1,513 research outputs found

    Towards formalisation of situation-specific computations in pervasive computing environments

    Get PDF
    We have categorised the characteristics and the content of pervasive computing environments (PCEs), and demonstrated why a non-dynamic approach to knowledge conceptualisation in PCEs does not fulfil the expectations we may have from them. Consequently, we have proposed a formalised computational model, the FCM, for knowledge representation and reasoning in PCEs which, secures the delivery of situation and domain specific services to their users. The proposed model is a user centric model, materialised as a software engineering solution, which uses the computations generated from the FCM, stores them within software architectural components, which in turn can be deployed using modern software technologies. The model has also been inspired by the Semantic Web (SW) vision and provision of SW technologies. Therefore, the FCM creates a semantically rich situation-specific PCE based on SWRL-enabled OWL ontologies that allows reasoning about the situation in a PCE and delivers situation specific service. The proposed FCM model has been illustrated through the example of remote patient monitoring in the healthcare domain. Numerous software applications generated from the FCM have been deployed using Integrated Development Environments and OWL-API

    Formal approaches to modelling and verifying resource-bounded agents-state of the art and future prospects

    Get PDF
    This paper reviews formal approaches to modelling and verifying resource-bounded agents focusing on state of the Art and future prospects

    Software Tool for Semantic Resources Allocation in Humanitarian Crises

    Get PDF
    Resource Allocation (RAlloc) is one of the most important tasks in organizing humanitarian response to humanitarian crises. It is not only that adequate and efficient RAlloc save lives and reduce damages caused by humanitarian crises, but RAlloc must be fast and efficient to save time and resources. Given that RAlloc is a type of a decision making process, it is expected that decision on RAlloc are based on accurate and relevant information generated at various stages of humanitarian response. In this paper we promote Semantic Resource Allocation (SemRAlloc) tool which a) collects and interprets the semantics of an environment where RAlloc is required and b) the reasons upon the semantics of that environment in order to make appropriate RAlloc. The tool is built with computations based on SWRL enabled OWL ontologies. The prototype has been implemented as a desk-top application which can also run in mobile/wireless environments, including Android smart phones

    Towards a cascading reasoning framework to support responsive ambient-intelligent healthcare interventions

    Get PDF
    In hospitals and smart nursing homes, ambient-intelligent care rooms are equipped with many sensors. They can monitor environmental and body parameters, and detect wearable devices of patients and nurses. Hence, they continuously produce data streams. This offers the opportunity to collect, integrate and interpret this data in a context-aware manner, with a focus on reactivity and autonomy. However, doing this in real time on huge data streams is a challenging task. In this context, cascading reasoning is an emerging research approach that exploits the trade-off between reasoning complexity and data velocity by constructing a processing hierarchy of reasoners. Therefore, a cascading reasoning framework is proposed in this paper. A generic architecture is presented allowing to create a pipeline of reasoning components hosted locally, in the edge of the network, and in the cloud. The architecture is implemented on a pervasive health use case, where medically diagnosed patients are constantly monitored, and alarming situations can be detected and reacted upon in a context-aware manner. A performance evaluation shows that the total system latency is mostly lower than 5 s, allowing for responsive intervention by a nurse in alarming situations. Using the evaluation results, the benefits of cascading reasoning for healthcare are analyzed

    Framework for efficient transformation for complex medical data for improving analytical capability

    Get PDF
    The adoption of various technological advancement has been already adopted in the area of healthcare sector. This adoption facilitates involuntary generation of medical data that can be autonomously programmed to be forwarded to a destined hub in the form of cloud storage units. However, owing to such technologies there is massive formation of complex medical data that significantly acts as an overhead towards performing analytical operation as well as unwanted storage utilization. Therefore, the proposed system implements a novel transformation technique that is capable of using a template based stucture over cloud for generating structured data from highly unstructured data in a non-conventional manner. The contribution of the propsoed methodology is that it offers faster processing and storage optimization. The study outcome also proves this fact to show propsoed scheme excels better in performance in contrast to existing data transformation scheme
    corecore