751 research outputs found

    Preparation, Proximate Composition and Culinary Properties of Yellow Alkaline Noodles from Wheat and Raw/Pregelatinized Gadung (Dioscorea Hispida Dennst) Composite Flours

    Get PDF
    The steady increase of wheat flour price and noodle consumptions has driven researchers to find substitutes for wheat flour in the noodle making process. In this work, yellow alkaline noodles were prepared from composite flours comprising wheat and raw/pregelatinized gadung (Dioscorea hispida Dennst) flours. The purpose of this work was to investigate the effect of composite flour compositions on the cooking properties (cooking yield, cooking loss and swelling index) of yellow alkaline noodle. In addition, the sensory test and nutrition content of the yellow alkaline noodle were also evaluated for further recommendation. The experimental results showed that a good quality yellow alkaline noodle can be prepared from composite flour containing 20% w/w raw gadung flour. The cooking yield, cooking loss and swelling index of this noodle were 10.32 g, 1.20 and 2.30, respectively. Another good quality yellow alkaline noodle can be made from composite flour containing 40% w/w pregelatinized gadung flour. This noodle had cooking yield 8.93 g, cooking loss 1.20, and swelling index of 1.88. The sensory evaluation suggested that although the color, aroma and firmness of the noodles were significantly different (p ≤ 0.05) from wheat flour noodle, but their flavor remained closely similar. The nutrition content of the noodles also satisfied the Indonesian National Standard for noodle. Therefore, it can be concluded that wheat and raw/pregelatinized gadung composite flours can be used to manufacture yellow alkaline noodle with good quality and suitable for functional food

    CAPEC-PROCESS Research Report 2011

    Get PDF

    CAPEC-PROCESS Research Report 2012

    Get PDF

    Alternatives to distillation: multi-membrane permeation and petrol pre-blending for bio-ethanol recovery

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy to The Department of Chemical and Metallurgical Engineering, Faculty of Engineering, University of the Witwatersrand, Johannesburg, 2016Separation of materials is crucial to the operation of the majority of chemical processes, not only for the purification of final products but also for the processing of feed-stocks prior to chemical reaction. The most commonplace method of materials separation is distillation which, unfortunately, is often an energy-intensive process and contributes significantly to mankind’s energy consumption and carbon dioxide emissions. Alternative approaches to separation are therefore a crucial element of the ongoing pursuit for sustainability in chemical industries. There are two principal ways of going about this. The first is to replace distillation units with alternative unit operations that can achieve the same separation with less energy expenditure. The second approach is overall flowsheet revision, fundamentally changing a separation cycle to minimize its energy requirements. The greatest improvements to energy efficiency will be achieved by applying both approaches in tandem. However, each must be developed separately to make that possible. This thesis lays the groundwork for radical revision of major separation operations by showcasing a new overall flowsheet for bioethanol separation that promises tremendous improvements in separation efficiency, reducing the energy usage involved in ethanol purification by as much as 40% in some scenarios. It also develops a novel method for the design of multi-membrane permeation units, showing how area ratio can be manipulated to fundamentally alter separation performance from such units, resulting in superior separation performance to conventional units, achieving higher recoveries than conventional setups. With membranes being an increasingly popular separation method, the potential for superior performance from multi-membrane units promises improvements in separation efficiency

    Dynamic Modeling, Optimization, and Advanced Control for Large Scale Biorefineries

    Get PDF

    CAPEC-PROCESS Research Report 2013

    Get PDF

    CAPEC ‐ PROCESS Industrial Consortium Research Report – 2014

    Get PDF

    Isoamyl alcohol production integrated with hydrous ethanol production : otimization, heat integration and economic evaluation

    Get PDF
    Orientador: Eduardo Augusto Caldas BatistaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de AlimentosResumo: O etanol produzido a partir da cana-de-açúcar constitui uma das melhores alternativas para a manufatura de biocombustíveis para o Brasil. A demanda energética e melhor aproveitamento de subprodutos são áreas com grandes potenciais de melhorias para tornar o processo de produção de etanol ainda mais rentável. O setor sucroalcooleiro brasileiro apresenta aumentos sucessivos de produção de etanol. Essa ampliação da produção de etanol permitirá usos mais rentáveis de subprodutos como o óleo fúsel, que é uma mistura de vários alcoóis tais como isobutanol, etanol, propanol e, principalmente, o álcool isoamílico. Esses alcoóis podem ser aplicados em indústrias de alimentos, de tintas e vernizes, de plastificantes e de perfumaria. No entanto, o óleo fúsel não tem sido devidamente aproveitado pelas usinas. No campo da energia, o desenvolvimento de tecnologias de destilação com maior eficiência é profícuo, uma vez que essa etapa é responsável por parte considerável dos custos de utilidades e de investimentos da produção de etanol. Diante destas circunstâncias, o presente trabalho tem como objetivo investigar processos que aumentem a economicidade e sustentabilidade da produção de etanol através da redução dos custos de utilidades e de equipamentos da destilação de etanol ou por meio da manufatura de produtos com maior valor agregado. Com a premissa de serem processos com relativa facilidade de aplicação, os seguintes processos são investigados: Produção de álcool isoamílico integrada à produção de etanol; utilização de colunas de elevada eficiência energética para separações multicomponentes (coluna com parede dividida e colunas de múltiplo efeito); otimização da demanda energética do processo convencional de destilação de etanol; destilalação de óleo fúsel para produção de etanol, álcool isoamílico e butanol. A produção de álcool isoamílico integrada à destilação de etanol permite aumentar a recuperação de etanol e produzir, a partir do óleo fúsel, uma mistura de elevada pureza de álcool isoamílico e seu isômero álcool amílico ativo. A integração energética com colunas de múltiplo efeito para o processo de produção integrada de etanol e álcool isoamílico, no entanto, não se mostrou uma alternativa viável economicamente, pois pequenas diferenças de temperatura para transferência de calor entre as colunas foram obtidas. A fim de um maior aproveitamento de outros constituintes do óleo fúsel, a configuração autônoma para recuperação de butanol, álcool isoamílico e etanol a partir do óleo fúsel apresentou elevadas purezas e recuperações desses componentes em um processo isento de solventes que emprega apenas colunas de destilação convencionais e decantadores. Outra importante contribuição desta tese é a otimização dos custos energéticos da destilação industrial de etanol em função da composição da flegma. As condições ótimas encontradas permitem uma economia na demanda de energia de cerca de 15 % em algumas usinas de etanol já em funcionamento, apenas pelo controle da composição da flegma. O processo de produção de etanol hidratado utilizando colunas com parede dividida (DWC) apresenta menores custos de utilidades (redução da demanda de energia de 21 %) e economia de investimento em equipamentos de aproximadamente 15 % comparado com o arranjo convencional da destilação industrial de etanolAbstract: Bioethanol produced from sugarcane is a great alternative to produce biofuels for Brazil. The energy demand and better utilization of by-products are areas with large potential improvements in the ethanol production process. The ethanol industry in Brazil has experienced successive increases in demand and production. This expansion of ethanol productivity will allow more profitable uses of products such as fusel oil, a mixture of various alcohols such as isobutanol, ethanol, propanol and, especially, isoamyl alcohol. Such alcohols have applications in various industries. However, current applications of fusel oil presents low economic benefits for ethanol mills. Energy demand is another point that has great impact on increasing the sustainability and profitability of bioethanol production. The development of more efficient distillation technologies is very important because this unit operation is responsible for a considerable part of the utilities and investment costs in ethanol production. Moreover, this reduction in steam consumption can increase the quantity of bagasse available to be used for bioelectricity or cellulosic ethanol production. In these circumstances, the present study aims to investigate processes that increase the economic benefit and sustainability of ethanol production by reducing utilities and equipment distillation costs or by manufacturing of products with higher added value. With the premise of having relative ease application, the following processes are investigated: integrated process for isoamyl alcohol and ethanol production; use of high energy efficiency columns distillation for multi-component separations (divided wall column and multi-effect columns; energy demand optimization of the conventional distillation process of ethanol; distillation process of fusel oil to obtain ethanol, isoamyl alcohol and butanol. The integrated production of ethanol and isoamyl alcohol allows increasing the recovery of ethanol and producing isoamyl alcohol and its isomer active amyl alcohol with high purities from fusel oil. However, energy integration using a multi-effect distillation columns for the integrated process was not an economically viable alternative due to the small temperature differentials obtained for energy transfer between columns. To make better use of other constituents of fusel oil, the investigation of an autonomous plant configuration for butanol, isoamyl alcohol and ethanol recovery from fusel oil was investigated, this process shows high recovery rates of these components by a process that does not use solvents and employs only conventional distillation columns and decanters. An additional contribution of this thesis is to demonstrate the influence of phlegm concentration on energy demand costs of industrial ethanol distillation. The optimal economic conditions allow savings in energy demand of about 15% in the current ethanol plants, only by controlling the composition of phlegm. The process of hydrated ethanol production using a Divided Wall Column (DWC) was developed and optimized. Compared with the conventional sequence of two distillation columns, the DWC proposal presented lower costs of utilities and equipmentDoutoradoEngenharia de AlimentosDoutor em Engenharia de Alimentos2013/09432-0130750/2012-3, 142031/2013-5FAPESPCNP
    corecore