NSP), Radial-LBP (R-LBP) and centre-symmetric LBP (CS-LBP). Using any of these techniques yields several persistent barcodes that summarise persistent topological features that help gaining insights into complex hidden structures not amenable by other image analysis methods. We shall also demonstrate significant success of a similarly developed PH-based universal steganalysis tool capable for the detection of secret messages hidden inside digital images. We also argue through a pilot study that building PH records from digital images can differentiate breast malignant tumours from benign tumours using digital mammographic images. The research presented in this thesis creates new opportunities to build real applications based on TDA and demonstrate many research challenges in a variety of image processing/analysis tasks. For example, we describe a TDA-based exemplar image inpainting technique (TEBI), superior to existing exemplar algorithm, for the reconstruction of missing image regions

    SEGMENTATION, RECOGNITION, AND ALIGNMENT OF COLLABORATIVE GROUP MOTION

    Get PDF
    Modeling and recognition of human motion in videos has broad applications in behavioral biometrics, content-based visual data analysis, security and surveillance, as well as designing interactive environments. Significant progress has been made in the past two decades by way of new models, methods, and implementations. In this dissertation, we focus our attention on a relatively less investigated sub-area called collaborative group motion analysis. Collaborative group motions are those that typically involve multiple objects, wherein the motion patterns of individual objects may vary significantly in both space and time, but the collective motion pattern of the ensemble allows characterization in terms of geometry and statistics. Therefore, the motions or activities of an individual object constitute local information. A framework to synthesize all local information into a holistic view, and to explicitly characterize interactions among objects, involves large scale global reasoning, and is of significant complexity. In this dissertation, we first review relevant previous contributions on human motion/activity modeling and recognition, and then propose several approaches to answer a sequence of traditional vision questions including 1) which of the motion elements among all are the ones relevant to a group motion pattern of interest (Segmentation); 2) what is the underlying motion pattern (Recognition); and 3) how two motion ensembles are similar and how we can 'optimally' transform one to match the other (Alignment). Our primary practical scenario is American football play, where the corresponding problems are 1) who are offensive players; 2) what are the offensive strategy they are using; and 3) whether two plays are using the same strategy and how we can remove the spatio-temporal misalignment between them due to internal or external factors. The proposed approaches discard traditional modeling paradigm but explore either concise descriptors, hierarchies, stochastic mechanism, or compact generative model to achieve both effectiveness and efficiency. In particular, the intrinsic geometry of the spaces of the involved features/descriptors/quantities is exploited and statistical tools are established on these nonlinear manifolds. These initial attempts have identified new challenging problems in complex motion analysis, as well as in more general tasks in video dynamics. The insights gained from nonlinear geometric modeling and analysis in this dissertation may hopefully be useful toward a broader class of computer vision applications

    Image Registration Workshop Proceedings

    Get PDF
    Automatic image registration has often been considered as a preliminary step for higher-level processing, such as object recognition or data fusion. But with the unprecedented amounts of data which are being and will continue to be generated by newly developed sensors, the very topic of automatic image registration has become and important research topic. This workshop presents a collection of very high quality work which has been grouped in four main areas: (1) theoretical aspects of image registration; (2) applications to satellite imagery; (3) applications to medical imagery; and (4) image registration for computer vision research

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF
    corecore