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Summary

Second generation biorefineries transform agricultural wastes into biochemicals

with higher added value, e.g. bioethanol, which is thought to become a primary

component in liquid fuels [1]. Extensive endeavors have been conducted to make

the production process feasible on a large scale, and recently several commercial size

biorefineries became operational: Beta Renewables (Italy, 2014), Abengoa Bioenergy

(USA, 2014), POET-DSM (USA, 2014), GranBio (Brazil, 2014) [2], while others are

under construction, e.g. the Måbjerg Energy Consortium in Denmark.

This thesis presents the findings of a 3 years PhD project that was run by Techni-

cal University of Denmark (DTU) in collaboration with the largest Danish energy

company DONG Energy A/S between 2012 and 2015. The company owns a demon-

stration scale second generation biorefinery in Kalundborg, Denmark, also known

as the Inbicon demonstration plant [3]. The goal of the project is to utilize real-

time data extracted from the large scale facility to formulate and validate first

principle dynamic models of the plant. These models are then further exploited to

derive model-based tools for process optimization, advanced control and real-time

monitoring.

The Inbicon biorefinery converts wheat straw into bioethanol utilizing steam,

enzymes, and genetically modified yeast. The biomass is first pretreated in a steam

pressurized and continuous thermal reactor where lignin is relocated, and hemicel-

lulose partially hydrolyzed such that cellulose becomes more accessible to enzymes.

The biorefinery is integrated with a nearby power plant following the Integrated

Biomass Utilization System (IBUS) principle for reducing steam costs [4]. During

the pretreatment, by-products are also created such as organic acids, furfural, and

pseudo-lignin, which act as inhibitors in downstream processes. The pretreated

fibers consist of cellulose and xylan, which are then liquefied in the enzymatic

hydrolysis process with the help of enzymes. High glucose and xylose yields are thus

obtained for co-fermentation. Ethanol is recovered in distillation columns followed

by molecular sieves for achieving a high concentration ethanol. Lignin is separated in

the first column and recovered as bio-pellets in an evaporation unit. The bio-pellets

are then burnt in the nearby power plant for steam generation.
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The first part of this research presents a large scale dynamic model of the plant,

separated in modules for pretreatment, enzymatic hydrolysis, and fermentation. The

pretreatment and enzymatic hydrolysis models have been validated and analyzed

in this study together with a comprehensive sensitivity and uncertainty analysis

[5, 6]. The models embed mass and energy balances with a complex conversion

route. Computational fluid dynamics is used to model transport phenomena in

large reactors capturing tank profiles, and delays due to plug flows. This work

publishes for the first time demonstration scale real data for validation showing

that the model library is suitable for optimization, control and monitoring purposes.

As an application, the pretreatment dynamic model is used to construct a real-

time observer that acts both as a measurement filter, and soft sensor for biomass

components that are not measured, e.g. pretreatment inhibitors [5].

The next part of this study deals with building a plantwide model-based optimiza-

tion layer, which searches for optimal values regarding the pretreatment temperature,

enzyme dosage in liquefaction, and yeast seed in fermentation such that profit is

maximized [7]. When biomass is pretreated, by-products are also created that

affect the downstream processes acting as inhibitors in enzymatic hydrolysis and

fermentation. Therefore, the biorefinery is treated in an integrated manner capturing

the trade-offs between the conversion steps. Sensitivity and uncertainty analysis is

also performed in order to identify the modeling bottlenecks and which feedstock

components need to be determined for an accurate prediction. This analysis is

achieved with Monte Carlo simulations and Latin Hypercube Sampling (LHS) on

feedstock composition and kinetic parameters following the methodology from [5, 6,

8, 9].

In the last part of this work, two applications of the L1 adaptive output feedback

controller [10] are developed: one for biomass pretreatment temperature [11] and

another one for pH in enzymatic hydrolysis [12]. Biomass conversion is highly

sensitive to these process parameters, which exhibit nonlinear behavior and can

change nominal values. The adaptive controllers are found to perform better across

multiple operational points without the need of retuning.



Resumé

Anden-generations bioraffinaderier omdanner affaldsprodukter fra landbruget

til kemiske produkter med højere værdi som f.eks. bioethanol, der i fremtiden

forventes at blive en primær komponent i flydende brændsler [1]. Der er sket store

fremskridt for at skalere denne produktion og der er i de senere år blevet idriftsat

flere kommercielle anlæg: Beta Renewables (Italy, 2014), Abengoa Bioenergy (USA,

2014), POET-DSM (USA, 2014), GranBio (Brazil, 2014) [2], mens andre er under

planlægning: herunder et anlæg ved Måbjerg Energy Center.

Denne afhandling præsenterer et 3-årigt PhD projekt som er udført i samarbejde

mellem Technical University of Denmark (DTU) og DONG Energy A/S i perioden

2012 til 2015. DONG Energy ejer demonstrationsanlægget Inbicon, som er anden-

generation bioraffinaderi i Kalundborg [3]. Projektets formål er bruge anlægsdata

fra dette demonstrationsskala anlæg til at beskrive og validere dynamiske proces-

og kinetikmodeller af anlægget. Disse modeller bliver så brugt til at udvikle model-

baseret værktøjer for procesoptimering, avanceret regulering og direkte overvågning

af processen.

Bioraffinaderiet omdanner halm til bioethanol ved brug af damp, enzymer og

genmodificeret gær. Halmen bliver forbehandlet i en kontinuert reaktor under

højt damptryk, hvor ligninen bliver åbnet og hemicellulosen bliver delvist hydroly-

seret. Bioraffinaderiet er integreret med det nærliggende kraftværk for at reducere

dampomkostningerne [4]. Under forbehandlingen dannes der bi-produkter som

organiske syrer, furfural og pseudo-lignin, som alle er inhibitorer i de efterfølgende

processer. De forbehandlede fibre består af cellulose og xylan, som bliver enzymatisk

hydrolyseret i dette næste trin til glucose og xylose. Det tredje trin er fermenter-

ing, hvor sukkerstofferne omdannes til ethanol. Bioethanolen bliver separeret efter

fermenteringen i en distillationskolonne samt molekylesi for at opnå høje ethanol

koncentrationer. Ligninen udskilles desuden i den første kolonne og omdannes til

pilleform vha. fordamperenhed. Disse ligninpiller kan så forbrændes i kraftværket

for yderligere dampproduktion. Den første del af denne forskning præsenterer en

stor-skala dynamisk model af anlægget, opdelt i følgende moduller: forbehandling,

enzymatisk hydrolyse og fermentering. Modellerne for forbehandlingen og den
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enzymatiske hydrolyse er blevet valideret og analyseret sammen med en omfattende

sensitivitet og usikkerhedsanalyse [5, 6]. Modellerne inkluderer masse- og energibal-

ancer, samt en kompleks kinetikbeskrivelse af de kemiske reaktioner. Dynamiske

strømningsberegninger bruges til at modellere de forskellige transport fænomener

internt i reaktorerne. Dette projekt viser for første gang validerede data fra et demon-

strationsanlæg, hvor et omfattende modelbibliotek som kan bruges til optimerings-,

regulerings- og overvågningsformål. Den dynamiske model for forbehandlingen

bruges både som et valideringsværktøj for målinger samt at danne indirekte værdier

for vigtige biomasse komponenter som ikke måles under processen, f.eks. inhibitorer

[5].

Anden del af projektet omhandler en prisoptimeringsmodel for hele anlægget,

som kan optimere for forbehandlingstemperatur, enzymdosering under hydrolyse

og gær tilsætning ved fermenteringen [7]. Under forbehandlingen af biomassen

bliver der dannet bi-produkter som kan inhibere både i den enzymatiske hydrolyse

og fermenteringen. Derfor bliver bioraffinaderiet modelleret samlet, så man kan

relatere påvirkninger mellem de enkelte omdannelsesprocesser. Følsomheds- og

usikkerhedsanalyse er også udført for at identificere de kritiske modelparametre

og hvilke biomassekomponenter som er vigtige for at opnå høj nøjagtighed. Monte

Carlo simuleringer og Latin Hypercube Sampling (LHS) er udført for biomassesam-

mensætningen og kinetik parametre i metodikken beskrevet i [5, 6, 8, 9].

I den sidste del af projektet er der udviklet 2 reguleringer af L1 adaptive output

feedback controller [10]: en for forbehandlingstemperatur af biomasse [11] og

en anden for pH-styring under den enzymatiske hydrolyse [12]. Omdannelsen af

biomasse har en stærk afhængighed af disse ikke-lineære parametre som desuden

ændrer nominelle værdier. De adaptive reguleringer viser sig at kunne performe

bedre over et større driftområde uden brug for rekalibrering.
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Chapter 1

Introduction

1.1 Background

Petroleum supplies most of the liquid fuel demand in transportation and industry

sectors [13]. Projections show that oil prices will rise in the near future because of an

increase in energy consumption as the world continues to develop, and also due to

depletion of easily accessible resources. The new reserves require a more advanced

and expensive technology to extract, leading to a higher price. Nowadays society

depends on oil, which is a limited resource with a long life cycle that will eventually

vanish. World oil depletion models show that reservoirs would be exhausted by mid

century [14, 15].

Burning fossil fuels along with other industrialized activities such as cattle

ranching and deforestation, contributes significantly to the emission of gases with

greenhouse effects, which are responsible for global warming. It is nearly impossible

to keep the worldwide average temperature increase below 2 ◦C above pre-industrial

times by the end of the century [16, 17]. Studies show that concentration of carbon

dioxide in atmosphere has been constantly rising since the industrial revolution

with negative effects on climate, such as ice sheets melting, ocean acidification,

permafrost melting [18].

In order to counteract the dangers of fossil fuels, and to create a sustainable

society, governments and global organizations channeled extensive endeavors into

the development of renewable and alternative sources of energy. All these efforts

are supported by the Kyoto Protocol, an international treaty that brings together 192
countries to reduce greenhouse gases emissions [19].

Biofuels are thought to significantly contribute to a greener environment, and

started to play a major role in the transportation sector. Bioethanol is considered

the primary liquid fuel alternative because it can be blended with normal gasoline,
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and is compatible with over 80 % of nowadays automobile engines [1]. Bioethanol

is environmentally friendly, and sustainable with a short life cycle of raw material.

Greenhouse gases emissions are reduced by 86 % compared to normal gasoline when

cellulosic ethanol is used as liquid fuel [20].

The first generation bioethanol plants have been technologically established for

many decades, and are exploited at commercial scales mainly in Brazil and USA,

which are the top ethanol producers in the world. First generation plants rely on

crops, such as sugar cane or corn, that are also used in the food industry. The massive

investments into US ethanol plants increased the corn demand dramatically causing

its price to triple [21]. The food versus fuel debate limits the further development of

first generation bioethanol plants.

In contrast, second generation technology utilizes agricultural wastes such as

wheat straw, bagasse or corn stover. This feedstock has a lower purchasing price

and eliminates the food versus fuel debate. After many successful laboratory and

pilot scale experiments, companies started to invest into scaling up the technol-

ogy. The largest energy company in Denmark, i.e. DONG Energy A/S, created

Inbicon A/S, a biotechnology company that focuses on second generation bioethanol.

During the United Nations Climate Change Conference from 2009 in Copenhagen,

Denmark (COP15), Inbicon opened the largest demonstration scale second gener-

ation bioethanol plant in the world at that time, capable of processing 4 th−1 of

raw biomass [3]. The plant is situated in Kalundborg, Denmark, and is integrated

with Asnæs power plant following the Integrated Biomass Utilization System (IBUS)

principle for costs reduction [4]. The bioethanol plant receives steam and process

water from the Asnæs plant, and returns lignin bio-pellets that are co-burnt with

coal for steam production. The second generation bioethanol technology reached

commercial reality in 2012 [3], and in October 2013 the first commercial scale plant

was commissioned in Crescentino, Italy by Beta Renewables, another biotechnology

company [22].

Figure 1.1 shows a worldwide distribution of second generation bioethanol

plants. The main development areas are in the USA, Brazil, and Europe. There are

three main biorefineries already producing cellulosic ethanol at commercial scale in

USA: Abengoa Bioenergy, DuPont, and POET-DSM running mainly on corn stover

as feedstock, which is natural since USA is the world leader in corn production.

Brazil follows with two other commercial scale refineries: GranBio and Iogen Energy

utilizing sugarcane bagasse. Brazil is a leader in sugarcane production and first

generation biofuels. European companies focus on research, comprising many

centers for biotechnology development and following a licensing business model.

Beta Renewables and Inbicon are two major European competitors with plans to
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Figure 1.1: Second generation biorefineries around the world.

build commercial scale plants in Europe such as Måbjerg Energy Concept in Denmark

(Inbicon) and Energochemica in Slovakia (Beta Renewables). Masdar Institute is

also an important research center in cellulosic bioethanol situated in the Middle

East where waste from palm trees is converted into biofuels. China plans to build

commercial scale plants by licensing European technologies. Table 1.1 summarizes

all commercial scale plants in operation nowadays and expected to open in the

following years.

The biomass is transformed into biofuel through a series of conversion steps:

pretreatment, enzymatic hydrolysis, sugar fermentation, and purification [4]. Figure

1.2 illustrates the focus of the Inbicon technology, i.e. a unique hydrothermal

pretreatment with steam, the enzymatic hydrolysis with commercial Novozymes

enzymes such as Cellic CTec, and C5 and C6 co-fermentation with Genetically

Modified Organisms (GMO). The mechanical treatment and purification steps are

borrowed from first generation plants with little adjustments. The major difference

between generations is the feedstock type, i.e. agricultural wastes instead of crops.

Research work is also performed towards a third generation biofuel technology

based on aquatic autotrophic organisms as feedstock, e.g. micro-algae or seaweeds

[23]. Algae main characteristics are: rich in lipid content, easy to cultivate, and

rapid growth rates, making them perfect candidates for biofuel production [24]. The

third generation ethanol is at pilot scale stage at this time, and expected to flourish
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in the upcoming years. The most advanced algae refinery is BioProcess Algae LLC

located in USA, which is utilizing the CO2 waste from a standard ethanol plant.

Biofuels are competitive in the liquid fuel market as long as oil prices are very

high, or in the presence of government incentives and mandates [25]. Oil price

reached minimum levels in 2009 and 2015. In such cases it is recommended to

upgrade biorefineries to produce other chemicals with higher added value in order

to remain competitive in a cheap oil environment [26]. For example, there is also

a trend in research for adding value to lignin. In a second generation process, the

remaining lignin from the feedstock could supply more than the entire energy for

biofuel production [27]. Potential high-value products from isolated lignin include

low-cost carbon fiber, engineering plastics and thermoplastic elastomers, polymeric

foams and membranes, as well as a variety of fuels and chemicals all currently

sourced from petroleum [28].

1.2 Motivation and Project Goals

The current research project has been financed by DONG Energy A/S in collab-

oration with the Danish Innovation Fund within the Industrial PhD program [29].

The main goal of the study is to improve and differentiate the Inbicon technology

from its competitors by developing supervisory scientific tools for advanced control,

optimization, and monitoring following a model-based design methodology.

Most industrial companies rely on static statistical models for improving the

process. Such mathematical models are simpler and easier to develop but have

many other disadvantages: offer no insights into process understanding as the model

is entirely empirical, contain no time dynamics necessary for control design and

Table 1.1: Commercial scale second generation cellulosic ethanol plants in operation nowa-

days and expected to open soon [2].

Company Location Year

Beta Renewables Italy 2013

Abengoa Bioenergy USA 2014

POET-DSM USA 2014

GranBio Brazil 2014

DuPont USA 2015

Iogen Energy Brazil 2015

Måbjerg Energy Concept (Inbicon) Denmark 2017

Energochemica Slovakia 2017

Anhui M&G Guozhen Green Refinery China -
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monitoring purposes, a small change into the experimental setup can invalidate

the model, and sensitivity and uncertainty analysis to assess prediction reliability is

difficult.

Another aspect is the process scale-up challenge. Very often empirical models

developed at laboratory scale do not resemble the process behavior at a higher

scale, i.e. demonstration or commercial. When scaling up a process, uniformity

assumptions can fail, i.e. transport phenomena appear [30] creating temperature

and pH gradients in large reactors. Another problem at higher scales is the delay

time between tanks, also related to possible plug flow phenomena, which cannot

be neglected anymore in control design. All published data by the time of this

project dealt only with laboratory scale measurements, and all available models

were developed based on small scale experiments.

In contrast, this work employs first principle dynamic modeling for industrial scale

plants. It takes much more work to build such models than purely statistical methods

and requires a more solid understanding of the root causes of the phenomenon but it

is potentially more accurate [31]. The model library is then exploited to run dynamic

simulations, design an optimization layer, formulate advanced control strategies,

and construct real-time monitoring tools. The relation between the model and the

scientific tools from this work is shown in Figure 1.3. Diagnosis and plant design

methods are sown as possible extensions of the current work.

Figure 1.2: First and second generation biorefineries. The Inbicon technology is focused on

hydrothermal pretreatment, enzymatic hydrolysis, and partially on C5 and C6 co-fermentation

with GMO. Mechanical treatment and purification are borrowed from first generation plants.
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Figure 1.3: Dynamic modeling at the core of model-based scientific tools.

The specific goals of this research are:

1. To build a dynamic modeling library for pretreatment, enzymatic hydrolysis

and fermentation. The library is designed to be modular in order to allow

the user to change the configuration or add various components to the plant

architecture. The models are validated against real data extracted from the

Inbicon demonstration scale plant, and their reliability is assessed through a

comprehensive sensitivity and uncertainty analysis.

2. To analyze the biorefinery in an integrated manner for establishing an overall

optimal operation. The bioethanol production process consists of several sub-

processes. Most studies analyze and optimize each conversion step individually

in a decoupled manner without taking into account the trade-offs between

stages. Most often the found optimal operation is in fact sub-optimal when

comparing to the optimal point of an integrated system.

3. To explore the dynamic nature of the model to allow improved control design:

the low level closed loop controls could be better tuned, or more advanced

controllers such as model predictive and optimal control could be added to the

overall plant automation layout. The objective is that this would be achieved

in a simulation environment before real implementation.

4. To exploit the model to construct soft-sensors and state estimators for mon-

itoring variables of interest that are difficult to obtain in real-time in reality.

Biomass composition is measured in laboratory based on sample extractions

either with Near Infrared (NIR) or High-Performance Liquid Chromatography
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(HPLC) instruments. Such operations are time consuming posing delays of

hours till the results are accessible. In contrast, a state observer can estimate

the biomass composition in real-time at any point in the process, and improve

prediction when measurements become available.

1.3 Thesis Outline

The thesis is written as a collection of publications. The main body text contains

introductory principles and main research results, while the entire methodology

is detailed in the appended articles. The thesis starts with a summary of all main

contributions presented in Chapter 2. The dynamic modeling library for large scale

biorefineries follows in Chapter 3. Only pretreatment and enzymatic hydrolysis

are of interest since they constitute the core of the Inbicon technology. However,

the modeling library is completed with a co-fermentation and distillation model

developed in collaboration with DTU as a separate project, which is not included in

this thesis. The approach and analysis from the modeling chapter creates a complete

framework suitable for large scale processes that can be reiterated for any other

complex system.

The optimization study comes next in Chapter 4. Trade-offs between conversion

steps are identified, as well as the advantages of an optimization layer over a

traditional operation based on a fixed recipe in liquefaction and fermentation. The

optimizer provides setpoints for pretreatment temperature, enzyme dosage and

yeast seed. The sensitivity analysis of the pretreatment model shows that reaction

temperature has a large impact on downstream processes. At the same time, enzymes

and GMO yeast have the highest costs in biorefinering, and it would be beneficial to

save on these.

Enzymatic activity is highly sensitive to pH as indicated by the enzymes manu-

facturers. Advanced methods for controlling the key process parameters, i.e. pH in

liquefaction and pretreatment temperature, are presented in Chapter 5. The thesis

ends with conclusions and a list of perspectives and future ideas that could follow

this work.





Chapter 2

Summary of Main Contributions

Journal Articles

The contributions of this research related to the modeling library and the opti-

mization layer have been published (at the time of thesis submission, the optimiza-

tion paper was undergoing the peer-review process) in three journal articles that

were included in this thesis as appendices A, B and C:

(A) R. M. Prunescu, M. Blanke, J. G. Jakobsen, and G. Sin. “Dynamic modeling and

validation of a biomass hydrothermal pretreatment process - A demonstration

scale study”. AIChE Journal (2015). DOI: 10.1002/aic.14954.

This study publishes for the first time a dynamic model for hydrothermal

pretreatment with steam that is validated against demonstration scale real

measurements. The model embeds mass and energy balances together with

computational fluid dynamics for describing a large scale thermal reactor for

biomass pretreatment. A comprehensive model analysis follows for assessing

its sensitivity and uncertainty with respect to both feed and kinetic parameters.

The dynamic trends of the process are well captured making the model suitable

for developing advanced control and monitoring strategies for large scale

plants. As an application of the model, the study includes the development of a

state observer for estimating biomass components that are difficult to measure

in reality.

(B) R. M. Prunescu and G. Sin. “Dynamic modeling and validation of a lignocellu-

losic enzymatic hydrolysis process - A demonstration scale study”. Bioresource
Technology 150 (Dec. 2013), pp. 393–403. DOI: 10.1016/j.biortech.2013.

10.029.

http://dx.doi.org/10.1002/aic.14954
http://dx.doi.org/10.1016/j.biortech.2013.10.029
http://dx.doi.org/10.1016/j.biortech.2013.10.029
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This work formulates a complex dynamic model for enzymatic hydrolysis of

cellulosic and hemicellulosic fibers suitable for large scale liquefaction reactors.

The model includes a competitive conversion scheme for sugar production

that was extended from previous works with hemicellulose hydrolysis, pH

and viscosity calculators, and pH dependency on reaction kinetics. For the

first time, model predictions are compared against demonstration scale real

data extracted from the Inbicon plant. A sensitivity and uncertainty analysis is

also performed to study modeling bottlenecks and for identifying the sensitive

variables that affect most the uncertainty of model predictions.

(C) R. M. Prunescu, M. Blanke, J. G. Jakobsen, and G. Sin. “Model-Based Plantwide

Optimization of a Large Scale Lignocellulosic Bioethanol Plant”. Submitted to
AIChE Journal (2015).

The scientific novelty of this work is the design of a plantwide model-based

optimization layer for a large scale biorefinery. The objective is to maximize

the economic profit by searching for the best trade-off between the conversion

steps. The optimization solver can be triggered whenever there is a change

in prices or feedstock composition, adapting the plant to market and oper-

ation conditions in order to maximize profitability at any given time. The

optimization layer undergoes a sensitivity and uncertainty analysis for finding

the variables that affect most the optimal point, and hence the economical

profit. It is found that the optimization strategy is capable of reducing the

uncertainty on the profit curve when compared to a traditional operation, and

also allows running the plant in a wider nominal range with small impact on

profitability. Feedstock composition impacts more on profit than model kinetics

showing the need of accurate measurements of its composition.

Peer Reviewed Conference Proceedings (Web of Science)

The results concerning the advanced adaptive control strategies for process key

parameters were disseminated in two peer-reviewed IEEE conference papers that

were included in this thesis as appendices D and E:

(D) R. M. Prunescu, M. Blanke, and G. Sin. “Modelling and L1 Adaptive Control of

Temperature in Biomass Pretreatment”. Proceedings of the 52nd IEEE Conference
on Decision and Control. Florence, Italy, 2013, pp. 3152–3159.

It has been shown in the sensitivity analysis of the pretreatment process that

thermal conditions impact all downstream processes. Maintaining a steady

reaction temperature, as well as quick reference tracking as imposed by the
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optimization layer is of interest in this study. The main contribution refers to

the application of an L1 adaptive output feedback controller for this type of

process. The tuning method is also new consisting of numerical optimization

for minimizing the Integral Absolute Error (IAE) cost function with respect to

the controller parameters.

(E) R. M. Prunescu, M. Blanke, and G. Sin. “Modelling and L1 Adaptive Control

of pH in Bioethanol Enzymatic Process”. Proceedings of the 2013 American
Control Conference. Washington D.C., USA, 2013, pp. 1888–1895.

Enzymatic activity is sensitive to the pH of the medium. The titration curve is

highly nonlinear and poses a difficult challenge for any control strategy. The

contribution from this work refers to the application of an L1 adaptive output

feedback controller for enzymatic pH. The tuning method is new for this kind

of processes, and relies on closed loop transfer function analysis that takes into

account the interactions between the output predictor, the control signal filter

and adaptation law.

Unpublished Work

There are two unpublished contributions included in this thesis:

(Section 3.4.4) A fast pH calculator with guaranteed accuracy for dynamic simu-

lations:

pH is a key process parameter both in enzymatic hydrolysis

and fermentation. The novelty from this section refers to a pH

calculator that converges in a known amount of steps depend-

ing on the demanded accuracy. The algorithm is based on the

charge balance of the liquid phase, and uses a modified bisection

method that advances in logarithmic space for finding the pH

level. The dynamic nature of simulations is also exploited, taking

into account the solution from the previous simulation step in

order to find tight bounds around the possible solution. The pH

calculator has proven to be reliable and fast with guaranteed

accuracy.

(Section 5.4) An optimal controller for the feed profile in glucose fermenta-

tion:

Fermentation reactors have a large volume and it can take days

to fill the tanks till the desired hold-up, time when reactions
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already take place. The contribution from this section shows

how to compute an optimal feed rate profile such that inhibitors

accumulation is avoided and yeast seed is minimized. The profile

is found by formulating an Optimal Control Problem (OCP) and

then compared to a classical constant feed strategy. The greatest

benefit of a variable feed rate is that yeast amount is significantly

reduced contributing to lower costs in fermentation.

Conference Presentations

All contributions were also disseminated in prestigious conferences through

specialized session talks:

• R. M. Prunescu, M. Blanke, J. G. Jakobsen, and G. Sin. “Dynamic Modeling,

Advanced Control, Diagnosis and Optimization of Large-Scale Lignocellulosic

Biorefineries”. Proceedings of the AIChE 2015 Annual Meeting. Salt Lake City,

UT, USA, 2015.

• R. M. Prunescu, M. Blanke, J. G. Jakobsen, and G. Sin. “Plantwide Model-Based

Optimization of a Large Scale Second Generation Biorefinery”. Proceedings of
the AIChE 2015 Annual Meeting. Salt Lake City, UT, USA, 2015.

• R. M. Prunescu, M. Blanke, J. G. Jakobsen, and G. Sin. “Model-Based Filtering

of Large-Scale Datasets - A Biorefinery Application”. Proceedings of the AIChE
2014 Annual Meeting. Atlanta, GA, USA, 2014.

• R. M. Prunescu and G. Sin. “Dynamic Simulation, Sensitivity and Uncer-

tainty Analysis of a Demonstration Scale Lignocellulosic Enzymatic Hydrolysis

Process”. Proceedings of the AIChE 2014 Annual Meeting. Atlanta, GA, USA,

2014.

• R. M. Prunescu, M. Blanke, and G. Sin. “Advances in Monitoring, Diagnosis

and Control of Biorefineries”. Proceedings of the 9th World Congress of Chemical
Engineering. Seoul, South Korea, 2013.



Chapter 3

Dynamic Modeling and Analysis

3.1 Introduction

This chapter presents the main results from two scientific journal publications

included in appendix as Paper A and Paper B. The focus is placed on biomass

pretreatment and enzymatic hydrolysis, which are the core processes of the Inbicon

technology. The co-fermentation model constitutes the subject of a separate project,

while the purification technology is state of the art with no customization for Inbicon.

Therefore the liquefaction and distillation processes are not included in this work.

The chapter starts with a detailed description of the Inbicon second generation

bioethanol plant, followed by the model analysis methodology. The entire mathe-

matical model library is then summarized, and the main sensitivity and uncertainty

analysis results are discussed. The chapter ends with conclusions and suggestions

for future modeling improvements and maintenance.

3.2 Process Description

This section describes the composition of feedstock used in second generation

biorefineries including technical details for each biomass conversion step, i.e. pre-

treatment, enzymatic hydrolysis, co-fermentation and purification.

3.2.1 Biomass Characterization

Lignocellulosic biomass consists of cellulose, hemicellulose, lignin, ash, and

other residues in negligible amounts [37]. Hemicellulose further divides into xylan,

arabinan, galactan, mannan and acetyl groups [38]. Table 3.1 shows different

biomass compositions depending on agricultural waste type, e.g. bagasse, wheat

straw, miscanthus, corn stover, or quinoa stalks. Even if the biomass is of the same
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type, it can still have a different percentage distribution of its components due to

seasonality, harvest location, amount of rain, or used fertilizers for growing the crops.

The solid composition of biomass is typically measured with NIR instruments based

on laboratory samples, and is essential for determining the biofuel potential for each

biomass type [39]. The feedstock has an initial dry matter of over 85 %.

Table 3.1: Composition of different raw biomass types in percentage of dry matter. Some

components were not measured (n/m).

Biomass Cellulose Xylan Arabinan Lignin Ash Acetyls Other Reference

Wheat straw 39.8 24.5 2.8 22.6 4.2 n/m 6.1 [40]

Wheat straw 42.1 23.4 1.9 21.6 2.1 n/m 8.9 [41]

Corn stover 35.0 18.5 n/m 13.9 3.8 3.2 25.6 [42]

Corn stover 34.0 19.2 2.5 12.3 4.7 2.9 24.4 [43]

Bagasse 39.0 21.8 1.8 24.8 3.9 3.3 5.4 [43]

Miscanthus 38.2 20.9 1.5 26.4 2.6 4.1 6.3 [44]

Quinoa stalks 35.7 15.4 3.5 21.9 4.2 2.7 16.6 [38]

3.2.2 The Inbicon Biorefinery

The Inbicon biorefinery is integrated with Asnæs power plant (also owned by

DONG Energy A/S) following the IBUS principle [4]. The symbiosis between

the refinery and the plant is illustrated in Figure 3.1. The biorefinery receives

steam at 18 bar for a low cost, and returns lignin-pellets to be co-burnt with coal

in the power plant for steam and power generation. The steam fuels the biomass

pretreatment and purification processes. Figure 3.1 illustrates the first version of

Inbicon where the C5 sugars from the pretreatment process were transformed into

molasses along with wasted yeast from fermentation, and sold to local farmers to

feed their cattle. The conversion steps are: pretreatment, enzymatic hydrolysis

or liquefaction, fermentation, and purification. Bioethanol is the main refined

product, followed by two other by-products, i.e. C5 molasses and lignin-pellets. The

first version of the Inbicon demonstration scale plant produces 576 kg of biofuel,

1484 kg of molasses, and 1740 kg of lignin-pellets from 4 t of dry biomass, which is

the nominal throughput per hour of the plant [3]. The amount of lignin-pellets

generates enough energy to cover the requirements for biofuel production [27].

The second version of Inbicon is shown in Figure 3.2. The C5 sugars are no

longer transformed into molasses but rather used in co-fermentation with GMO

yeast. The stream with C5 sugars by-passes the enzymatic hydrolysis tanks and is

directed to fermentation. Results show that the latest Inbicon version increases the
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Figure 3.1: The integration of the first version of Inbicon with a local power plant following

the IBUS principle. The characteristics of the first version are: glucose fermentation, while

the C5 sugars are sold as molasses to local farmers.

Figure 3.2: The second version of Inbicon. Instead of selling C5 sugars as molasses, they are

co-fermented with C6 sugars using enhanced GMO yeast for ethanol production.
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ethanol yield by 40 % to approximately 806 kg per 4 t of dry straw [45]. The same

conversion steps apply as in the first version.

3.2.3 Pretreatment

Biomass pretreatment is the key process to unlocking low-cost cellulosic ethanol

[46]. Lignin or the wooden part supports the plant structure, and also protects the

cellulosic fibers. The scope of the pretreatment process is to open the biomatrix by

relocating the lignin, and to partially hydrolyze the hemicellulose in order to expose

cellulosic fibers for the enzymatic process downstream [40]. There are various

methods of lignocellulosic biomass pretreatment: hydrothermal, autohydrolysis, acid

or alkaline hydrolysis [44], SO2-catalyzed steam pretreatment [47] and organosolv

processes [48]. The most cost effective and environmentally friendly method is the

hydrothermal pretreatment process, which requires no additional chemicals [49],

and has already been tested at larger scales by many companies, such as Inbicon.

The Inbicon pretreatment process is continuous, and occurs in a long cylindrical

thermal reactor pressurized with saturated steam from the nearby power plant.

The biomass is pushed horizontally from inlet to outlet with a constant speed

through a steam atmosphere. Biomass pretreatment is sensitive to retention time

and temperature [50], which can be adjusted accordingly. Typical temperatures lie

between 160 ◦C to 210 ◦C with retention times between 5 min to 15 min. A longer

retention time requires a lower temperature, and vice-versa. A constant horizontal

speed translates into a constant throughput or retention time, which is desired in a

large scale facility. The reactor is equipped with a controller for setting the reaction

temperature by changing the pressure inside the thermal reactor [12]. The pressure

is controlled by injecting saturated steam through the bottom of the tank near the

inlet from a fresh steam supply pipe. Before entering the reactor, the biomass is

brought to the corresponding pressure by a particle pump, which pressurizes an

amount of biomass with recycled steam from the thermal reactor every 2 min.

Hemicellulose hydrolysis creates the following by-products during pretreatment:

xylose and xylooligomers, which are important to predict because they represent

the C5 sugars yield in co-fermentation, and are also strong liquefaction inhibitors

[51]; sugar degradation products such as furfural and 5-HMF, which inhibit the

fermentation process [52]; organic acids, e.g. acetic, succinic or lactic acid, which

disturb the pH of the medium in liquefaction and fermentation [6]; and pseudo-

lignin, a spherical droplet with lignin like structure, created by the reaction between

inhibitors and carbohydrates [53]. These facts show that the pretreatment products

affect all downstream processes.

After pretreatment, the biomass is washed and separated into solid and liquid
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parts by a screw press. The solid part is rich in cellulose, while the liquid part

contains the C5 sugars that were produced due to hemicellulose hydrolysis.

3.2.4 Enzymatic Hydrolysis

A conveyor belt transports the cellulosic fibers to the enzymatic hydrolysis reactor.

The Inbicon liquefaction process is also continuous, and occurs in several reactors

connected in series. The first tank is a 5-chambers hydrolysis reactor presented

in [54] that was specifically designed for high dry matter liquefaction of biomass

preferably around 35 % [55]. There is an abrupt change in viscosity in the first hours

of hydrolysis allowing the slurry to be easily pumped afterwards. The rheology

phenomena is well documented in torque measurements, which decrease exponen-

tially [56]. The following tanks are conventional Continuous Stirred Tank Reactors

(CSTRs) linked in series to meet the necessary hydrolysis time of 140 h. There are

many commercially available enzymes, e.g. Cellic CTec2 [57], Cellic CTec3 [58],

Cellic HTec3 [59]. The hydrolysis retention time can be adjusted either by changing

the tank hold-ups (preferably) or by setting a different refinery throughput.

Nowadays enzymes are capable of hydrolyzing both cellulosic and hemicellulosic

fibers. Cellulose hydrolysis produces glucose with cellobiose intermediate product,

while hemicellulose hydrolysis is more complex leading to xylooligomers, xylose

and organic acids production. The enzymatic mixture is a cocktail of cellulase and

xylanase. Cellulase hydrolyzes cellulose, and consists of exo-β -1.4-cellobiohydrolase,

endo-β -1.4-glucanase, and β -glucosidase [60]. Cellulose is a long solid polymer

or chain made up of glucose units. The endo-β -1.4-glucanase randomly breaks

internal bonds from the cellulosic fibers creating new chain ends. The exo-β -1.4-

cellobiohydrolases further cleave the endo-glucanase products producing cellobiose.

The β -glucosidase enzymes breaks cellobiose into glucose. The xylanase enzymes

behave similarly with xylooligomers intermediate product but along with hemicellu-

lose hydrolysis it also releases acetyls, which produces acetic acid affecting the pH

of the medium in the reactor.

The enzymatic activity is sensitive to pH and temperature following a bell shaped

efficiency curve with a single peak [11]. Temperature control is easily achieved,

while pH control has many challenges due to the nonlinearities in the titration curve

[11]. All enzymatic hydrolysis reactors have temperature and pH controllers. The

degree of biomatrix opening or treatment severity, and some pretreatment inhibitors,

i.e. xylooligomers and xylose, reduces the enzymatic activity. Also, liquefaction is a

competitive mechanism with product inhibition. Enzymes can be inhibited but also

irreversibly deactivated in time and due to wrong temperature exposure [61].
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(a) Fermentation process consisting of 4 phases: inoculum (10 h), fed-batch (60 h), batch (120 h),
and unload (70 h).

(b) An example of a fermentation process with 5 scheduled reactors. The reactors are scheduled
such that the liquefied fiber inflow and ethanol outflow stay constant with minimum interrupts.

Figure 3.3: Fermentation process: phases and scheduling.

3.2.5 Fermentation

The C5 liquid part from pretreatment and the C6 sugars from the enzymatic

hydrolysis are mixed in large tanks that have a maximum capacity of 250 m3. The

C5 and C6 co-fermentation process has four stages illustrated in Figure 3.3(a):

inoculum, fed-batch, batch, and unload. In the inoculum phase 10 t of hydrolyzed

fibers are mixed with yeast and water for an initial biomass growth. The inoculum

phase ends when all inhibitors are consumed in maximum 10 h. The fed-batch stage

then starts for filling the entire fermentation reactor with hydrolyzed fibers and C5

liquid fraction from pretreatment. It can take up to 60 h to reach the desired reactor

hold-up, time when reactions already take place. Once the tank is filled, the batch

step commences. Both C5 and C6 sugars are depleted at this stage in about 120 h.

The reactor is then unloaded and the stream is directed to purification.
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The fermenters have temperature and pH controllers. Typical operation condi-

tions are 35 ◦C and 5.5 pH units, which are optimal for the GMO yeast. The enzymes

are still active during fermentation making the system a simultaneous saccharifi-

cation and fermentation process. The liquefied fibers still contain solid cellulose

and hemicellulose that were not entirely hydrolyzed during liquefaction because of

product inhibition. As sugars are depleted in fermentation for ethanol production,

the sugars inhibitory effect decreases, and enzymes continue the liquefaction process

simultaneously.

In large scale facilities, fermentation runs in a batch manner requiring more

reactors to run in parallel according to a scheduling algorithm as illustrated in

Figure 3.3(b). The operation is aligned such that input and output streams flow

continuously with minimum interruptions.

3.2.6 Purification

The first distillation column separates lignin from the stream. The lignin is sent to

a local evaporation unit, which creates the lignin bio-pellets. The second distillation

column purifies ethanol further, which reaches 99.5 % purity after the molecular

sieves. The bioethanol is stored in underground tanks till an oil company transports

them to their facilities to be blended with regular gasoline. The bioethanol is sold at

petrol stations as E10, E15, E20, or E85, the number indicating the percentage of

ethanol from the mix, e.g. E10 contains 10 % bioethanol and 90 % gasoline.

3.3 Model Analysis Framework

The model analysis framework is summarized in Table 3.2, which is detailed in

the next 7 steps:

1. Formulate the mathematical model structure as a system of nonlinear Ordinary

Differential Equations (ODEs). Identify states, inputs, outputs and model

parameters:
ẋ = f (x,u,θ)
y = g(x,θ)

(3.1)

f is an array of nonlinear functions of states x, inputs u, and parameters θ . The

outputs y are defined as nonlinear functions g of states x and model parameters

θ .

2. The second step is to calibrate the model considering the entire set of param-

eters. This system identification exercise follows the nonlinear least squares

method for grey-box models, which should give the set of parameters that has
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the smallest sum of squared errors between model predicted output and actual

measurements [62]:

min
θ

N

∑
i=1

e2
i (3.2)

ei is the estimation error at sample time i defined as ei = yi − ŷi, the real

measurement yi and the predicted output ŷi. In the present case, this is a

nonlinear least squares problem and local minima can be obstacles.

3. The third step is to investigate which model parameters could be identified

given the input and the model structure [63]. This selection is achieved

through assessment of sensitivity of the partial derivatives of the cost function

with respect to each model parameter. The delta mean square δ msqr
ik defined by

[64] is a measure of sensitivity suitable for time varying signals:

δ msqr
ik =

√
1
N

s>nd,iksnd,ik (3.3)

where k is the parameter index, i is the model output index, N is the number of

samples, and snd,ik is a vector with the non dimensional sensitivity calculated

in each sample:

snd,ik =
∂yi

∂θk

θk

sci
(3.4)

∂yi/∂θk represents the output variation with respect to parameter θk, and sci

is a scaling factor with the same physical dimension as the corresponding

observation in order to make this measure non dimensional. In this study, the

scaling factor is chosen as the mean value of output i:

sci =
1
N

N

∑
1

yi(k) (3.5)

After computing the sensitivities δ msqr, all parameters are ranked with respect

to their value of δ msqr. Parameters that have low sensitivity are more uncertain

than those with high sensitivity and would not contribute to model accuracy.

In case of systems with multiple outputs, a cumulative sensitivity measure is

defined as:

δ msqr
k =

ny

∑
i=1

δ msqr
ik (3.6)

The relevant subset of parameters is selected based on δ msqr being higher than

a threshold.

4. The reduced set of parameters is properly estimated following the same min-

imization technique from step 2. In this case, the real measurements are
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in fact NIR or HPLC laboratory datasets from the demonstration plant. The

whole dataset is split into estimation and validation subsets. The parameter

estimation procedure runs on the estimation dataset. The correlation matrix

and standard deviations of the estimates are also calculated.

5. This step quantifies the prediction uncertainty. Having the covariance matrix

and standard deviations from the previous step allows LHS with correlation

control [65]. The feed parameters is another source of uncertainty and is

included in this analysis. Monte Carlo simulations are then run with sampled

parameter values and the 5th-50th-95th percentiles of the model predictions

are found.

6. A global sensitivity analysis follows by fitting a linear model from parameters

to model predictions from the Monte Carlo simulations [66, 67]:

yregi = a+∑
k

bkθk (3.7)

where yregi is the ith output, and a and bk are the linear model parameters. The

standardized regression coefficients β are a global sensitivity measure, and are

defined as:

βk =
σθ̂Rk

σyi

bk (3.8)

where βk is the β coefficient, σθ̂Rk
is the standard deviation of the parameter

estimate, σyi is the standard deviation of output i, and bk is the linear model pa-

rameter. βk is an indicator for how much the parameter uncertainty contributes

to the prediction uncertainty.

7. The model estimation error or the residuals are analyzed in this step. A simu-

lation is run with the estimated parameters using the entire set of data (both

validation and estimation sets). The residuals distribution and autocorrelation

are calculated in order to assess the quality of model predictions. A good

model captures most of the signal in measurements and is characterized by

residuals being Gaussian with uncorrelated increments.

The sensitivity and uncertainty analysis based on Monte Carlo simulations has

been successfully applied in numerous situations, e.g. in enzymatic biodiesel pro-

duction [68], cellulose hydrolysis [8], wastewater plant treatment [66], or lignocel-

lulosic ethanol plants [9].
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Table 3.2: Model analysis methodology.

# Step Description Output

1 Model

formulation

Define model structure through ODEs; ẋ = f (x,u,θ)
Define model outputs; y = g(x,θ)
Define model parameters; θ
Define model states; x

Define model inputs. u

2 Model

initialization

Initialize all model parameters to obtain a

good working model fit;

θ0

3 Sensitivity

analysis

Calculate sensitivity measure; δ msqr

Find an identifiable parameter subset. θR0

4 Parameter

estimation

Identify parameter subset; θ̂R

Correlation matrix; Rθ

Standard deviation for parameters. σ

5 Uncertainty

analysis

Calculate model prediction uncertainty

through Monte Carlo simulations;

5th-95th

percentile

6 Global

sensitivity

analysis

Standardized regression coefficients. β

7 Residual

analysis

Run simulation with the estimated

parameters and using the entire dataset;

Check probability distribution of model

estimation errors or residuals;

Compute the autocorrelation function.

3.4 Mathematical Model Development

This section presents the dynamic model library. All models are based on mass

and energy balances with complex biomass conversion routes. The models are

grouped by processing step, i.e. pretreatment, liquefaction and co-fermentation.

This study does not include the purification stage due to the fact that the distillation

part is state of the art technology with no Inbicon customization.

3.4.1 Pretreatment

The pretreatment thermal reactor is illustrated in Figure 3.4 where the steam

and biomass layers are distinguished. The steam layer is considered uniform and is

treated as a single unit. The steam atmosphere has been modeled in Paper D where
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Figure 3.4: Biomass and steam create two distinct layers in the thermal reactor. The biomass

layer employs computational fluid dynamics tools for modeling, while the steam layer is

treated as a single cell.

the mass and energy balances are established [12]. The steam state variables are:

steam mass and enthalpy (energy). The total mass of biomass is tracked through

another state variable such that the empty volume from the reactor can be calculated.

Steam expands in empty volume with very fast dynamics, therefore it is considered a

cell with uniform properties. If the steam is saturated then one parameter is enough

to derive any other steam property. If the steam is superheated or wet then two

parameters are required to derive any other steam property. All steam properties are

calculated based on linear interpolation of tabular data defined by The International

Association for the Properties of Water and Steam - Industrial Formulation 1997

(IAPWS IF97) [69].

The biomass layer is split into multiple cells using simplified Computational

Fluid Dynamics (CFD) tools for modeling the composition and temperature profiles.

Figure 3.4 illustrates this concept. The entire modeling methodology is described in

Paper A. The CFD tools refer to the Convection Diffusion equation for describing the

transport phenomena [70]:

∂C
∂ t

=−∇(vC)+∇(D∇C)+R (3.9)

C is the variable of interest, i.e. the concentration of a certain chemical compound

expressed in gkg−1 of slurry, ∇ is the gradient operator, v is the transport speed

vector, D is the diffusion coefficient, and R is a vector with all reaction rates.
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Several assumptions are made for simplifying Equation (3.9). The horizontal

pushing speed is set constant in order to ensure a uniform throughput. A tank of 12 m
with a retention time set to 15 min pushes the biomass with a speed of 0.013 ms−1,

which is too low to mix the biomass vertically [5]. If the reactor filling level is

low then vertical uniformity is assumed as in Paper A where the throughput is set

to 1 th−1. However, if the reactor level is high then vertical temperature gradients

appear and the biomass is pretreated differently in layers of temperature as in [71].

The biomass consists of solids, which do not diffuse. The solubles that are created

during hydrolysis have a low diffusion coefficient due to the physical barrier of

the snail pallets that push the biomass along the reactor [5]. Also biomass has

a high dry matter content of approximately 40 % inside the reactor. These facts

lead to a domination of convective effects and the diffusion part of Equation (3.9)

can be dropped, i.e. D ≈ 0. The tank cylinder is longer in one direction, which

makes it necessary to discretize in space only along one axis. Considering all these

assumptions, Equation (3.9) is simplified to:

∂C
∂ t

=−v
∂C
∂ z

+R (3.10)

where z is the axis oriented along the reactor from inlet to outlet. Equation 3.10 is

then discretized in space using a Upwind Difference Scheme (UDS), which is a more

stable technique for moving environments [72]:

∂Ck

∂ t
=

v
δz

(Ck−1−Ck)+Rk (3.11)

Ck, Ck−1 and δ z are illustrated in Figure 3.4 and represent the central cell k with

its western neighbor k−1, and the width of the discretization step δ z. The western

boundary conditions are of Dirichlet type calculated based on a virtual cell derived

from known input biomass composition while the eastern boundary conditions are

considered of Neumann type or zero material loss through the reactor shell. The

methodology for establishing the boundary conditions is similar to the one derived

in [71, 72].

Reaction vector Rk is calculated considering the conversion paths from Figure

3.5, which were extended from the original work in [73] with acid, xylooligomers,

pseudo-lignin, and 5-HMF production. The detailed derivation of the reaction

rates is included in Paper A. Xylan hydrolysis produces xylose with xylooligomers

intermediate product. Xylose can be further degraded to furfural. Biomass has a

reduced content of arabinan, which hydrolyzes completely to arabinose. Along with

hemicellulose hydrolysis, acetyls are released into the medium forming acetic acid.

To a lower extent, cellulose can also be hydrolyzed leading to glucose production,
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which further degrades to 5-HMF. Carbohydrates and inhibitors react in order to

create pseudo-lignin.

Figure 3.5: Hydrothermal pretreatment conversion paths [5].

The composition vector Ck and the reaction rate array Rk from Equation (3.11)

are placed in vector form:

Ck =



CCS (Cellulose)

CXS (Xylan)

CAS (Arabinan)

CLS (Lignin)

CAcS (Acetyls)

CG (Glucose)

CXo (Xylooligomers)

CX (Xylose)

CA (Arabinose)

CAc (Acid)

CF (Furfural)

CH (5-HMF)

CW (Water)

CO (Other)



Rk =



−rG

−rXo

−rA

rL

−rAc

rG− rOG − (1−α)rLG

rXo− rX − (1−α)rLXo

rX − rFX − rOX − (1−α)rLX

rA− rOA − rFA − (1−α)rLA

rAc

rF −αrLF

rH −αrLH

0
rOX + rOG + rOA



(3.12)

To ensure mass conservation the following relations have to stand true:

∑Rk = 0g/(kgs) ∑Ck = 1000gkg−1 (3.13)

All reaction rates are temperature dependent. Due to lack of agitation inside the

reactor, temperature gradients appear along the reactor. The energy balance in the

biomass layer is derived in a similar way based on the Convection Diffusion Equation.
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Biomass has insulation properties resulting in a low heat diffusion coefficient. Only

convective effects are assumed. The variable of interest in this case is the enthalpy h

expressed in kJkg−1:

∂h
∂ t

=−v
∂h
∂ z

+Qk⇒
∂hk

∂ t
=

v
δ z

(hk−1−hk)+Qk (3.14)

where Qk is the energy inflow in cell k. The same cell grid is used as in the biomass

composition case. The steam injection occurs near the inlet and is lumped into the

boundary conditions, which are detailed in Paper A. The temperature gradient is

then obtained by dividing the enthalpy to the specific heat.

3.4.2 Enzymatic Hydrolysis

The model derivation of the enzymatic hydrolysis process is detailed in Paper

B. A reactor with 5 chambers designed for high dry matter liquefaction is sketched

in Figure 3.6. The tank has a common shaft with large pallets attached to it that

ensure vertical uniformity. The transport phenomena employs CFD methods in a

similar way as in the pretreatment case. Due to the initial high dry matter content

of about 35 %, plug flow is assumed in the first hours of hydrolysis. The reactor is

discretized along a single axis, i.e. the shaft or along the reactor. During nominal

operational conditions the process is continuous with non zero inflow and outflow

where convective effects dominate. However, it might happen due to upstream

or downstream faults that the inflow and outflow stop. In such a case the system

becomes a batch process with dominant diffusion effects for solubles such as glucose,

xylose, acetic acid, and furfural. Therefore the diffusion coefficient is not dropped

from the Convection Diffusion Equation, and appears as a function of viscosity.

Enzymes bound to solids in order to hydrolyze them but not entirely. There is an

equilibrium between bounded and free enzymes that follows a Langmuir isotherm

expression [60]:
CEiB

CS
= EMi

KAiCEiF

1+KAiCEiF

(3.15)

where CEiB
is the concentration of bounded enzymes of type i on solids CS. EMi is the

maximum adsorbed enzymes, and KAi is the Langmuir adsorption constant. CEiF
is

the concentration of free enzymes. Index i iterates through enzymes types, which are

4 in total: endo-exo cellulase, β -glucosidase, endo-exo xylanase, and β -xylosidase

[35].

The reactions follow the conversion paths from Figure 3.7. Cellulase enzymes

most often break the long solid chain of cellulose into smaller units like cellobiose

with rate r1. Cellobiose acts as an intermediate product for glucose production.

Cellulase can also detach glucose units from the chain endings of polymers longer
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Figure 3.6: High dry matter liquefaction reactor [54].

than cellobiose leading to direct glucose production with rate r2. β -glucosidase

further decomposes cellobiose to glucose with rate r3. Hemicellulose is hydrolyzed

through a similar mechanism with xylooligomers intermediate product and acetic

acid as by-product. Xylanase decomposes xylan into xylooligomers with rate r4, and

also straight to xylose when acting on the chain endings with rate r5. Xylooligomers

Figure 3.7: Enzymatic hydrolysis conversion mechanism with inhibition. Extended from [6]

with xylooligomers intermediate product, acetyl groups, and enzyme deactivation.
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are further hydrolyzed to xylose with rate r6. Acetyls are part of the hemicellulose,

and as the solid fibers are decomposed they get released in the medium forming

acetic acid with rate r7. Enzymes slowly deactivate irreversibly in time with rate

r8. The mathematical relations for all reaction rates are given in Paper B and in the

supplementary material from Paper C where the following extensions are added:

severity dependency of all reaction rates, enzymes deactivation, acid production from

acetyl groups, and xylooligomers intermediate product in hemicellulose hydrolysis

[7].

The conversion mechanism is competitive with product inhibition. The dashed

lines from Figure 3.7 illustrate all possible inhibition phenomena due to xylose,

xylooligomers, glucose and cellobiose. The inhibitory effects are not relevant for all

reaction rates. The sensitivity analysis helps identify the important inhibition paths.

The composition vector Ck and the reaction rates array Rk are shown next:

Ck =



CCS (Cellulose)

CXS (Xylan)

CLS (Lignin)

CAcS (Acetyls)

CAc (Acid)

CC (Cellobiose)

CG (Glucose)

CXo (Xylooligomers)

CX (Xylose)

CF (Furfural)

CH (5-HMF)

CB (Base)

CE (Enzymes)

CW (Water)

CO (Other)



Rk =



−r1− r2

−r4− r5

0
−r7

r1− r3

r2 + r3

r4− r6

r5 + r6

r7

0
0
0
−r8

0
r8



(3.16)

To ensure the mass balance Equation (3.13) also needs to stand true.

The model is extended with a pH and viscosity calculator. The pH is important

for control purposes because enzymes are very sensitive to small deviations in pH.

The viscosity indicates the state of the liquefaction process and is important for

performance monitoring purposes. Viscosity is also easier to measure in reality in

real-time than extracting samples and analyzing them in the laboratory. Viscosity

decreases exponentially as solids are liquefied and increases linearly as sugars are

dissolved in the liquid phase [6]. The pH charge balance and the viscosity calculator

are elaborated in Paper B.
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Figure 3.8: Simultaneous saccharification and fermentation.

3.4.3 Fermentation

The co-fermentation process is modeled as a Continuous Stirred Tank Reactor

(CSTR) with the conversion paths from Figure 3.8. The saccharification part is

identical to the enzymatic hydrolysis process from Figure 3.7 with an extra inhibitory

effect due to ethanol presence in the medium. Cell biomass grows on glucose and

xylose producing ethanol and CO2. Furfural, 5-HMF and acetate inhibit sugar uptake,

along with product inhibition by ethanol. Furfural, 5-HMF and acetate are also

consumed by yeast leading to their depletion in time. All equations describing the

reaction rates are based on [74] and reiterated in the supplementary material from

Paper C.

pH and temperature are also key parameters in fermentation. The pH is disrupted

due to CO2 production, which leads to carbonic acid and bicarbonate production in

the liquid phase. A pH calculator is necessary to predict the acidity of the medium,

and to design a pH controller.

A local scheduler directs the flows according to the 4 phases, i.e. inoculum,

fed-batch, batch, and unload. Another supervisory scheduler parallelizes multiple

fermentation tanks, and ensures minimum interruptions of inflows and outflows

from the overall fermentation process. Ideally these flows should be constant and

continuous.



30 Chapter 3. Dynamic Modeling and Analysis

3.4.4 Fast pH Calculations with Guaranteed Accuracy for Dynamic

Simulations

Enzymes and GMO yeast are very sensitive to pH variations following a Gaussian

bell curve that describes their efficiency with a single optimal peak. A pH calculator is

necessary for controlling and monitoring the enzymatic hydrolysis and fermentation

processes, and is embedded into the modeling library. The calculator serves as a test

bench for the pH controller designed in Chapter 5. The results from this section are

not yet published and more implementation details are offered.

There are various ways of calculating the pH of a mixture, out of which the

following three are the most used: (1) the alkalinity conservation approach, (2) the

advancement method, and the charge balance approach [75]. The methods have

several disadvantages: a numerical solver such as Newton-Raphson that often fails

to converge (1), tracking a large number of states for each ion increasing model

complexity (2), or a nonlinear equation solver that requires a long computational

time (3) [75]. Such implementations turn pH calculations into bottlenecks in

dynamic simulations.

The approach in this work is to use a reduced number of model states as in (1)

and (3), and to avoid Newton-Raphson methods (where convergence can fail) and

nonlinear equations solvers (which are slow). In contrast, the developed algorithm

utilizes a modified bisection method for finding the root of the charge balance,

which offers better convergence properties than the Newton-Raphson method and

is faster than a solver of nonlinear equations. The charge balance is processed in

order to express it as a function of only hydrogen ion concentration, which becomes

the unknown. The bisection method is modified to advance in the pH logarithmic

space while evaluating the charge balance in the state space. This method has the

advantage that it always converges to a root with a preset accuracy if the function is

monotonic and the solution can be bounded in an interval such that the function

has opposite signs at its borders. Hence it has a guaranteed accuracy property under

certain conditions. However, a higher accuracy increases the amount of convergence

steps, which slows the computational time. The solution is to exploit the dynamic

simulations and determine a tight interval around the root to be found at time

k using the previous pH solution from time k− 1. In dynamic simulations, the

integration steps are relatively close to each other and the pH is not expected to

change significantly in time, especially because it is a controlled variable kept to a

reference point. The method has been found to be fast in reality, the pH calculations

not appearing as bottlenecks in dynamic simulations anymore. Algorithm 1 illustrates

the modified bisection method while Algorithm 2 shows how to compute the bounds

around the sought solution.
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Algorithm 1 Function for finding the pH of a mixture.
1: function PHCOMPUTE(ST , ε, x0) . ST is a vector with all species concentrations.

. ε is the solution tolerance.

. x0 is the initial guess of the solution.

2: [lb,ub]← COMPUTEBOUNDS(ST ,ε,x0) . Compute bounds around the solution.

3: ∆x← |lb−ub| . Compute the width of the solution space.

4: n←
⌈
log2

∆x
ε
⌉

. Compute the necessary number of steps for convergence.

5: fl ← pH(ST ,10−lb) . pH value at the lower border.

6: for i← 1,n do

7: x← lb+ub
2 . Compute the center in logarithmic space.

8: ∆x← |lb−ub|
9: if ∆x≤ ε then

10: break . Solution within tolerance found.

11: fx← pH(ST ,10−x) . Evaluate pH in x.

12: if fl · fx > 0 then

13: lb = x . Change the left border.

14: fl ← pH(ST ,10−lb) . Update pH at the lower border.

15: else

16: ub = x . Change the upper border.

17: return x

Algorithm 2 Find bounds around pH initial guess.
1: function COMPUTEBOUNDS(ST , ε, x0)

2: lb←max(1×10−15,x0− ε) . Initialize lower bound lb.

3: ub←min(14,x0 + ε) . Initialize upper bound ub.

4: while lb > 1×10−15∨UB < 14 do

5: fl ← pH(ST ,10−lb) . Evaluate pH in lb.

6: fu← pH(ST ,10−ub) . Evaluate pH in ub.

7: if fl · fu > 0 then

8: ε ← ε ·10
9: lb←max(1×10−15,x0− ε) . Update lower bound lb.

10: ub←min(14,x0 + ε) . Update upper bound ub.

11: else

12: break . Bounds around solution were found.

13: return lb,ub
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The algorithm complexity is O(logn) given by the divide and conquer nature

of the bisection method, where n is the size of the solution space. The worst

case scenario corresponds to searching for the solution in the entire pH value set,

i.e. pH ∈ [0,14]. This means that ∆x = 14. If a two digits solution is sufficient

then ε = 0.01. The number of converge steps then becomes m = dlog2(1400)e= 11,

meaning that a solution with accuracy ε is found in 11 steps. Such an accuracy is

sufficient for controlling and monitoring the enzymatic hydrolysis and fermentation

processes because a deviation of 0.01 from the optimal pH value has no impact on

the process efficiency.

If the accuracy is increased, e.g. ε = 1×10−6, then the number of converge steps

in the worst case scenario becomes m =
⌈
log2(14×106)

⌉
= 24, which is still reason-

able for nowadays computers. If the solution bounds are updated at each iteration

using the previous solution as initial guess then the number of converge steps can be

further reduced. For example, if the solution can be bounded within ∆x = 0.01 units

at each step then the solution space is significantly reduced and convergence takes

place in m =
⌈
log2(1×104)

⌉
= 14. In dynamic simulations with small integration

steps the solution can be bounded even further following the method from Algorithm

2. The higher the accuracy is demanded the more performance can be offered by

tightening the bounds around the solution.

3.4.5 Model Summary

The biorefinery model is complex and nonlinear including the most significant

phenomena reported in the literature so far. Table 3.3 lists all features of the

modeling library together with the publication that contains the full derivation

details.

When interconnecting all library modules for describing the entire refinery, the

model reaches a high complexity as in Table 3.4. The large number of states in

pretreatment and enzymatic hydrolysis is due to CFD methods, which are used for

discretizing big scale reactors. The inputs refer to feedstock mass flow, enthalpy, and

composition, while the outputs comprise the outflow, enthalpy, and composition of

the fermentation outstream. The table contains data for a single fermentation reactor

but in reality there are several tanks running in parallel, which would increase the

number of states in fermentation.
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Table 3.3: Summary with all modeled phenomena.

Step Features Reference

Pretreatment Steam atmosphere (single cell); Paper D

CFD for biomass layer; Paper A

Complex biomass conversion mechanism; Paper A

Sugars production: xylose, arabinose, glucose; Paper A

Pseudo-lignin production; Paper A

Xylooligomers intermediate product; Paper A

Organic acids production; Paper A

Inhibitors formation: furfural and 5-HMF. Paper A

Enzymatic hydrolysis Competitive conversion mechanism; Paper B

CFD for the first hydrolysis tank; Paper B

Enzymatic mixture parametrization; Paper B

Cellulose and hemicellulose hydrolysis; Paper B

Sugars production: glucose and xylose; Paper B

Cellobiose production; Paper B

Xylooligomers production; Paper C

Product inhibition; Paper B

Enzyme deactivation; Paper C

pH, temperature and severity dependence; Paper C

pH calculator; Paper B

Viscosity calculator. Paper B

Fermentation CSTR; [74]

Glucose and xylose uptake; [74]

Inhibitors uptake; [74]

Enzymatic hydrolysis; [74]

pH calculator. [74]

Table 3.4: Model complexity summary: number of parameters, states, inputs and outputs.

Half of the pretreatment outputs go to liquefaction, while the other half is connected to

fermentation. The outputs from the enzymatic hydrolysis are connected to fermentation.

Model Parameters States Inputs Outputs

Pretreatment 17 298 10 36

Enzymatic Hydrolysis 46 257 18 19

Fermentation (1 tank) 33 25 37 25

Total 96 580 10 25
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3.5 Model Analysis

This section summarizes the results from the sensitivity and uncertainty analysis

for the pretreatment and enzymatic hydrolysis processes. The goal of the analysis is

to identify modeling bottlenecks such as model parameters and feedstock compo-

nents that contribute most to the accuracy of output predictions. Such an analysis

offers support for design of experiments in order to properly estimate these parame-

ters or identifies which feedstock components have to be measured accurately for

reducing the uncertainty on estimates.

3.5.1 Sensitivity Analysis

Complex nonlinear models are most often over-parametrized but not all model

parameters affect the outputs with the same weight. The sensitivity analysis is useful

for process understanding and model reduction or simplification. Reducing the set

of model parameters to an identifiable subset is a required step before performing

parameter estimation based on real data.

3.5.1.1 Pretreatment

The sensitivity analysis results for the pretreatment process are shown in Figure

3.9. In reality a NIR instrument determines the composition of the pretreated slurry.

The components of interest are cellulose, xylan, lignin, acetic acid, and furfural.

The figure illustrates how each model parameter affects each of the measured

components.

The method is a quantitative way of showing that the activation energies (and not

the reaction constants) are the most sensitive model parameters but also ranks the

parameters among themselves. Since all outputs are of interest for downstream, the

cumulative indicator from the bottom right plot in Figure 3.9 is the most important

result of this analysis. The parameter with the highest sensitivity is EXo, which is the

activation energy for xylooligomers production due to hemicellulose hydrolysis. EF

and EAc follow indicating that furfural and acetic acid are important by-products of

the pretreatment process. There is also some glucose production due to cellulose

hydrolysis but much lower than hemicellulose hydrolysis. Pseudo-lignin and 5-

HMF also appear with a lower impact on the outputs. The ranking shows that

hemicellulose hydrolysis is the main phenomenon in the thermal reactor leading

to furfural and acetic acid production as main by-products. Cellulose hydrolysis

happens to a lesser extent because these fibers are protected by hemicellulose and

lignin.
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Figure 3.9: Sensitivity analysis by calculating the δ msqr for each output with respect to each

model parameter. Although the model has 15 parameters in total, only 6 parameters are of

interest as indicated in the bottom right figure.

Out of the total count of model parameters, only 6 are found to be of interest.

These parameters create an identifiable subset that is used for parameter estimation.

The results of the estimation procedure together with the standard deviations and

correlation matrix are shown in Paper A.

3.5.1.2 Enzymatic Hydrolysis

Following a similar approach, the sensitivity analysis for the enzymatic hydrolysis

process is shown in Figure 3.10 where all parameters are ranked with respect

to the cumulative sensitivity measure. The outputs of the liquefaction process

are cellobiose, glucose and xylose concentrations, which are measured in reality

with HPLC equipment based on grabbed samples every 6 h. The bottom subplot

from Figure 3.10 is the most important one since all outputs are of interest. The

first 4 most sensitive parameters are K2, EM1 , IX2 and K1, which refer to glucose
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Figure 3.10: Sensitivity measure δ msqr of model outputs with respect to kinetics parameters

θK . The first 3 plots show δ msqr for cellobiose
(
δ msqr

C
)
, glucose

(
δ msqr

G
)

and xylose
(
δ msqr

X
)
.

The bottom plot illustrates the overall sensitivity measure δ msqr and a threshold that delimits

the relevant parameters subset θS from the rest of the parameters.

production from cellulose, maximum adsorbed cellulase of endo-exo type, inhibition

on glucose production by xylose, and cellobiose production reaction rate constant.

The rest of the parameters have a lower sensitivity effect on outputs, and refer to

xylose production and inhibition effects of cellobiose and glucose on the enzymatic

hydrolysis.

The model parameter set is reduced to 11 parameters out of 46, a significant

model reduction. Parameter estimation has not been attempted in this case due to

the fact that the data are not persistent enough, and experimental design should

be pursued first. Previous studies showed that such data lead to large confidence

intervals on parameter estimates with high correlation [8].
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3.5.2 Uncertainty Analysis

The uncertainty analysis is based on Monte Carlo simulations with LHS on model

and feed parameters, which are treated in separated and combined scenarios. The

results are grouped into pretreatment and liquefaction processes. The goal is to

assess the model predictions’ uncertainty and rank all sources of uncertainty in order

to identify if feedstock components or kinetic parameters are most important for

accurate estimates.

3.5.2.1 Pretreatment

Figure 3.11 illustrates the uncertainty analysis results for the pretreatment pro-

cess. The solid bullets are NIR measurements performed on samples that were

grabbed every 10 min during 15 h of operation. The thermal reactor temperature has

been slightly changed, which caused different pretreatment conditions that modified

the composition of pretreated fibers. The parameter estimation procedure uses the

estimation subset identified with a grey area on the plots. The standard deviation

and correlation matrix for model parameters is also obtained, which enables LHS

with correlation control. All figures show the model fitting with 5th-95th percentiles

uncertainty bounds for solids, i.e. cellulose, xylan, lignin (top plots), and solubles,

i.e. acetic acid, furfural (bottom plots). The uncertainty bounds were calculated

based on 200 Monte Carlo simulations. The solid line for each output represents the

median.

Figure 3.11(a) illustrates the uncertainty with respect to only model parameters.

Figure 3.11(b) shows the model predictions when feed uncertainty is considered.

The last figure 3.11(c) combines both sources of uncertainty, i.e. feed and model

parameters. The results show that solid composition is more uncertain due to

uncertainty in feed and not in model parameters because the uncertainty bounds

from Figure 3.11(b) are larger than in Figure 3.11(a). Solubles uncertainty is

relatively similar for both cases, with a reduced uncertainty in case of furfural due

to feedstock. When combining both sources of uncertainty, the solubles prediction

bounds increase capturing most of the measurements, while the solids prediction

bounds remain almost the same as in the feed parameters case.

3.5.2.2 Enzymatic Hydrolysis

The uncertainty analysis for combined kinetics and feed parameters is displayed

in Figure 3.12. Glucose, xylose and cellobiose were measured offline with HPLC

equipment based on samples that were grabbed every approximately 6 h during 170 h
of enzymatic hydrolysis operation. The process is continuous and, ideally, the sugar
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(c) Final yield uncertainty with respect to model and feed parameters (combined).

Figure 3.11: Pretreatment model uncertainty.
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levels are constant lines in the absence of disturbances. However, the input fiber

composition and the reactor hold-ups had variations throughout the data acquisition

experiment. Changes in reactor levels lead to modifications in the retention time

causing longer or shorter reaction times. These disturbances caused the variations

seen in Figure 3.12.
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ĈC
CC
CG
CX
CI

Figure 3.12: Cellobiose, glucose and xylose formation during the enzymatic hydrolysis

process. ĈC, ĜC and X̂C are estimated concentrations of cellobiose, glucose and xylose as

predicted by the model while CC, CG and CX are sugar concentrations measured by the HPLC

equipment. The gray area shows the 5th-95th percentile interval considering kinetics and

feed uncertainties.

The model parameters’ standard deviations and correlation matrix were obtained

from [8], which enabled LHS with correlation control. The feed composition also

varies due to NIR measurement errors, assumed to be around 5 % to 10 %. Another

source of uncertainty refers to the fiber mass inflow, which was challenging to

measure in reality. Most laboratory analysis results fit within the prediction bounds

as shown in Figure 3.12. Cellobiose has a low level due to a high concentration of

β -glucosidase. Xylose has a relatively accurate prediction level, while glucose has a

larger confidentiality bound. More details regarding the generation of uncertainty

data are included in Paper B.

3.6 Real-Time State Estimation of Biomass Pretreatment

A direct application of the pretreatment model is a state estimator, which has been

published in Paper A. The motivation lies in compensating for modeling mismatches,

in filtering the measurements provided by the NIR instrument, i.e. cellulose, xylan,

lignin, acetic acid and furfural, and also to estimate unmeasured components in
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Figure 3.13: State estimator in biomass pretreatment.

pretreated biomass such as arabinose, xylose, xylooligomers, glucose, and 5-HMF.

These components cannot be measured because either they cannot be detected by

the NIR instrument or their concentration is too low as in the case of 5-HMF.

The block diagram of the observer is shown in Figure 3.13. Two sensors are

placed at the top and bottom of the thermal reactor to measure the temperature

of the steam and biomass layers. The temperatures are needed to construct the

temperature gradient and to calculate the reaction rates in biomass conversion. The

pretreated fibers are then measured by a NIR instrument every 10 min based on

grabbed samples.

The state estimator has the structure of a high-gain observer embedding feedback

from real measurements through a static Kalman gain. The estimation error is

calculated for cellulose, xylan, lignin, acetic acid and furfural as the difference

between the observer prediction and the NIR measurement. The entire methodology

for calculating the static Kalman gain is included in Paper A.

The filtering and estimation results are shown in Figure 3.14. The top two plots

illustrate the filtering of the NIR measurements, while the bottom plot displays the

estimated content of unmeasured by-products. Xylose, xylooligomers and glucose

are difficult to measure in reality in real-time. A soft sensor offers estimates of these

components that can be used for monitoring the process in real-time while waiting

for the HPLC analysis results of grabbed samples conducted off-line in the laboratory.

Other state estimators based on Kalman gains have been built for the temperature
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Figure 3.14: State estimator for biomass pretreatment.

gradients in the thermal reactor [71], for the enzymatic hydrolysis process [76], or

fermentation [74]. Such observers are valuable for real implementation in order to

filter measurements and to obtain estimates of all unmeasured biomass components.

3.7 Conclusions

This chapter presented the dynamic model library with focus on pretreatment

and enzymatic hydrolysis. The co-fermentation model has been developed as a

separate project included in [74] and reiterated in Paper C. The complex nonlinear

mathematical models were then analyzed for sensitivity and uncertainty following a

model analysis methodology that proved to be suitable for any complex industrial sit-

uation. The most important scientific novelty from this study was that the formulated

models were validated against real data extracted from the Inbicon demonstration

scale plant, showing the potential value of the dynamic library for optimization and

control purposes at large scales. Also, the uncertainty analysis showed that feed

parameters are a more important source of uncertainty than model parameters, and
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focus should be placed on measuring feed composition more accurately.

The mathematical models need maintenance and should be extended as new

phenomena appear in the scientific literature. A list with possible extensions include:

• Phenolics production in pretreatment and inhibition on the enzymatic activity

[77];

• The irreversible deactivation of enzymes in time should be a function of

temperature level and ethanol content [78], and not a constant;

• The fermentation temperature should actually follow a profile reflecting the

best compromise between enzymatic activity and GMO yeast [79]. The cal-

culation of the optimal temperature setpoint profile requires temperature

dependent model parameters for fermentation [80], which are missing in this

study.



Chapter 4

Process Optimization

4.1 Introduction

This chapter deals with designing a steady-state optimization layer for a large

scale biorefinery. The objective is to maximize the operational profit by finding

optimal key process parameters such as pretreatment temperature, enzyme dosage

in liquefaction and yeast seed in fermentation. The refinery is treated in an integrated

manner taking into account the trade-offs between the conversion steps. The detailed

methodology and results are included in Paper C.

The method is compared against a traditional refinery operation, i.e. a fixed

recipe with constant enzyme dosage and yeast seed that were determined based on

a long time experience. Sensitivity and uncertainty analysis with respect to model

and feed parameters increase the trust in the optimization layer. The chapter ends

with conclusions and suggestions for future improvements.

4.2 Plantwide Optimization Methodology

Figure 4.1 illustrates the workflow interactions between the real plant and the

layers for control, optimization and system identification. Each conversion stage

from the real plant is equipped with specific sensors and actuators that enable fast

feedback control for tracking the pretreatment temperature, enzyme dosage and

yeast seed. An advanced reference tracking controller for biomass pretreatment

temperature has been developed in [6]. An enzyme dosage regulator can be easily

constructed with a flow meter and a variable valve mounted on the enzyme supply

pipe. The enzymatic hydrolysis process is continuous and the enzyme dosage

stabilizes to a non-zero value. The yeast seed controller requires a mass estimator

and a control valve on the supply pipe. The fermentation process runs in batches,
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Figure 4.1: Block diagram showing the interaction between the optimization layer designed

in this study and the real plant. The optimization layer calculates setpoints for pretreat-

ment temperature, enzyme dosage and yeast seed. All models are calibrated by the system

identification layer based on plant measurements.

and the yeast seed occurs only in the beginning of the inoculum phase until a certain

mass of yeast has been accumulated. The control layer and the real plant interacts

at a fast pace, i.e. in the order of seconds.

The control layer is designed for maximizing the biorefinery efficiency for a given

constant throughput in order to support the optimization layer, which is common

practice for a new plant [81]. The dynamic models from the previous chapter were

validated against data collected at a throughput of 1 th−1 of raw biomass. This

flow rate represents 25 % of the refinery maximum capacity and was chosen in

order to minimize the impact of pretreatment disturbances on fiber composition. At

higher throughputs vertical temperature gradients appear in the thermal reactor that

cause layers of different biomass composition [71]. The control layer also contains

feedback loops that improve the conversion steps operation locally such as tank level,

flow rate and temperature regulators, enzymatic and fermentation pH controllers,

and an efficient scheduling control algorithm for fermentation.

The plantwide optimization methodology is inspired from [82], and applied to

the biorefinery case from this project. A detailed description of the methods steps is

given in Paper C, and summarized below:

1. Select the objective or cost function:
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The cost function reflects the potential economical profit from 1 fermenta-

tion batch, which is defined as the difference between ethanol revenue and

operating costs related to biomass, steam, enzymes, and yeast:

c(MEth,Fb,Fs,Fe,My) = MEth(t f )PEth− (FbPb +FsPs +FePe +MyPy) (4.1)

The ethanol revenue per batch is calculated as mass of ethanol at the end of

the batch phase MEth(t f ) expressed in kg multiplied with its selling price PEth

set in unitcost/kg. The refinery consumes the following utilities: yeast mass My

(in kg), and Fb, Fs, and Fe (in kgh−1), which are the flow rates of feedstock,

steam and enzymes, respectively. The price weights PEth, Pb, Pe, Ps, and Py have

a measuring unit such that the overall cost function c is expressed in a generic

unitcost.

If the throughput is constant then the term FbPb is fixed and can be dropped

from the cost function. Steam flow rate Fs reflects only pretreatment costs and

does not include distillation. Although the purification costs are very high,

they are related to water content, which is kept approximately constant in

fermentation. After removing the fixed terms, the cost function is simplified to:

c(MEth,Fs,Fe,My) = MEth(t f )PEth− (FsPs +FePe +MyPy) (4.2)

The numerical values of the weights are given in Table 4.1.

Table 4.1: Cost function weights (prices).

Parameter Description Value

PEth Ethanol 5 unitcost/kg

Pe Enzymes 25 unitcost/(kg/h)

Ps Steam 1 unitcost/(kg/h)

Py Yeast 50 unitcost/kg

2. Identify the decision variables:

Pretreated biomass composition is sensitive to the pretreatment temperature

Ttr as shown in the sensitivity analysis from Paper A. The liquefaction and

fermentation processes are dependent on enzymes flow and yeast seed, which

have high acquisition price and should be used in an efficient way. These

decision variables are placed in a vector form:

u = [Ttr Fe My]
> (4.3)
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3. Process model constraints, and bounds for decision variables:

The continuous processes of pretreatment and enzymatic hydrolysis reach

steady states, which are calculated by solving:

ẋ = f (x,u) when ẋ = 0 (4.4)

Function f (x,u) describes the time dynamics of these processes as expressions

of state vector x and input u.

The fermentation model is a batch process and only the final states are of

interest:

x f (t f ) =

t f∫
0

h(x f ,u f )dt (4.5)

where h(x f ,u f ) is the fermentation dynamic model as function of states x f , and

inputs u f . Time constant t f = 190h represents the end of the batch phase.

The decision variables are bounded as follows:

150 ≤ Ttr ≤ 210 ◦C
10 ≤ Fe ≤ 1000kgh−1

10 ≤ My ≤ 1000kg

(4.6)

reflecting a wide range of operation.

4. Formulate and solve the overall optimization problem:

max
Ttr ,Fe,My

MEth(t f )PEth− (FsPs +FePe +MyPy)

subject to 0 = f (x(t),u(t))

ẋ f = h(x f ,u f )

150 ≤ Ttr ≤ 210 ◦C
10 ≤ Fe ≤ 1000kgh−1

10 ≤ My ≤ 1000kg

(4.7)

The following solution is found:

zo =

 Ttr

Fe

My

=

 172 ◦C
110kgh−1

142kg

 (4.8)

with a cost value of:

co = 76714unitprofit (4.9)

The cost value does not include feedstock and distillation costs.
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5. The sensitivity and uncertainty analysis is treated in the next section. This

analysis iterates through a range of pretreatment temperatures in order to gain

process insight into how pretreatment conditions affect the costs, profit and

optimal solution of the optimization problem.

4.3 Sensitivity and Uncertainty Analysis

The model is over-parametrized with 96 parameters. The goal of the sensitivity

analysis is to rank all model parameters with respect to their sensitivity on the profit

curve at the optimal solution, and subtract a reduced subset in order to identify the

dominant phenomena and conversion steps. The scope of the uncertainty analysis

is to find confidence intervals for costs, profit and optimal solution considering

sources of uncertainty for both model and feed parameters. The uncertainty analysis

is carried for a wide range of pretreatment conditions in order to capture and

understand the trade-offs between the conversion steps.

The methodology for the sensitivity and uncertainty analysis is shown in Algo-

rithm 3. The steps are similar to the ones from the model analysis case in Chapter 3.

The model parameters are first initialized and then the optimal solution of problem

(4.7) is found. Next, the sensitivity of the cost function with respect to all model

parameters is calculated. This analysis uses a non-dimensional sensitivity measure

for steady state signals defined as [8, 64]:

δk =
∂c
∂θk

θk

cssk

(4.10)

where c is the cost function, θk is the kth model parameter, and cssk is the stabilized

value of the cost function. Model parameters are ranked with respect to δk, and a

subset of significant parameters θR is determined.

The uncertainty analysis is carried for both model and feed parameters, in

separated and combined scenarios. The model parameters are sampled following

LHS with correlation control, while feedstock composition is uniformly sampled

covering a 5 % uncertainty range. The standard deviations and correlation matrices

for model parameters are obtained from published data [5, 8]. Algorithm 4 then

runs for each set of model and feed parameters in order to determine the costs, profit,

and optimal solution as functions of pretreatment temperature. The uncertainty

bounds are calculated based on the Monte Carlo simulations.

Algorithm 4 iterates through pretreatment temperatures within the range 160 ◦C
to 180 ◦C with a 1 ◦C resolution. For each temperature, another optimization problem

is formulated where pretreatment is decoupled and liquefaction and fermentation

processes are treated in an integrated manner. This new optimization problem is
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Algorithm 3 Sensitivity and uncertainty analysis with combined model and feed

uncertainty.
1: Initialize model parameters θ and feed composition Cb.

2: Optimal deterministic solution: [Ttr,Fe,My]← (4.7).

3: Sensitivity analysis of the cost function in [Ttr,Fe,My]: calculate δk as in equation

(4.10).

4: Rank all parameters with respect to δk.

5: Select a subset θR such that θR is above a threshold.

6: Set standard deviations and correlation matrices for θR.

7: θ ← LHS of θR with correlation control to generate N sets of model parameters.

8: Set bounds for feedstock composition.

9: Cb← Uniform LHS for feedstock composition to generate N sets of compositions.

10: for Each set of model and feed parameters do

11:
[
zi,cpi ,cehi ,c fi ,ci

]
= COSTS(θi,Cbi)

12: Calculate the 5th, median and 95th percentiles for profit, costs, and optimal

solution.

Algorithm 4 Calculate optimal costs and profit with respect to pretreatment temper-

ature given a fixed set of model parameters θ and feedstock composition Cb.

1: function
[
z,cp,ceh,c f ,c

]
= COSTS(θ , Cb)

2: Set a range of pretreatment temperatures Ttr← 160 ◦C : 1 ◦C : 180 ◦C
3: Set initial solution guess to z0← [100kgh−1 80kg]>

4: for Each temperature in Ttr do

5: Run pretreatment process at temperature Ttri and obtain composition of

pretreated fibers and C5 liquid, and steam inflow into the thermal reactor Fsi .

6: zi← Solution of optimization problem (4.11) given the pretreated fibers

composition and C5 liquid from previous step as inputs. Use as initial guess the

solution from previous iteration zi−1.

7: Calculate mass of ethanol at final fermentation time: MEthi ← M(t f ) ·
CEth(t f ) where t f is the final batch time, M(t f ) is the reactor mass in kg at time

t f , and CEth(t f ) is the ethanol concentration at time t f in gkg−1.

8: Enzyme dosage: Fei ← zi(1).
9: Yeast seed: Myi ← zi(2).

10: Calculate pretreatment cost: cpi ← FsiPs.

11: Calculate liquefaction cost: cehi ← FeiPe.

12: Calculate fermentation cost: c fi ←MyiPy.

13: Calculate revenue: ri←MEthiPEth.

14: Calculate profit ci← ri− (cpi + cehi + c fi).
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similar to (4.7) but without Ttr from the decision variables vector u, and FsPs from

the cost function:

max
Fe,My

MEthPEth− (FePe +MyPy)

subject to 0 = f (x(t),u(t))

ẋ f = h(x f ,u f )

10 ≤ Fe ≤ 1000kgh−1

10 ≤ My ≤ 1000kg

(4.11)

The sensitivity analysis results are shown in Figure 4.2. The model parameters

count is reduced to 22 significant parameters from 97 in total. Pretreatment and fer-

mentation parameters are the most important ones: EF related to furfural formation

in pretreatment, which inhibits ethanol production, YPSG or the ethanol yield per

glucose, EG or cellulose hydrolysis in pretreatment, qAcMax related to acetate uptake,

which also inhibits fermentation, and YPSX and YXSG representing ethanol production

from xylose, and biomass growth on glucose. Liquefaction parameters have a lower

sensitivity, the first ones being RB and K2, i.e. enzymatic activity dependence on

pretreatment severity, and glucose production due to cellulose hydrolysis.
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Figure 4.2: Sensitivity measure δk of profit value with respect to model parameters.

The uncertainty analysis results are presented in Figure 4.3. The potential profit

for one fermentation batch excluding feedstock and distillation costs is shown in

Figure 4.3(a). The optimized curve is in fact the value of the cost function at the

optimal solution when treating the refinery in an integrated manner, while the

traditional curve represents the profit following an operation with a fixed recipe for

pretreatment, hydrolysis and fermentation without any adjustments. The traditional

operation is usually established when trying to optimize the refinery by separating

the conversion steps. The optimized curve offers an overall improvement of about

18 % over the traditional operation. The profit is reduced at low temperatures
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(b) Refinery costs for each biomass conversion step.
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Figure 4.3: Optimal costs, potential profit, and solution of the optimization problem.



4.4. Conclusions 51

because the biomatrix is not sufficiently open, and hemicellulose is not hydrolyzed

enough. A low pretreatment temperature requires more enzymes and yeast to

compensate for hardly accessible cellulose, also indicated in the solution plots from

Figure 4.3(c). At higher pretreatment temperatures inhibitors become significant and

decrease ethanol yield causing a lower profit. The optimal pretreatment temperature

is found to be around 172 ◦C. Another important aspect is that feed dominates

model parameters uncertainty. Accurate measurements on feedstock are required

to decrease the uncertainty on the potential profit of the refinery process. Model

uncertainty also decreases as temperature increases due to the fact that biomatrix

opening reduces its significance on model predictions. Overall the optimized profit

curve has a lower uncertainty than the traditional operation because the enzyme

dosage and yeast seed are adjusted with respect to pretreatment conditions.

Figure 4.3(c) shows the solution of the optimization problem as a function

of pretreatment temperature. The amount of enzymes decrease as pretreatment

temperature increases showing that a high pretreatment is beneficial for enzymatic

hydrolysis, while negative for fermentation due to inhibitors creation. The yeast

curve has a U shape. At low temperatures, a higher amount of yeast accelerates the

simultaneous saccharification and fermentation process while at higher temperature

more yeast compensates for the inhibitors. The refinery costs are proportional to the

solution of the optimization problem, and detailed in Figure 4.3(b).

4.4 Conclusions

This chapter presented the results from Paper C, i.e. a study on economical opti-

mization of a large scale second generation biorefinery in a simulated environment.

The optimization procedure makes use of steady-state models for pretreatment and

enzymatic hydrolysis, and a dynamic fermentation model. The process key parame-

ters are the pretreatment temperature, enzyme dosage in liquefaction, and yeast seed

in fermentation. A high pretreatment temperature was found to be positive for the

performance of enzymatic hydrolysis but negative for ethanol yield due to creation of

inhibitors. Uncertainties in kinetics of pretreatment, liquefaction and fermentation

were quantified as negligible on the economic objective function around the optimal

operational point. The main source of uncertainty was found to be in the inflow feed

composition.

The enzymatic hydrolysis and fermentation are connected in series in this study

as in the second version of Inbicon. However, the same methodology can be applied

in the case of a fermentation broth recycle that would enable enzymes reuse [83].

The optimization was carried at constant given throughput. As a future improve-
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ment, the biorefinery throughput can be added as a degree of freedom that would

allow searching for a higher throughput such that profit is maximized [84]. In

reality, the optimal profit value is slightly degraded due to the compromise between

hydrolysis and optimal fermentation temperature [85], which decreases ethanol

yield or would require a higher amount of enzymes and yeast to compensate. An

optimal temperature profile can be calculated for maximizing the ethanol yield [79].

In fermentation, feed rate control boosts the performance by maximizing the specific

growth rate while avoiding accumulation of inhibitors [86]. Also, in the case of

glucose fermentation, the amount of necessary yeast can be significantly reduced by

calculating an optimal feed rate profile during the fed-batch phase while avoiding

accumulation of inhibitors as in Section 5.4.

For ensuring the successfulness of the optimization method, the control layer

and the process architectural setup should be solved in an integrated manner and

not sequentially as is common practice in the industry [87]. The contribution of this

study is to offer support for additional changes that are necessary to improve the

biorefinery design. The results from this chapter were based on several assumptions

regarding available measurements and control strategies, which should be included

in future plant versions: feedstock NIR measurements, and control on enzymes flow

rate and yeast dosage.



Chapter 5

Advanced Process Control

5.1 Introduction

This chapter presents the main results from two IEEE peer-reviewed conference

publications included in the appendix as Papers E and D, as well as unpublished

results regarding an optimal feed rate profile of liquefied fibers in glucose fermen-

tation that minimizes the yeast seed and avoids accumulation of inhibitors. The

IEEE conference contributions deal with two applications of the L1 adaptive output

feedback controller: one for regulating the temperature in the pretreatment ther-

mal reactor, and another one for keeping the pH level close to its optimum in the

enzymatic hydrolysis process.

5.2 Pretreatment Temperature Control

The sensitivity analysis for the hydrothermal biomass pretreatment model from

Section 3.5.1.1 showed that the activation energies of conversion reactions in the

thermal reactor are sensitive for pretreated biomass composition. That is also the

reason why the pretreatment temperature is one of the decision variables in the

optimization layer. These facts show that a temperature controller is necessary

to ensure little variations from the desired reaction temperature, and to transit

smoothly to the setpoint given by the optimization layer.

The particle pump pressurizes biomass till the thermal reactor pressure based

on the following cycle: an amount of soaked fibers is first trapped in the particle

pump chamber with the help of a pushing snail; the thermal reactor pressure is then

reached by opening a steam valve from a pipe that interconnects the reactor and the

particle pump; once the same pressure level is reached, the steam valve is closed,

and the biomass is released inside the thermal reactor. The total duration of the
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Figure 5.1: Open loop simulation. The top plots show the pressure and temperature in the

particle pump while the bottom plots display the pressure and temperature in the thermal

reactor.

cycle is of approximately 2 min. Pressurizing the particle pump with recycled steam

disturbs the pressure in the thermal reactor causing the reaction temperature to

drop as a consequence. Variations in reaction temperature lead to irregularities in

the composition of the pretreated biomass [71].

Figure 5.1 illustrates the open loop operation of the particle pump and thermal

reactor tandem. The particle pump pressure PPP and temperature TPP are plotted

in the top graphs while the reactor pressure PT R and temperature TT R are shown

in the bottom plots. The thermal reactor is pressurized till 13 bar with fresh steam

starting at 10 s. The steam valve connecting the thermal reactor to the particle pump

is opened at 50 s, which causes the reactor pressure and temperature to drop. At 90 s
the particle pump opens the evacuation valve and the pressure is restored to the

atmospheric level.

The scope of this part of the study is to design a controller that rejects the steam

recycle disturbances, ideally keeping the reactor temperature constant. Nonlinear

valve characteristics are considered due to the fact that the pressure drop across

the steam valve varies significantly, i.e. from 0 bar to 13 bar. The controller has to

be operational in multiple nominal points depending on the reactor load, which
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Figure 5.2: The control block diagram: L1 adaptive output feedback controller connected to

a thermal reactor and particle pump tandem.

influences the steam expansion volume. The L1 adaptive controller appeared as a

novel control strategy in 2007 ensuring fast adaptation with guaranteed robustness

[88]. Due to the fact that only a temperature sensor is desired to be used for control

purposes, an output feedback structure [10] is selected as in Figure 5.2.

The upper part of Figure 5.2 shows the particle pump (PP) switch controller

KP
PP, which does not require feedback because the pressure in both the reactor

and particle pump eventually equalizes when opening the recycle steam valve that

interconnects the two units. The operation sequence for the recycle and evacuation

valves resembles a pulse signal. The recycle steam flow rate is measured as QRS,

and a feed-forward term (FF) is calculated for finding the corresponding stroke of

the fresh steam valve to compensate for the extracted steam. The openings of the

recycle and fresh steam valves are not identical because the pressure drop across

them is not the same.

The block diagram of the L1 controller is similar to the one of a Model Reference

Adaptive Controller (MRAC) with the addition of a filter C(s) on the control signal.

The output predictor contains the desired dynamics in closed loop, while the adaptive

law is set to be fast. The role of filter C(s) is to improve the stability margins and

partially remove the chattering introduced by a fast adaptation law. Hence the

L1 adaptive controller offers robustness and fast adaptation. The main challenge

becomes in tuning a proper and stable filter. The L1 norm is used to prove that there
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exists uniform bounds for system states and control signals [10].

In the context of the pretreatment temperature application, the desired closed

loop dynamics are set to a first order system parametrized in time constant 1/m, C(s)

is a first order low-pass filter with time constant 1/c, and the adaptation gain is set

to Γ. The tuning approach in this paper is to formulate an optimization problem that

minimizes the IAE with respect to the controller parameters, i.e. m, c and Γ:

min
m,c,Γ

∞∫
0
|r(t)− y(t)|

subject to ẋ = f (x(t),u(t))

y = g(x(t))

(5.1)

The system dynamics are calculated by integrating ẋ = f (x(t),u(t)) in time where

x is the states vector and u is the fresh steam valve opening or the manipulated

variable (MV). The controlled variable (CV) is the reactor temperature y = g(x(t)).

The overall process is a Single Input Single Output (SISO) system. The problem

is solved numerically by evaluating the cost function in simulation scenarios that

correspond to a normal operation cycle, i.e. the particle pump extracting steam from

the thermal reactor, and the controller restoring the pressure in the reactor.

After tuning the controller, the performance of the closed loop system is evalu-

ated in three scenarios: (1) normal operation with non-zero mean white noise for

condensation, (2) normal operation with zero mean measurement noise, and (3)

reference tracking with condensation noise. The results of the disturbance rejection

scenarios, i.e. (1) and (2), are shown in Figures 5.3(a) and 5.3(b) where two

pressurization cycles are emphasized. The reactor temperature appears undisturbed

in all scenarios around the value of 195 ◦C even when the particle pump extracts

steam from the thermal reactor, i.e. at timestamps 720 s and 900 s. The pressure

and temperature have little deviations from their nominal values, which ensures a

uniform pretreatment environment. The fresh steam inflow is displayed in the top

right plots. The flow spikes correspond to the time moment when the recycle steam

valve opens for pressurizing the particle pump. The steam inflow is non-zero in idle

operation due to steam condensation inside the thermal reactor.

The reference tracking scenario from Figure 5.4 includes steps of 5 ◦C and 10 ◦C
around the nominal operation of 195 ◦C. The first reference change is at 200 s to

200 ◦C, followed by a −10 ◦C change until 190 ◦C at 400 s. The reference returns to

the nominal value at 600 s. The closed loop dynamics resemble a first order system

as imposed by the model reference adaptive controller. The positive increments in

temperature are achieved by injecting more steam into the reactor while the negative

step is obtained by closing the fresh steam valve and letting condensation decrease

the pressure.
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Figure 5.3: Disturbance rejection scenarios.
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Figure 5.4: Reference tracking with condensation noise.

The closed loop system performs satisfactory both in disturbance rejection by

reducing the reactor temperature variations, and in reference tracking ensuring

a fast change to a new temperature level. The controller setpoint is given by the

optimization layer designed in Chapter 4. More details about the adaptive controller

design including closed loop transfer function analysis can be read in Paper D.

5.3 Enzymatic pH Control

pH is another process key parameter because enzymes and yeast are highly

sensitive to the pH level following a Gaussian bell curve. A pH controller is requested

to keep the pH of the mixture at the optimal level, e.g. the peak of the enzymatic

activity curve. The enzymatic hydrolysis pH setpoint is taken from the enzymes

manufacturers, and remains constant throughout the entire process. In simultaneous

saccharification and fermentation an optimal pH profile exists as a trade-off between

enzymes and yeast optimal pH [89]. In this case, pH reference tracking is of interest.

The pH is disturbed by organic acids that are produced during pretreatment due

to hemicellulose removal, and also during enzymatic hydrolysis of the remaining

hemicellulose in the liquefaction tanks. In fermentation the pH is disturbed due

to CO2 production, and organic acids formation during saccharification of the
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Figure 5.5: Titration simulation. The main challenge lies in the nonlinearity of the titration

curve shown in the bottom right plot.

remaining hemicellulose. This section presents the results from Paper E where an L1

output feedback pH controller is implemented for the enzymatic hydrolysis process.

The same control methodology can be applied to develop a pH controller for the

fermentation process.

Enzymes are sensitive to the pH of the mixture following a bell shaped depen-

dency curve [11]. The control objective is to keep the pH level close to its optimum,

which is set according to the manufacturer’s advice, e.g. pH = 5±0.1. The pH is

regulated by pumping a strong base, e.g. NaOH, from a storage tank based on a flow

rate setpoint given by the adaptive controller developed in this section. The pump

flow rate control loop is considered trivial and neglected in this work.

The main challenge in reaching the pH control objective is the nonlinearity of

the titration curve. Figure 5.5 illustrates a simulated titration experiment where

base is added in small steps to the liquefaction reactor. The top left plot displays

the concentrations of organic acid CAT , base CBT , and carbonic species CCT , all in

molL−1. Concentration of base linearly increases with equal increments while acid

and carbonic species remain constant. The bottom left plot shows the pH value as

a function of time as the simulated experiment progresses while the bottom right

graph draws the titration curve or the pH as a function of base concentration CBT .

The block diagram of the closed loop system is illustrated in Figure 5.6. The pH

is measured directly, and used to build the feedback action. A feed-forward term
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Figure 5.6: Closed loop system with an L1 adaptive output feedback controller.

is constructed knowing the inflow rate of fibers FFF , the total solids T S and the

initial acid content CA0 , which are measured in reality with a flow meter and a NIR

instrument. Other unmeasured disturbances are simulated by injecting noise into

the charge balance equation through CZ0 , i.e. the unknown buffers concentration.

The enzymatic reactor has other inputs such as the enzymes stream FE set by the

optimization layer, a recycle input for liquefied fibers FFM (unused), and water FW

(unused).

The structure and the complexity of the L1 adaptive output feedback controller

is identical to the one from the pretreatment temperature case. The process is SISO

with the pH level as controlled variable (CV) and base flow rate as manipulated

variable (MV). There are 3 parameters for tuning: the closed loop desired dynamics

m, the filter parameter c, and the adaptation gain Γ, just like in the pretreatment

temperature case. The tuning method however is different, and relies on linearizing

the model around a nominal operational point and analyzing the closed loop transfer

function. The linearization point is chosen around pH = 5, which is optimum for

cellulosic fibers hydrolysis [11]. The transfer function of the closed loop system

dynamics from reference to output are then determined, and the damping ratio ζ is

plotted against controller parameters m and c as in the top plot of Figure 5.7. The

derivation of the transfer functions are detailed in Paper E. The m and c graph shows

that there is a trade-off between choosing these parameters. A fast system with m

tending to 1 would require a more aggressive control signal meaning that c needs to

be enlarged too for allowing a larger bandwidth. The goal is to stay at the border
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Figure 5.7: Tuning of the L1 adaptive controller.

between the white and gray area from the m and c plot.

After choosing m and c, Γ can be set. The closed loop dynamics from reference

to σ̂ are then determined, and the damping ratio is plotted as a function of Γ as in

the bottom plot of Figure 5.7. If the adaptation gain is very large then σ̂ oscillates

and introduces noise in the control signal. Γ is chosen such that the damping ratio

ζΓ of the adaptation law stays relatively close to 1.

The controller is tested for reference tracking of a staircase signal and disturbance

rejection with respect to acid, base and unknown buffers. Reference modifications

can occur either when type of enzymes change or when a pH profile is tracked,

which can happen in fermentation. The reference tracking results are plotted in

Figure 5.8(a). In enzymatic hydrolysis the pH level needs to stay in the acidic area,

e.g. pH = 5, where the mixture is well buffered. At these pH levels, the closed

loop system has a reasonable response with little or no overshoots. However, the

most challenging area is the neutral zone around pH = 7 because the titration curve

changes slope rapidly becoming very steep. The neutral zone scenario is more

theoretical and is not typical for a real process. The adaptive controller manages to
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stabilize the process at pH = 7 with a large overshoot but converges eventually. As

the system is very fast around the neutral zone, a faster adaptation law might be

required in order to reduce the overshoot.

The disturbance rejection scenario is shown in Figure 5.8(b), and comprises

of three zones: acid, base and unknown buffers Z. Each source of disturbance is

enabled only in the designated area. The L1 adaptive controller is compared against

a classical Proportional Integral (PI) controller that was tuned using the Skogestad

internal model approach for PID tuning [90]. The feed-forward term is enabled

for both controllers. The adaptive scheme is not necessarily more aggressive as

its control effort is similar to the classical controller but reacts sooner than the PI.

Disturbances are successfully rejected in all cases ensuring little deviations from the

optimal pH level within a band of ±0.1 units.

5.4 Optimal Feed Rate Profile for Glucose Fermentation

Figure 4.3(b) from the optimization section showed that fermentation costs

can be high in biorefinery operation. The objective of this part of the study is to

determine an optimal feed rate profile for liquefied fibers such that the amount of

yeast is minimized while achieving glucose depletion in approximately the same

amount of time as in a classical operation with a constant feed rate. The results

from this section have been developed in collaboration with the Automatic Control

Laboratory from École Polytechnique Fédérale de Lausanne (EPFL). A commercial

scale fermentation tank can reach a volume of 250 m3 requiring the fed-batch phase

to take 40 h to 60 h to reach the desired hold-up, time when reactions already take

place. Plants following a traditional operation fill the fermentation reactors with a

constant feed rate. Such a strategy can lead to an early accumulation of inhibitors

and sugars that delay the reactions. In order to compensate the inhibition, more

yeast would be required, which attracts higher costs.

The two strategies are conceptually illustrated in Figure 5.9. The constant feed

(a) Constant feed rate. (b) Variable feed rate.

Figure 5.9: Constant and variable feed rates.
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rate or traditional operation is shown in Figure 5.9(a). The feed rate remains

constant at a value F . Once the tank is filled F becomes 0, coinciding to a switching

time Ts. Glucose depletion occurs at time Tf . The variable feed rate profile can

resemble the shape from Figure 5.9(b), which is characterized by a lower rate in the

beginning to avoid inhibitors and sugars accumulation and exponentially increasing

as cell biomass grows. Once the tank reaches the set level, the feed rate smoothly

becomes 0.

Both scenarios are formulated within the OCP framework [91]. The multi-

objective dynamic optimization problems are then solved with ACADO toolkit, which

has been successfully utilized previously in other biochemical applications [92, 93].

The decision variables for the constant feed rate optimization problem are set as Tf ,

Ts, F, and xY0 , i.e. the final fermentation time, the switching time, the value of the

feed rate, and the initial concentration of yeast. The multi-objective cost function

aims at minimizing both the yeast seed xY0 and keep small deviations around the

fermentation time Tf . The cost function includes two penalty terms, PY and PT , i.e.

the price of yeast and price of fermentation time. The optimization problem is shown

next together with its constraints:

min
Tf ,Ts,F,xY0

xY0m(0)PY +Tf PT

subject to ṁ(t) =

{
F, 0≤ t < Ts

0, t ∈ [Ts,Tf ]

ẋ(t) = f (x(t),m(t))

x(0) = x0

m(0) = 22.105t
xY (0) = xY0

m(Tf ) = 220t
xG(Tf ) ≤ 0.1gkg−1

0.0 ≤ xF(t) ≤ 0.05gkg−1

0.0 ≤ F ≤ 10th−1

30 ≤ Tf ≤ 90h
0 ≤ Tf −Ts

0.0 ≤ xY0 ≤ 12gkg−1

(5.2)

The initial mass of yeast is calculated as xY0 times the initial reactor mass, i.e. m(0).
Yeast is grown locally with costs reflected in term PY .

The first dynamic constraint refers to mass accumulation in time:

ṁ(t) =

{
F, 0≤ t < Ts

0, t ∈ [Ts,Tf ]
(5.3)

The feed rate switches to 0 at time Ts.
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The second dynamic constraint refers to the fermentation reactor kinetics, which

were presented in Chapter 3:

ẋ(t) = f (x(t),m(t),F) (5.4)

where x symbolizes the species concentrations, and m is the reactor hold-up.

The initial conditions constraints consists of: the fiber concentrations when the

fed-batch phase starts, i.e. x(0) = x0, initial reactor mass m(0) = 22.105t, and yeast

seed xY (0) = xY0 . The final time constraints refer to reactor fill limit m(Tf ) = 220t,
and glucose depletion xG(Tf )≤ 0.1gkg−1. Accumulation of inhibitors at any given

time is limited by xF(t) ≤ 0.05gkg−1. Additional bounds are set for all decision

variables.

The optimization control problem for variable feed profile is formulated below:

min
F(t),Tf ,xY0

xY0m0PY +Tf PT

subject to ẋ(t) = f (x(t),F(t))

x(0) = x0

m(0) = 22.105t
m(Tf ) = 220t
xY (0) = xY0

xG(Tf ) ≤ 0.1gkg−1

0.0 ≤ xF(t) ≤ 0.05gkg−1

0.0 ≤ F(t) ≤ 10th−1

30 ≤ Tf ≤ 90h
0.0 ≤ xY0 ≤ 12gkg−1

(5.5)

The problem is similar to OCP (5.2) except that the decision variable F(t) becomes

a function of time and switching time Ts is removed. The cost function and the

constraints are identical.

The results of the two strategies are compared in Figure 5.10. The mass and the

feed rates are illustrated in Figure 5.10(a). The constant inflow of liquefied fibers is

set to approximately 3.85 th−1 and fills the reactor in about 57 h. The variable feed

rate starts at a lower level than in the constant feed case but gradually increases as

time passes until it reaches a peak of 9 th−1 around 40 h. In the next 5 h the feed rate

decreases fast until it reaches 0 th−1. The tank is filled faster than in the constant

rate case by about 12 h.

The reactor kinetics are shown in Figure 5.10(b). The constant feed rate is

limited by the inhibitors accumulation constraints, which is reached in the first 3 h
as shown in the top plot. In the feed profile case, the flow rate allows accumulation

of inhibitors near the constraint limit. The system does not operate exactly at the



66 Chapter 5. Advanced Process Control

0

100

200

m
[t]

Limit
Mass const feed
Mass var feed

0 10 20 30 40 50 60
0.0

5.0

10.0

Time [h]

F
[t/

h]

Limit
Const feed
Var feed

(a) Mass and feed rate.

0

2

4

·10−2

x F
[g
/k

g]

Constraint
Furfural const feed
Furfural var feed

0

20

40

60

x G
,x

E
[g
/k

g]

Constraint
Glucose const feed
Glucose var feed
Ethanol const feed
Ethanol var feed

0 10 20 30 40 50 60

5

10

Time [h]

x Y
[g
/

kg
]

Constraint
Biomass const feed
Biomass var feed

(b) Furfural, glucose, ethanol and cell biomass.

Figure 5.10: Comparison between constant and variable feed rates.



5.5. Conclusions 67

constraint limit because a high feed rate also accumulates glucose, which inhibits

ethanol production. Glucose and ethanol concentrations can be observed in the

middle plot. Glucose remains in the reactor for a longer time in the variable feed rate

case and its depletion is accelerated towards the end of the fermentation process.

The ethanol yield is identical in both scenarios and is reached in the same amount of

time. However, cell biomass growth is substantially improved because the variable

feed rate requires a much lower initial yeast seed.

The OCP solutions and the costs of the two strategies are compared in Table 5.1.

The variable feed profile strategy shows a great potential for saving on yeast seed,

which is reduced with more than 50 % in this scenario.

Table 5.1: Comparison of costs between the two feed strategies.

Constant feed Variable feed

Objective function 14962 10241

Tf 58.20 58.73

xY0 6.77 2.0082

Ts 57.14 -

F 3.5 -

Mass of yeast (kg) 136 40

Potential savings: 96 kg of yeast/batch (4800 dkk/batch)

Determining the input profiles requires a mathematical model of the process in

order to predict its behavior in time. However, in reality models have uncertainties

and a Real-Time Optimization (RTO) scheme needs to be constructed. RTO assumes

on-line model adaptation, which might prove to be difficult to implement in reality

for this case. A better approach is to exploit the Necessary Conditions for Optimality

(NCO) and select appropriate control variables for tracking NCOs rather than per-

forming numerical optimization of a complex problem [94, 95]. From the above

results, it can be seen that the system operates near the inhibitors constraint, i.e.

furfural concentration limit. If the process would have a measurement of inhibitors

then a feed rate controller can be added for determining a better feed profile than a

constant one, which would save costs on yeast.

5.5 Conclusions

This chapter presented two applications of the L1 adaptive output feedback

controller: one for biomass pretreatment temperature and another one for enzymatic

pH. The temperature controller setpoint is connected to the optimization layer
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developed in the previous chapter, while the pH controller ensures the efficiency of

the enzymatic activity. The main presented novelties came from the tuning methods

of these controllers: one based on closed loop transfer function analysis, and another

one based on formulating an optimization problem.

The adaptive controllers were followed by an optimal controller for determining

the feed rate profile in glucose fermentation. These results showed that there is

a high potential in yeast economy that can be achieved with a variable feed rate

profile. Further investigation is required in order to transform the simulation results

into an implementable RTO scheme.



Chapter 6

Conclusions and Future Research

6.1 Summary of Conclusions

The core contribution of this research is a complex dynamic model library suit-

able for industrial size plants. Other parts of this work include model-based tools

that improve the operation of large scale biorefineries: an optimization layer for

maximizing the economical profit of the biorefinery, and an advanced control layer

to support an optimal operation.

The dynamic model library captured in great detail and accurately the behavior of

the key steps in biomass conversion, i.e. hydrothermal pretreatment with steam and

enzymatic hydrolysis. The library was completed with co-fermentation supported by

GMO yeast. The models from this work were subject to a comprehensive analysis

methodology for validation, and for assessing their sensitivity and uncertainty. This

work published for the first time validation against demonstration scale real data,

which proves that the model library is ready to be used in real industrial applications.

The models were then exploited to optimize the biorefinery operation for max-

imizing its economical profit. The plant was treated in an integrated manner in

order to capture the trade-offs between the biomass conversion steps. Too little pre-

treatment might not open the biomass sufficiently leading to an increase in enzyme

dosage and yeast seed while an over pretreatment lead to inhibitors formation that

decrease the ethanol yield in fermentation. The optimization layer identifies the best

compromise, and offers setpoints for the key process parameters, i.e. thermal reactor

temperature, enzyme dosage and yeast seed. The optimization part of the study was

carried in a simulated environment and showed potential economical improvements

of 18 % over a traditional plant operation.

The optimization layer is supported by an advanced automation and control

layer. Pretreatment temperature and pH in enzymatic hydrolysis are key parameters
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of the biorefinering process. Two high performance L1 adaptive controllers were

developed: one for pretreatment temperature and another one for pH in enzymatic

hydrolysis. The L1 adaptive controller for the thermal reactor temperature ensured

little deviations from the setpoint when the particle pump extracted steam for

pressurization of biomass. Changes in setpoints as indicated by the optimization layer

can also be performed with a reasonable fast first order response. The enzymatic

pH posed a higher challenge due to its nonlinear titration curve. Once again the

L1 adaptive controller was capable of minimizing deviations around the setpoint

ensuring an efficient enzymatic activity. The L1 adaptive controllers were tuned

systematically: by formulating an optimization problem that minimizes the IAE, and

by analyzing closed loop transfer functions for obtaining a specific performance.

The last component added to the control layer was an optimum feed rate profile

of liquefied fibers to fermentation. The challenge was to avoid accumulation of

inhibitors and sugars that could delay reactions and decrease ethanol yield. The

results showed an important reduction in yeast amount for obtaining the same

ethanol yield.

6.2 Future Research

There is great potential for future research in the area of biorefinery automation.

The advanced control and optimization tools formulated in this work offer a higher

profitability to the Inbicon technology making it more attractive to customers. As fu-

ture perspectives, emphasis will be placed on implementation on real-time hardware

making all these tools part of the commercial Inbicon technology. The modeling

work is continuous and will be maintained and updated with newly documented

phenomena, as well as validated against more real data.

Simultaneous saccharification and fermentation can be further improved. The

method used for determining the optimal feed rate profile can be extended for

pH and temperature because enzymes and yeast do not have the same optimal

conditions. This would lead to an optimal economic operation of the fermentation

process that would save even more costs.

The optimization work showed great potential and should be extended with

real-time optimization for implementation possibly following NCO tracking methods.

The dynamic models can also be transformed into soft sensors and state observers

such that the refinery operators can monitor all variables of interest even in the

absence of a real measurement. Faults happen in reality and detection and isolation

are important for an efficient operation. A model-based diagnosis layer would add

even further value to the Inbicon technology.
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Abstract:

Hydrothermal pretreatment of lignocellulosic biomass is a cost effective technology

for second generation biorefineries. The process occurs in large horizontal and

pressurized thermal reactors where the biomatrix is opened under the action of

steam pressure and temperature to expose cellulose for the enzymatic hydrolysis

process. Several by-products are also formed, which disturb and act as inhibitors

downstream. The objective of this study is to formulate and validate a large scale

hydrothermal pretreatment dynamic model based on mass and energy balances,

together with a complex conversion mechanism and kinetics. The study includes

a comprehensive sensitivity and uncertainty analysis, with parameter estimation

from real-data in the 178 ◦C to 185 ◦C range. To highlight the application utility of

the model, a state estimator for biomass composition is developed. The predictions

capture well the dynamic trends of the process, outlining the value of the model for

simulation, control design, and optimization for full-scale applications.
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A.1 Introduction

Lignocellulosic biomass, e.g. wheat straw, corn stover, bagasse etc, consist of

cellulose, hemicellulose, lignin, ash, and a negligible amount of residues [37]. The

cellulosic fibers contain glucose units, which are necessary for biofuel production, but

layers of hemicellulose and lignin make cellulose hardly accessible. The goal of the

pretreatment process is to relocate lignin, and partially hydrolyze the hemicellulose,

which opens the biomatrix for cellulose such that enzymes can easily access it in the

enzymatic hydrolysis process downstream [40].

Chiaramonti et al. [44] review various methods of pretreatment, e.g. autohydrol-

ysis, steam explosion, acid hydrolysis, alkaline hydrolysis, and many others. Studies

show that hydrothermal pretreatment with steam excels in cost effectiveness and,

therefore, has been commercialized in large scale second generation biorefineries.

Integrating the biorefinery with a power plant following the Integration Biomass

Utilization System (IBUS) also contributes to reducing costs [4]. The pretreatment

process partially depolymerizes hemicellulose creating several degradation and by-

products, i.e. organic acids, xylooligomers, xylose, and inhibitors, e.g. furfural and

5-HMF, which impact the downstream processes. The organic acids, i.e. acetic,

succinic and lactic acid influence the pH of pretreated fibers and become an issue

in the enzymatic hydrolysis process [6]. Xylooligomers and xylose act as strong

inhibitors of cellulose hydrolysis by enzymes [51], while furfural and 5-HMF inhibit

the fermentation process [52]. Also carbohydrates react with degradation products

such as furfural to create spherical droplets with lignin like structure named pseudo-

lignin, which can degrade the enzymatic activity [53]. Experimental studies show

that reactor temperature and retention time relate to biomass conversion [50].

Lavarack et al. [73] formulate a mechanistic acid hydrolysis model capable of

predicting cellulose, xylan and furfural concentrations but no one evaluated the

model for steam pretreatment, and at a large scale. This model has been used in

later studies for model-based optimization of bioprocesses under uncertainty [9] and

biorefinery configurations [96]. Overend et al. [97] present an empirical modeling

alternative known as the severity factor, which Petersen et al. [50] validated in

laboratory experiments for xylan recovery and furfural formation. These models

are incomplete because: (1) they miss production of important by-products such as

organic acids, xylooligomers, and pseudo-lignin; and (2) assume a uniform thermal

environment, which is not the case in a full scale reactor [71]. This study extends

the existing Lavarack et al. [73] model to demonstration scale using computational

fluid dynamics techniques, taking into account temperature variations in a large

scale thermal reactor, and production of the above enumerated by-products. The
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model is then calibrated and validated against real data that were logged throughout

several hours of operation at a demonstration scale facility.

This study also assesses the model reliability through a comprehensive sensitivity

and uncertainty analysis. The sensitivity analysis quantifies the importance of each

model parameter and creates an identifiable subset of parameters that is used for

parameter estimation following the methodology from Sin et al. [8] and Prunescu

and Sin [6].

Samples of fibers were collected after the pretreatment process and were ana-

lyzed with near infra-red instruments (NIR) to determine their composition. The

model parameters are estimated using the NIR readings. The uncertainty analysis

determines a confidence interval for model predictions and is carried with respect to

both model and feed parameters following the method from Sin et al. [8]. As a global

sensitivity measure, the standardized regression coefficients (SRC) are computed

in order to identify the model parameters responsible for most of the variations in

model predictions [66]. A residual analysis follows to identify how much of the

signal is represented by the model. The study ends with a model application as a

state estimator by using a static Kalman filter. The state estimator not only filters the

NIR measurements but also predicts by-products formation such as C5 sugars and

inhibitors.

This study has the following structure: the Methods section gives an overview

of a state of the art demonstration scale biorefinery from where the real measure-

ments were collected; a Model Development section follows, which formulates the

mathematical model for the pretreatment process along with the model analysis

methodology; the Results and Discussion section presents the model analysis and

validation results, and the model application as a state estimator; the study ends

with a Conclusions section, which summarizes all findings.

A.2 Methods

A.2.1 Biorefinery Experimental Setup

Figure A.1 shows an overview of a demonstration scale second generation

bioethanol plant. Biomass is first pretreated in a continuous thermal reactor where

the temperature can be set within 160 ◦C to 210 ◦C, and the retention time can be

adjusted from 6 min to 20 min. Following the IBUS concept, a nearby power plant

supplies the biorefinery with steam for pressurizing the thermal reactor, thus reach-

ing the necessary reaction temperatures. The steam supply pipe provides saturated

steam at 18×105 Pa. After the thermal reactor, the pretreated slurry is first washed

and then the liquid part is separated from fibers in a screw press. The liquid part is
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Figure A.1: Process flow diagram for a second generation biorefinery: pretreatment, enzy-

matic hydrolysis, C5 and C6 co-fermentation, and purification. The samples for NIR analysis

are extracted after the pretreatment process every 10 min. The thermal reactor is monitored

with two temperature sensors: one at the top and another one at the bottom of the reactor.

rich in C5 sugars, i.e. xylooligomers, xylose and arabinose, as a result of partially

hydrolyzing the hemicellulose in the thermal reactor.

The cellulosic fibers are transported on a conveyor belt to the enzymatic hy-

drolysis tank. Enzymes are added in the liquefaction tank where cellulose and the

remaining xylan are converted to glucose and xylose. The enzymatic hydrolysis

process has been detailed and analyzed in Prunescu and Sin [6]. The C5 and C6

sugars are then co-fermented for ethanol production in scheduled batch reactors

with genetically modified organisms (GMOs) for enhancing bioethanol production.

The purification and separation phase contains two distillation columns and

molecular sieves. Lignin is separated in the first distillation column, while ethanol is

purified to 99.5 % in the second column and in the molecular sieves. The recovered

lignin is transported to an evaporation plant and solidified as bio-pellets, which are

sent to the nearby power plant for burning.

There is a timeline indicator at the bottom of Figure A.1 showing the retention

time for each section of the biorefinery. The pretreatment process and distillation are

the fastest processes with a duration of maximum half an hour, while the enzymatic

hydrolysis and fermentation can last 5 to 7 days each.

The demonstration scale facility has a processing capacity of 4000 kgh−1 of

biomass [3]. Samples of pretreated fibers were extracted after the pretreatment

process every 10 min for a total duration of 15 h. The samples were then analyzed
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with near infra-red instruments (NIR) to determine their composition with respect to

cellulose, xylan, lignin, acetic acid, and furfural. The thermal reactor was monitored

with two temperature sensors, one placed at the top of the tank for measuring the

temperature in the steam layer, and another one placed at the bottom of the reactor

to measure the biomass temperature.

A.2.2 Dataset

Figure A.2 shows the raw temperature and NIR measurements collected through-

out the 15 h of operation. The dataset is split in two subsets: one is used for

estimation purposes, while the other for validation. The estimation dataset is identi-

fied in all figures with a grey background. The top reactor temperature oscillates

within 180 ◦C to 190 ◦C due to the pressurization unit, which takes the biomass from

atmospheric to reactor pressure with recycled steam from the reactor. The whole

process is thoroughly explained in Prunescu et al. [71]. There is a temperature

difference between the top and bottom of the reactor due to the insulation properties

of the biomass, and also because vertical mixing in the reactor was not possible due

to a low horizontal pushing speed.

A.2.3 Model Analysis Methodology

The model analysis follows the methodology from Table A.1:

1. The first step is to calibrate the model considering the entire set of parameters.

Ideally, this system identification exercise should give the set of parameters

that has the smallest sum of squared errors between model predicted output

and actual measurements. In the present case, this is a nonlinear least squares

problem and local minima can be obstacles. The parameter estimation may be

solved in Matlab with the fminsearch function, coupled with a cost function

that calculates the prediction error, if the initial parameter guess is sufficiently

close to a global minimum.

2. The second step is to investigate which parameters of the model could be

determined given the input and the model structure [63]. This selection is

achieved through assessment of sensitivity of the partial derivatives of the

cost function with respect to each model parameter. After computing the

sensitivities, δ msqr, all parameters are ranked with respect to their value of

δ msqr. Parameters that have low sensitivity are more uncertain that those with

high sensitivity and would not contribute to model accuracy. Therefore, a
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Figure A.2: The raw dataset. The top plot shows the reactor temperatures measured by the

top and bottom sensors. NIR offers information on the solid and soluble content of pretreated

fibers. The whole dataset is split into estimation and validation subsets.
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relevant subset of parameters is selected based on δ msqr being higher than a

threshold.

3. In the third step the reduced set of parameters is identified using the NIR

measurements from the demonstration scale plant. The correlation matrix and

standard deviations of the estimates are also computed.

4. This step quantifies the prediction uncertainty. Having the covariance matrix

and standard deviations from the previous step allows Latin Hypercube Sam-

pling (LHS) [65] with correlation control. The feed parameters is another

source of uncertainty and is included in this analysis. N Monte Carlo simu-

lations are then run with sampled values and the 5th-95th percentiles of the

model predictions are found. A global sensitivity analysis follows by fitting

a linear model from parameters to model predictions and the standardized

regression coefficients are computed to identify which parameters are the most

important for explaining the output uncertainty.

5. The model estimation error or the residuals are analyzed in this step. A

simulation is run with the estimated parameters using the entire set of data

(not only the estimation set). The residuals distribution and autocorrelation

are calculated in order to assess the quality of model predictions. A good

model captures most of the signal in measurements and is characterized by

residuals being Gaussian with uncorrelated increments.

A.3 Model Development

The mathematical model consists of mass and energy balances for the pretreat-

ment process. In large scale plants, the most common continuous thermal reactor

is a long tank with cylindrical shape. This study employs simplified computational

fluid dynamics tools for modeling the composition and temperature profiles.

A.3.1 Mass Balance

The thermal reactor has a continuous operation and the mass balance is estab-

lished as the accumulation of mass per unit of time equals the difference between

inflow and outflow rates:
dM
dt

= Fin−Fout (A.1)

where M is the total mass of biomass inside the reactor, Fin is the inflow rate of

pressurized biomass and Fout is the outflow rate of pretreated biomass.
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Table A.1: Sensitivity and uncertainty analysis methodology. The output from step k−1 is

the input to step k.

# Step Description Output

1 Model initialization • Initialization of all model parame-

ters to obtain a good working model

fit;

θ0

2 Sensitivity analysis • List of significant parameters; δ msqr

• Find an identifiable parameter sub-

set.

θR0

3 Parameter estimation • Identify parameter subset; θ̂R

• Correlation matrix; Rθ

• Confidence interval for parameters. σ

4 Uncertainty analysis • Calculate prediction uncertainty of

the model;

5th-95th percentile

• Sensitivity analysis with standard-

ized regression coefficients.

β

5 Residual analysis • Run simulation with the estimated

parameters and using the entire

dataset

• Check probability distribution of

model estimation errors or residuals

• Compute the autocorrelation func-

tion

A.3.2 Composition Balance

Pretreated fibers contain the following species: cellulose, xylan, arabinan, lignin,

acetyl groups, ash, glucose, xylooligomers, xylose, organic acids, furfural, 5-HMF,

and other components in negligible amounts. The change of species concentra-

tion with respect to time is a combination of convection and diffusion effects plus

production and consumption terms, which is modeled with the generic Convection-

Diffusion-Reaction equation [70]:

∂C
∂ t

=−∇(vC)+∇(D∇C)+R (A.2)

C is the species concentration vector, v is the horizontal transportation speed, ∇
is the gradient operator, D is the diffusion coefficient, and R is the reaction rate

vector. Most of the particles are in solid state and they do not diffuse. Solubles, i.e.

xylooligomers, xylose, arabinose, organic acids, furfural and 5-HMF, diffuse but the
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snail pushing the biomass along the reactor separates the tank in chambers due to

its pallets, which leads to little exchange of matter between these chambers. If the

reactor is split in the same number as the chambers created by the rotational snail

pallets then the diffusion coefficient can be dropped:

∂C
∂ t

=−∇(vC)+R (A.3)

The horizontal speed v is set to a constant value such that to meet a certain

retention time:

v =
Lr

tr
(A.4)

where Lr is the reactor length and tr is the retention time. E.g., a thermal reactor of

12 m with a retention time set to 15 min has a horizontal speed of 0.013 ms−1, which

is a low speed not capable of agitating the biomass vertically.

Since the reactor tank is longer on one axis, the partial derivatives with respect

to the other axis could be dropped. It is assumed that the biomass composition

changes only along the reactor and remains uniform in the other directions:

∂C
∂ t

=−v
dC
dz

+R (A.5)

where z is the axis oriented along the reactor from inlet to outlet. Due to the low

horizontal speed, the vertical uniformity assumption stands valid only if the biomass

level in the reactor is low. At high biomass levels, the temperature gradient causes

different pretreatment layers and the reactor needs to be split on the vertical axis

too [71]. The data in this study was collected at low reactor levels and vertical

uniformity can be assumed but differences between the steam and biomass layer

temperatures still exist.

Figure A.3 illustrates the concept of splitting a reactor tank of length Lr into N

smaller reactors, or cells, of width δz. Equation A.5 is then discretized in space using

a Upwind Difference Scheme (UDS), which is a more stable technique for moving

environments [72]:
dCk

dt
=

uz

δz
(Ck−1−Ck)+Rk (A.6)

Ck is the composition vector in central cell k, Ck−1 is the composition vector from the

western neighbor, and Rk is the reaction rate vector from current cell k. Movement

from west to east (left to right) is assumed. The composition vector will be detailed

in the next section.

A.3.3 Mechanistic Modeling for Hydrothermal Mediated Pretreatment

Raw biomass consists of cellulose, hemicellulose (arabinan and xylan), lignin,

acetyl groups, ash, water, and other components in negligible amounts. Table A.2
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Figure A.3: Computational fluid dynamics methodology for the thermal reactor. The reactor

tank is split into N cells of equal width δz. A cell Ck has two neighbors, i.e. Ck−1 to the west,

and Ck+1 to the east. Biomass is transported from left to right. The length of the reactor is Lr.

shows the composition fractions of different types of lignocellulosic biomass.

Table A.2: Composition of different raw biomass types in percentage of dry matter. Some

components were not measured (n/m).

Biomass Cellulose Xylan Arabinan Lignin Ash Acetyls Other Reference

Bagasse 39.0 21.8 1.8 24.8 3.9 3.3 5.4 [43]

Wheat straw 39.8 24.5 2.8 22.6 4.2 n/m 6.1 [40]

Wheat straw 42.1 23.4 1.9 21.6 2.1 n/m 8.9 [41]

Miscanthus 38.2 20.9 1.5 26.4 2.6 4.1 6.3 [44]

Corn stover 35.0 18.5 n/m 13.9 3.8 3.2 25.6 [42]

Corn stover 34.0 19.2 2.5 12.3 4.7 2.9 24.4 [43]

Figure A.4 illustrates the reaction paths that occur in the thermal reactor. There

is little change to cellulose, which is recovered almost entirely in the fiber fraction

after the pretreatment process under optimal conditions [50]. However, a small

fraction of cellulose could be hydrolyzed to glucose, which is further degraded to

5-HMF. Arabinan is completely hydrolyzed to arabinose [40]. The xylan to xylose

path has the xylooligomers intermediate product, which is important to predict

because it acts as a very strong inhibitor in the enzymatic hydrolysis process along

with xylose [51]. Pentoses, i.e. arabinose and xylose, are further decomposed into

furfural and other degradation products. Carbohydrates, i.e. xylooligomers, xylose,

arabinose, and glucose, react with furfural and 5-HMF to create spherical droplets

with a lignin like structure, also known as pseudo-lignin [53]. Furfural and 5-HMF

production is important to monitor due to its inhibitory effects on fermentation

[52], while organic acids influence the pH of the enzymatic hydrolysis process [11].

Pseudo-lignin can degrade the enzymatic activity [53].
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Figure A.4: Hydrothermal pretreatment conversion mechanism.

Reaction rates are modeled as first order Arrhenius temperature dependent

equations. Glucose production rate is defined as:

rG = kG exp
(
− EG

Rg ·TK

)
CCS (A.7)

where rG is the glucose production rate, kG is the reaction constant, EG is the

activation energy, Rg is the universal gas constant, TK is the environment temperature

in Kelvin degrees, and CCS is the concentration of cellulose (solid), or the substrate.

Glucose degradation rate to 5-HMF or rH is modeled similarly with concentration

of glucose CG as substrate:

rH = kH exp
(
− EH

Rg ·TK

)
CG (A.8)

Arabinan hydrolysis forms arabinose following the below rate expression:

rA = kA exp
(
− EA

Rg ·TK

)
CAS (A.9)

where CAS is the concentration of arabinan (solid).

Xylan degradation produces xylooligomers with rate rXo, which further decom-

pose to xylose with rate rX defined as follows:

rXo = kXo exp
(
− EXo

Rg ·TK

)
CXS (A.10)

rX = kX exp
(
− EX

Rg ·TK

)
CXo (A.11)
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where CXS , and CXo are concentrations of xylan (solid), and xylooligomers (liquid).

Furfural is produced from pentoses, i.e. from both arabinose and xylose as

follows:

rF = kF exp
(
− EF

Rg ·TK

)
(CX +CA) (A.12)

where CX and CA are concentrations of xylose (liquid) and arabinose (liquid). The

amount of furfural produced from xylose is denoted as rFX , and the one from

arabinose as rFA .

Furfural and 5-HMF bond to carbohydrates to create pseudo-lignin [53], which

is modeled in this study in the following way:

rL = kL exp
(
− EL

Rg ·TK

)
(CXo +CX +CA +CG)(CF +CH) (A.13)

where CF is the concentration of furfural (liquid) and CH is the concentration of

5-HMF (liquid). Equation (A.13) can be split into:

rLXo = kL exp
(
− EL

Rg ·TK

)
CXo(CF +CH)

rLX = kL exp
(
− EL

Rg ·TK

)
CX (CF +CH)

rLA = kL exp
(
− EL

Rg ·TK

)
CA(CF +CH)

rLG = kL exp
(
− EL

Rg ·TK

)
CG(CF +CH)

(A.14)

which denote pseudo-lignin produced from xylooligomers, xylose, arabinose and

glucose when they bind to both furfural and 5-HMF. Then Equation (A.13) becomes:

rL = rLXo + rLX + rLA + rLG (A.15)

Equation (A.13) can also be split into:

rLF = kL exp
(
− EL

Rg ·TK

)
(CXo +CX +CA +CG)CF

rLH = kL exp
(
− EL

Rg ·TK

)
(CXo +CX +CA +CG)CH

(A.16)

where rLF is the production rate of pseudo-lignin with furfural participation, while

in rLH 5-HMF participates.

Acetyls are released during hemicellulose hydrolysis and lead to organic acids

formation with rate rAc:

rAc = kAc exp
(
− EAc

Rg ·TK

)
CAcS (A.17)
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where CAcS is the concentration of acetyl groups in the hemicellulose (solid).

The composition vector Ck from Equation (A.6) contains all components from

the mechanistic scheme. The reaction rates from this section are put into a reaction

rates vector Rk. Ck and Rk are shown next in vector form:

Ck =



CCS

CXS

CAS

CLS

CAcS

CG

CXo

CX

CA

CAc

CF

CH

CW

CO



Rk =



−rG

−rXo

−rA

rL

−rAc

rG− rOG − (1−α)rLG

rXo− rX − (1−α)rLXo

rX − rFX − rOX − (1−α)rLX

rA− rOA − rFA − (1−α)rLA

rAc

rF −αrLF

rH −αrLH

0
rOX + rOG + rOA



(A.18)

where CW is the water content, and α is a stoichiometric parameter for furfural and

5-HMF participation in pseudo-lignin formation. In order to close the mass balance,

the sum of all elements in Rk has to be 0, and the sum of all elements in vector Ck is

1000 gkg−1 at any time t:

∑Rk = 0g/(kgs) ∑Ck = 1000gkg−1 (A.19)

A.3.4 Energy Balance

The steam layer energy balance together with a temperature controller for the

thermal reactor have been formulated in Prunescu et al. [12]. The energy balance

for the biomass layer has been studied in Prunescu et al. [71] and is simplified in

this paper by a distributed parameters model on one axis, which is discretized along

the reactor, or the z axis:

dh
dt

=−v
∂h
∂ z

+Qk⇒
dhk

dt
=

v
δ z

(hk−1−hk)+Qk (A.20)

v is the horizontal speed, hk is the biomass enthalpy in cell k and hk−1 is the enthalpy

in the western neighbor. Qk represents the transfer of energy from steam to biomass

in cell k. As part of this coupled partial differential equation (PDE) system, the

bottom and top temperature measurements (sensors) are used to construct the



84 Paper A. Pretreatment Modeling

boundary conditions. The PDE model is then solved for obtaining the reactor

temperature gradient, which is then utilized as the temperature of the reaction in

calculating the reaction rates vector Rk.

Steam is injected through the bottom of the reactor and gets in direct contact

with the biomass. The steam injection heat transfer is lumped into the boundary

conditions of Equation (A.20). The biomass is assumed to heat till the steam

temperature near the inlet of the reactor, and used as a western boundary condition.

The heat transfer rate is computed as:

Q0 = Fin
h f −h0

hs0 −h0
(A.21)

where Q0 is the heat transfer rate from the boundary conditions, Fin is the flow rate of

biomass, h f is the final enthalpy of heated biomass, h0 is the initial biomass enthalpy,

and hs0 is the fresh steam enthalpy. h0 is obtained by measuring the temperature of

the biomass entering the reactor T0:

h0 = cb(T0−Tr) (A.22)

where cb is the specific heat of biomass, and Tr = 0 is the reference temperature.

Biomass is assumed to have a constant specific heat of approximately cb = 3.8kJkg−1,

a value slightly lower than water (4.18 kJkg−1) since the pretreatment slurry is a mix

of condensed water and biomass.

hs0 is derived from saturated steam tables following the IAPWS-IF97 standard

[69] and from a temperature sensor Ts0 mounted in the steam supply pipe:

hs0 = f (Ts0) (A.23)

h f is computed using the temperature of the steam layer Ts measured by the top

temperature sensor, and assuming that the biomass heats till the steam temperature

near the reactor inlet:

h f = cb(Ts−Tr) (A.24)

It is natural to use the same grid in Equation (A.20) as the one from the compo-

sition balance section. The model tracks the biomass enthalpy throughout each cell

of the grid. The conductive heat from the steam to the biomass layer is neglected

due to the fact that biomass acts as an insulator. Therefore, only convective effects

remain in the biomass layer and Qk = 0,0 < k ≤ N.

The temperature profile is obtained by dividing the enthalpy from each cell with

the specific heat for biomass constant cb:

Tk =
hk

cb
(A.25)

where Tk is the biomass temperature from cell k, and cb is the specific heat of

pretreated biomass.
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A.3.5 Model Summary

The thermal reactor model tracks nC = 14 species concentrations shown in vec-

tor Ck from Equation (A.18): cellulose, xylan, arabinan, lignin, acetyls, glucose,

xylooligomers, xylose, arabinose, acetic acid, furfural, 5-HMF, water, and other

components.

The total number of states nx is variable depending on the initial value of N, the

amount of cells in the reactor grid. nx can be calculated as follows:

nx = N · (nC +nh)+(ns +nm) (A.26)

where nC is the number of species, nh = 1 meaning one state for each grid cell

enthalpy, ns = 2 is the number of states from the steam layer (mass and enthalpy),

and nm = 1 is the total mass of biomass in the reactor. In this study, N is set to 10
leading to 153 states in total.

The model has 2 bus inputs: one for feedstock, and another one for steam. The

feedstock input has 16 components: flow rate (1), feedstock concentrations (14),

and enthalpy (1). The steam input has 2 components: flow rate (1), and enthalpy

(1). In total there are 18 inputs.

There are 2 bus outputs: pretreated fibers and the liquid rich in C5 sugars. Each

bus has 16 components: flow rate (1), species concentrations (14), and enthalpy

(1).

Table A.3 shows the fixed model parameters. The kinetics parameters are deter-

mined in the model calibration section of this study.

A.4 Results and Discussion

This section is split into a model analysis and validation part, and the model

application as a state estimator. The model analysis and validation section contains

the sensitivity and uncertainty analysis, parameter estimation, and residual analysis.

A.4.1 Model Analysis and Validation

A.4.1.1 Model Initialization

Model parameters are calibrated with respect to the following NIR measurements:

cellulose, xylan, lignin, acetic acid and furfural. The data were obtained from a

demonstration scale thermal reactor throughout 15 h of operation. Only a subset

of 7 h is used for calibration and parameter estimation, while the entire set of

measurements is used for validation and residual analysis. The measurements of

cellulose, xylan and lignin are reported as percentage of dry matter, while acetic
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Table A.3: Fixed model parameters. Feedstock is soaked before entering the thermal reactor

till approximately 40 % dry matter.

Parameter Description Value Unit

Lr Thermal reactor length 12 m

tr Pretreatment retention time 15 min

N Grid cell resolution 10 -

δ z Grid cell width 1.2 m

v Reactor horizontal speed 0.013 ms−1

Fin Feedstock flow rate 6 kgs−1

h0 Feedstock enthalpy 117 kJkg−1

hs0 Fresh steam enthalpy (saturated) 2795 kJkg−1

cb Specific heat of pretreated biomass (constant) 3.8 kJ/(kgK)

R Universal gas constant 8.3145 J/(molK)

C0 Feedstock composition:

Cellulose 160 gkg−1

Xylan 95 gkg−1

Arabinan 8 gkg−1

Lignin 80 gkg−1

Acetyls 16 gkg−1

Glucose 0 gkg−1

Xylooligomers 0 gkg−1

Xylose 0 gkg−1

Arabinose 0 gkg−1

Acetic acid 0 gkg−1

Furfural 0 gkg−1

5-HMF 0 gkg−1

Water 600 gkg−1

Other 41 gkg−1

1000 gkg−1
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acid and furfural concentrations as g/kg of slurry. Table A.4 illustrates the estimated

values while Figure A.5 shows the fitting result.

Table A.4: Calibrated parameters using the estimation dataset from Figure A.2, which provides

system dynamics in the 178 ◦C to 185 ◦C range.

Parameter Value Units

kXo 2.78×1031 s−1

EXo 298000 Jmol−1

kX 1.31×1034 s−1

EX 305000 Jmol−1

kG 1.11×1035 s−1

EG 336000 Jmol−1

kPL 1.03×1033 s−1

EPL 326000 Jmol−1

kF 5.09×1033 s−1

EF 327000 Jmol−1

kAc 4.88×1024 s−1

EAc 243000 Jmol−1

kH 1×1031 s−1

EH 300000 Jmol−1

aPL 0.102 −

A.4.1.2 Sensitivity Analysis

The sensitivity analysis contributes to a good process understanding by quanti-

fying the relation between outputs and model parameters. The analysis is carried

with respect to all model parameters from Table A.4 and aims at ranking these

parameters by their significance. In this way a reduced set of relevant parameters

can be identified and used for a proper parameter estimation procedure. Also, by

fitting less parameters, the model calibration procedure simplifies and can be run

more often in a real industrial application.

A measure of sensitivity with respect to model parameters, and suitable for time

varying signals, is the delta mean square δ msqr
ik defined by Brun et al. [64]:

δ msqr
ik =

√
1
N

s>nd,iksnd,ik (A.27)

where k is the parameter index, i is the model output index, N is the number of

samples, and snd,ik is a vector with the non dimensional sensitivity calculated in each
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Figure A.5: Solid and liquid content of pretreated biomass: cellulose, xylan, lignin, acetic

acid, and furfural.

sample:

snd,ik =
∂yi

∂θk

θk

sci
(A.28)

∂yi/∂θk represents the output variation with respect to parameter θk, and sci is a

scaling factor with the same physical dimension as the corresponding observation

in order to make this measure non dimensional. In this study, the scaling factor is

chosen as the mean value of output i:

sci =
1
N

N

∑
1

yi(k) (A.29)

All parameters are ranked according to δ msqr
ik for each output i. As the sensitivity

measure is non-dimensional, a cumulative variable is also defined as the sum of

sensitivities for a given parameter in all outputs. Because the model has to predict

all defined outputs, the subset of significant parameters contains all parameters

with a cumulative sensitivity above a threshold, which is set to 2 % of the maximum

sensitivity. The cumulative delta mean square is defined as:

δ msqr
k =

ny

∑
i=1

δ msqr
ik (A.30)

where ny is the total number of outputs, i.e. ny = 5 in this study: concentrations of

cellulose, xylan, lignin, acetic acid, and furfural.
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The same sensitivity analysis methodology has been applied on a cellulosic

hydrolysis model in previous studies by Sin et al. [8], and Prunescu and Sin [6].

The sensitivity analysis results for the pretreatment process can be observed in

Figure A.6:

• Cellulose is mostly sensitive to EG, which is expected since cellulose is di-

rectly hydrolyzed into glucose and this reaction is sensitive to the reactor

temperature.

• Xylan is sensitive to the activation energy of xylooligomers production EXo,

which is not surprising since xylooligomers are direct products of xylan hydrol-

ysis.

• Lignin as percentage of dry matter follows the changes from xylan and cellulose

content, which is the solid content of biomass. This means that if more xylan

is hydrolyzed then the percentage of lignin in the remaining slurry after

separation will increase. There is also lignin production as pseudo-lignin and

EPL is ranked second. EF , EG and EX influence the amount of carbohydrates

that participate in pseudo-lignin formation.

• Organic acids, mostly represented by acetic acid, is sensitive to the activation

energy for reaction rate rAc, i.e. EAc.

• The last output, furfural, is mostly sensitive to the activation energy EF of

reaction rate rF . EXo appears second because it directly affects the amount of

xylose, which degrades to furfural.

The cumulative sensitivity measure is illustrated in the right bottom plot of Figure

A.6. The most sensitive parameters are picked to be the first six:

θR = [EXo EF EAc EG EPL EH ] (A.31)

which are all activation energies directly involved in the reaction temperature de-

pendency. This is natural as it has been observed in experimental studies that small

changes in reactor temperature impact significantly the composition of pretreated

fibers, and is in agreement with process expert knowledge [50]. This analysis also

ranks the activation energies among themselves. EXo (related to xylooligomers

production) is ranked first as the most sensitive parameter, which tells that hemicel-

lulose hydrolysis is the main phenomenon taking place in the reactor. EF is ranked

second showing that furfural is the main by-product followed by acetic acid (EAc).

EG is ranked 4th, which means that cellulose hydrolysis also occurs in the reactor

but at a much lower rate than hemicellulose hydrolysis. The other two by-products,

i.e. pseudo-lignin and 5-HMF, have a lower significance.
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Figure A.6: Sensitivity analysis by calculating the δ msqr for each output with respect to each

model parameter. Although the model has 15 parameters in total, only 6 parameters are of

interest as indicated in the bottom right figure.

A.4.1.3 Parameter Estimation

The reduced set of parameters θR is identified based on the real NIR measure-

ments from the demonstration scale facility. A nonlinear least square method is

run to obtain the parameter estimates θ̂R along with their standard deviation σ and

correlation matrix Rθ . Table A.5 shows the results. The estimated parameter values

are deemed credible as the parameter estimation error indicated by the standard

deviation is rather low, i.e. less than 1 %. However some of the parameter estimates

are found to be significantly correlated, e.g. correlation between EG and EXo is

0.74, which implies poor identifiability. The reason for this is the dataset used for

parameter estimation. The data are obtained from an industrial scale facility during

normal operational conditions under small temperature disturbances. Such data

with limited dynamics cannot be expected to provide rich information for complete

identification of all the parameters [98] and design of experiments for identification
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should be pursued on lower scale facilities. Other measurements should also be

included in the parameter estimation analysis, such as xylooligomers, xylose and

glucose content of the liquid part, which are missing in this study.

Table A.5: Parameter estimation results. The estimates of the most important parameters

with their standard deviations are shown in Table A.6(a). The correlation matrix is displayed

in Table A.6(b). The results are valid in the 178 ◦C to 185 ◦C range.

(a) Parameter estimates in Jmol−1 with standard deviation σ and 95 % confidence interval.

Parameter Value [Jmol−1] Standard deviation σ Lower bound Upper bound

EXo 298010 98 297918 298102

EF 327255 285 326989 327520

EAc 242693 174 242531 242855

EG 335616 249 335383 335848

EPL 325632 1573 324165 327099

EH 299999 2639 297537 302461

(b) Correlation matrix Rθ .

Parameter EXo EF EAc EG EPL EH

EXo 1

EF −0.51 1

EAc 0.17 −0.12 1

EG 0.74 −0.54 0.26 1

EPL −0.51 0.74 −0.15 −0.63 1

EH 0.14 −0.61 0.01 0.16 −0.85 1

A.4.1.4 Uncertainty Analysis

In order to assess the uncertainty of the model, a large number of Monte Carlo

simulations are run in 3 different scenarios that cover most sources of uncertainty:

model parameters, feed parameters, and combined.

1. Model parameters uncertainty: the standard deviation and the correlation

matrix for model parameters were obtained in the previous step. A number of

200 samples are generated using Latin hypercube sampling with correlation

control. Figure A.7(a) shows the biomass composition predictions with the

5th-95th percentile interval considering only model parameters uncertainty.

The model parameters uncertainty cannot explain the entire output variations,

especially in the solid content of the mixture. This is expected since there
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Figure A.7: Model predictions uncertainty.
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are other sources of uncertainty, i.e. initial biomass composition or feed

parameters.

2. Feed parameters uncertainty: Latin hypercube uniform sampling is performed

to cover 7 % variation of the initial composition and another 200 samples are

generated considering fixed model parameters. The simulation results with

NIR measurements and percentile intervals are displayed in Figure A.7(b).

Cellulose and lignin concentrations are well within the bounds while xylan

exceeds the interval in some samples. Acetic acid and furfural are not entirely

captured by the percentile interval, but it might be due to model parameters

uncertainty.

3. Combined uncertainty: the results are shown in Figure A.7(c). The uncertainty

for acetic acid and furfural is wider but still not entirely within bounds. NIR

instruments have a lower accuracy for low concentrations and it is expected

that the remaining prediction inaccuracy is due to non Gaussian measurement

error. Acetic acid and furfural have a much lower concentration compared to

the solids, i.e. cellulose, xylan and lignin. Therefore, it is expected to have

significant measurement errors at these low concentrations.

A.4.1.5 Reactor Profiles

The thermal reactor was split in 10 smaller cells and reactor profiles can be drawn

in order to observer how biomass changes composition along the reactor. The top

plot from Figure A.8 indicates the reaction temperature, which is not constant but

rather a gradient built with the help of the top and bottom temperature sensors.

The biomass is subject to a range of pretreatment temperatures. The remaining 3

plots from Figure A.8 show how biomass composition changes along the reactor.

The figure x axis is the length of the reactor, while the y axis contains the species

concentration in g/kg. The second plot indicates that arabinan is fully hydrolyzed,

while cellulose and xylan are partially hydrolyzed with more xylan conversion than

cellulose. The following plot shows sugar production, i.e. glucose, xylooligomers,

xylose and arabinose. By-products such as acetic acid and furfural are displayed in

the bottom plot of Figure A.8.

A.4.1.6 Standardized Regression Coefficients (SRC)

A linear model is first fitted from model parameters to each model output from

the Monte Carlo simulations [66, 67]:

yreg = a+∑
k

bkθk (A.32)
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for calculating the reaction rates. The other plots illustrate the reactor conversion profiles

with confidence bounds due to both model and feed parameters uncertainty.
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where yreg is the ith output, and a and bk are the linear model parameters. The

standardized regression coefficients β are a global sensitivity measure and are

defined as:

βk =
σθ̂Rk

σyi

bk (A.33)

where βk is the β coefficient, σθ̂Rk
is the standard deviation of the parameter estimate,

σyi is the standard deviation of output i, and bk is the linear model parameter. βk is

an indicator for how much the parameter uncertainty contributes to the prediction

uncertainty.

The β coefficients are displayed in Table A.6 and explained below:

Table A.6: SRC coefficients for model and feed (combined) parameters.

θ Cellulose θ Xylan θ Lignin θ Acetic Acid θ Furfural

CCS 0.82 CXS 0.70 CLS 0.77 CACS 0.72 EF −1.00

CLS −0.43 EXo 0.54 EPL −0.72 EAc −0.60 EPL 0.75

EG 0.38 CCS −0.38 CCS −0.47 CCS 0.06 CXS 0.56

EPL 0.36 CLS −0.23 EH −0.47 CLS 0.04 EXo −0.16

EH 0.23 EPL 0.20 EG −0.24 EPL −0.04 CAS 0.08

CXS −0.23 EH 0.14 EXo −0.11 EH −0.02 EH 0.07

EXo −0.08 EG −0.12 EF −0.06 EG 0.02 CLS 0.04

CACS −0.05 CACS −0.03 CXS −0.04 CXS 0.01 CCS 0.03

EF 0.02 EF 0.02 CACS −0.04 EXo 0.01 EG 0.02

EAc −0.02 EAc −0.02 EAc −0.02 EF −0.00 CACS 0.01

CAS −0.01 CAS −0.01 CAS 0.02 CAS −0.00 EAc 0.00

R2 1.00 R2 1.00 R2 0.99 R2 1.00 R2 0.93

• Concentration of solid cellulose CCS : is sensitive to the initial concentration

of cellulose and lignin from feedstock, to the activation energy of glucose

reaction rG, and pseudo-lignin reaction rL. Lignin appears due to the fact

that the function of lignin in nature is to protect cellulose from degradation,

thus a larger amount of lignin necessarily affects the kinetics of cellulose

degradation by reducing it (the corresponding β coefficient has a negative

value). There is also a percentage redistribution of biomass content when

lignin or pseudo-lignin increase. Thus, production of pseudo-lignin causes a

decrease in cellulose concentration in pretreated fibers and EPL appears among

the top parameters.

• Concentration of solid xylan CXS : is sensitive to the initial concentration of

xylan in feedstock, and to xylan hydrolysis or the activation energy of xy-
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looligomers reaction rate EXo. Higher concentrations of cellulose and lignin in

feedstock can cause a decrease in xylan content due to percentage redistribu-

tion.

• Concentration of solid lignin CLS : high sensitivity is detected in initial lignin

concentration from feedstock and in pseudo-lignin production. Initial concen-

tration of cellulose also has an impact due to percentage redistribution of fiber

content.

• Concentration of acid CAc: as expected, acetyls content in feedstock and

activation energy of the acid production reaction rate EAc have the greatest

impact on acid content in pretreated fibers.

• Concentration of furfural CF : activation energy of the furfural production

reaction EF and pseudo-lignin EPL are the most sensitive parameters. Furfural

participates in pseudo-lignin formation and is expected to find EPL among the

top parameters.

Parameters related to feed composition have a higher sensitivity than the kinetic

parameters, even though only a deviation of 7 % was introduced in the initial biomass

composition. This indicates the importance of measuring the initial composition of

feedstock for more accurate model predictions. The SRC based sensitivity results are

credible as the degree of linearization indicated by Pearson correlation coefficient R2

is high for all the outputs [66].

A.4.1.7 Residual Analysis

Statistical analysis of residuals is important for model validation especially as

it provides information on any model bias in the predictions [99]. The prediction

estimation error or residual is calculated as:

e = y− ŷ (A.34)

where e is the residual vector, y is the real measurement and ŷ is the estimated

output. There are 5 measurements regarding biomass composition, i.e. cellulose

(%), xylan (%), lignin (%, includes pseudo-lignin), acetic acid (g/kg) and furfural

content (g/kg). The residuals are calculated based on the validation set and they are

displayed in the top plot series from Figure A.9. The estimation errors for cellulose,

xylan and lignin stay within −2 to 2 %, while acetic acid and furfural are slightly

lower, −1 to 1 g/kg.

If the residuals are white noise (i.e. Gaussian distribution with mean zero and a

certain standard deviation) and uncorrelated then there is no systematic error or
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bias in the model. To check the hypothesis of residual Gaussian distribution, a 5 %
t-test is performed. The test is passed and the Gaussian probability plots from Figure

A.9 (the middle series) show how close the residuals are to a Normal distribution.

The autocorrelation determines if there still is any information in the residuals that

is not captured by the model. The bottom series of plots from Figure A.9 display

the autocorrelation function at 50 lags with the 95 % confidence interval. There are

spikes in almost all plots except acetic acid production that exceed the confidence

interval but they are not significant. The feedstock composition and the assumption

that it remains constant might be a good source for these results. In reality feedstock

has composition variations.
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Figure A.9: Residual analysis for the validation set. The top plot series show the residuals;

the middle series compare in a Gaussian probability plot the distribution of residuals to a

Normal distribution; the bottom series display the autocorrelation function and the 95 %

confidence interval.

A.4.2 Model Application: State Estimator

The utility of the model for industrial application is highlighted through the

development of a state estimator using a Kalman filter. The state estimator is useful

for performance monitoring by estimating in real-time the entire biomass compo-

sition, i.e. both sugars and inhibitors production. The estimator infers all species

concentrations from pretreated fibers using a reduced number of measurements

provided by the NIR instrument.
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A state estimator is naturally based on the nonlinear process model:

{
ˆ̇x = f (x̂,u)

ŷ = g(x̂)
(A.35)

where x̂ is the state estimates vector, ŷ is the output estimates vector, f (x̂,u) is

the nonlinear state derivatives as a function of states and inputs, and g(x̂) is the

nonlinear output function.

Several methods exist for use of nonlinear process models in state estimation.

Classical approaches include an extended Kalman filter for combined state and

parameter estimation [100] for a linearized system at a particular point of operation,

or direct inclusion of the nonlinear process model in the filter [101]. Later develop-

ments have included the unscented Kalman and particle filters to better explore and

approximate non-Gaussian nature of the process noise in a nonlinear system [102].

To compensate for model-mismatches between estimates and real measurements,

an extra correction term is added to the state derivatives equation from (A.35):

{
ˆ̇x = f (x̂,u)+Le

ŷ = g(x̂)
(A.36)

where e is the estimation error defined in Equation (A.34), and L is a gain matrix

that needs to be designed. The expression in (A.36) is known as a high-gain observer.

The block diagram of the state estimator for the pretreatment process is shown in

Figure A.10. In this application, feedback from the NIR instrument is used to create

the estimation error term. A constant feedstock composition is assumed and it can

be determined in reality by analyzing stock samples offline in the laboratory.

There are various methods to calculate the gain matrix L among which the

most common ones include pole-placement and extended Kalman filter (EKF). Pole-

placement and extended Kalman filters rely on a linearized version of the process

model. The extended Kalman filter uses the linearized model to calculate the error

covariance matrix and, from this, the observer gain. If the linearized model and

process noise covariance matrices are fixed then the error covariance matrix and

the observer gain can be calculated offline. Kalman filters are known to be optimal

in the sense of minimizing the estimation error covariance matrix in the presence

of process and measurement noise [103], and are preferred to pole-placement

techniques. Kalman filters require known process noise covariance matrices to work

optimally, which is rather difficult in reality to approximate but alternatives exist,

which estimate the noise structure online [100], at the expense of more complexity

of the estimation algorithm.
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Figure A.10: State estimator block diagram. The state estimator uses 2 temperature sensors

and the NIR measurements to infer pretreated biomass composition. The state estimator acts

both as measurement filter and soft sensor.

The operational point in this study does not change significantly and this is the

reason why a static extended Kalman filter is chosen for the state estimator. The EKF

design process follow these steps:

1. The first step is to obtain a stochastic linear model by linearizing the nonlinear

process model from (A.35) around the nominal operational point seen in the

datasets: {
˙̂x = Ax̂+Bu+Gw

ŷ = Cx̂+ v
(A.37)

where A is the dynamic matrix of the linearized model, B is the input matrix,

G is the state noise propagation matrix, and C is the output matrix. State noise

w and measurement noise v are assumed to be 0 mean uncorrelated white

noise sequences with variances Q and R:

w∼ (0,Q) v∼ (0,R) (A.38)

The linear model matrices are calculated by differentiating the nonlinear
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process model around the nominal operational point (xe,ue):

A =
∂ f (x̂,u)

∂ x̂

∣∣∣∣
x̂=xe,u=ue

B =
∂ f (x̂,u)

∂u

∣∣∣∣
x̂=xe,u=ue

G =
∂ f (x̂,u)

∂w

∣∣∣∣
x̂=xe,u=ue

C =
∂g(x̂)

∂ x̂

∣∣∣∣
x̂=xe

(A.39)

where xe and ue form the nominal operational point in terms of states and

inputs. It is not known how the process noise propagates inside the system

dynamics, and G is set to Inx (identity matrix of size nx or total number of

states).

2. The second step is to approximate the state and measurement noise covariance

matrices, i.e. Q and R, which are set to:

Q = 10−4 · Inx R =


50 0 0 0 0
0 10 0 0 0
0 0 50 0 0
0 0 0 600 0
0 0 0 0 100

 (A.40)

where Inx is an identity matrix, and nx is the number of states. The concentra-

tions of solids are higher and more reliable, therefore lower variances are used

in the first 3 diagonal terms from R, which correspond to cellulose, xylan and

lignin (measured in % of dry matter). The other 2 diagonal numbers are the

variances for acetic acid and furfural (measured in gkg−1), which are in low

concentrations and have larger measurement errors.

3. In the last step of the design process, the static Kalman gain is calculated [103]:

L = PCTR−1 (A.41)

where P is the error covariance matrix found from solving the Riccati equation

[103]:

Ṗ = AP+PAT +GQGT−PCTR−1CP (A.42)

when Ṗ = 0.

The Kalman state estimator is tested throughout the whole dataset of 15 h. Figure

A.11 shows the model outputs overlapped with the NIR measurements. The model

and the Kalman filter succeed in following the dynamic trends of the process. The
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Figure A.11: Pretreatment state estimator throughout 15 h of operation. The plots show the

solid and liquid content of pretreated biomass: cellulose, xylan, lignin in the top plot, acetic

acid and furfural in the second plot, and estimations of by-products production in the bottom

plot.

state estimator filters the NIR measurements and also acts as a soft sensor for by-

products production: glucose, xylooligomers, xylose, arabinose and 5-HMF shown

in the bottom plot of Figure A.11.

The residuals are displayed in Figure A.12. The variance of the raw residuals is

similar to the one from Figure A.9. However, the Kalman filter is able to capture more

information from the process causing the autocorrelation function to stay within

the confidence interval (the bottom plot series from Figure A.12). The residuals

distribution slightly change as indicated by the middle series of plots from Figure

A.12. This happens because the noise covariance matrices, and the propagation of

noise through the system are unknown and set to arbitrary values.
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Figure A.12: Residual analysis for the validation set with estimator. The top plot series show

the residuals; the middle series compare in a Gaussian probability plot the distribution of

residuals to a Normal distribution; the bottom series display the autocorrelation function and

the 95 % confidence region.

The state estimator successfully embeds the real measurements to compensate

on model predictions mismatches under uncertainties such variation in feedstock

composition or in model parameters. Also, the state estimator acts as a soft sensor

for several unmeasured variables, some of which act as inhibitors in downstream

processing especially in enzymatic hydrolysis and fermentation. Such information

includes: xylose, xylooligomers, arabinose, pseudo-lignin, glucose, and 5-HMF

production.

A.5 Conclusions

This study presented a dynamic model for a large scale biomass hydrothermal

pretreatment process. The model was capable of predicting the composition of

pretreated fibers, and has been properly analyzed assessing its sensitivity and uncer-

tainty taking into account both model and feed parameters. The sensitivity analysis

showed that the set of 15 model parameters can be reduced to a subset of 6 significant

parameters that deal with the activation energy of most reactions. This finding was

expected as the activation energy appears in the temperature dependency term of the

reaction equation, and small reactor temperatures deviations can lead to significant

changes in pretreated biomass. Real data were extracted from a demonstration
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scale biorefinery and used for parameter estimation and model validation. The data

exhibit limited system dynamics and provide a range of validity for the parameter

estimates between 178 ◦C to 185 ◦C. In order to extend the validity range of the

parameter estimates to different temperature ranges, additional experimental data

should be collected either by experimenting at lower scale facilities or changing the

operational points of the biorefinery, which is not easily accessible.

The uncertainty analysis was conducted with Latin hypercube sampling of both

model and feed parameters, and Monte Carlo simulations. The 5th-95th percentile

includes most of the real data variations, except the very low concentrations of

acetic acid and furfural, which is expected as the NIR instrument is affected by

high measurement errors at low concentrations. The global sensitivity analysis

showed that feedstock composition parameters have a higher significance than model

parameters, suggesting that feedstock composition should be measured upstream

for more accurate predictions.

In the last section of the study, a Kalman state estimator was designed as an

application of the process model. The estimator was then tested on the whole

dataset, i.e. throughout 15 h of operation. The model predictions were found to

follow the dynamic trends of the process, making it valuable for control design,

diagnosis, real-time optimization, and inferential sensors development at full scale

applications. The state estimator acts both as a measurement filter and soft sensor

for estimating unmeasured variables, i.e. C5 sugars production and inhibitors, which

are important in downstream processes.
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Abstract:

The enzymatic hydrolysis process is one of the key steps in second generation biofuel

production. After being thermally pretreated, the lignocellulosic material is liquefied

by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic

model of the hydrolysis process on a demonstration scale reactor. The following

novel features are included: the application of the Convection-Diffusion-Reaction

equation to a hydrolysis reactor to assess transport and mixing effects; the extension

of a competitive kinetic model with enzymatic pH dependency and hemicellulose

hydrolysis; a comprehensive pH model; and viscosity estimations during the course

of reaction. The model is evaluated against real data extracted from a demonstration

scale biorefinery throughout several days of operation. All measurements are within

predictions uncertainty and, therefore, the model constitutes a valuable tool to

support process optimization, performance monitoring, diagnosis and process control

at full-scale studies.
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B.1 Introduction

Bioethanol is thought to become a viable alternative to fossil fuels [1] and many

countries with agricultural resources show an increasing interest in the second

generation biofuel production technology, especially in USA, Brazil, Denmark and

Italy. The latest developments that approach biorefineries to a commercial reality

are presented by Larsen et al. [3].

In biorefinery concepts that employ a biochemical conversion route, the ligno-

cellulosic material originating from agricultural wastes is typically transformed into

bioethanol following 4 major steps, i.e. pretreatment, enzymatic hydrolysis, fermen-

tation and separation [4]. The pretreated lignocellulosic material has a high content

of cellulose, hemicellulose and lignin. The purpose of the enzymatic hydrolysis

process is to break down the long polymeric chains of cellulose and xylan into its

constituent sugar units, mostly glucose and xylose.

The underlying mechanism of the enzymatic hydrolysis process is a complex one,

which has been the target of many modeling studies. Kadam et al. [60] formulate a

mechanistic conversion model while Zhang and Lynd [104] explain in detail how the

cellulosic depolymerization occurs under the effect of enzymes. The Kadam model

has been validated in laboratory scale experiments both by Kadam et al. [60] and

Hodge et al. [105]. Sin et al. [8] have performed an identifiability and uncertainty

analysis of the Kadam model and Morales-Rodriguez et al. [96] have integrated

it into a dynamic modeling framework for assessing biorefinery configurations.

The depolymerization model has been extended and validated in laboratory scale

experiments by Hosseini and Shah [106, 107]. So far, none of these models have

been evaluated at a realistic demonstration scale.

In order to formulate a model for large scale biorefineries, several extensions

need to be made to the previous models. pH calculations were not performed

before although it is well known that enzymes are sensitive to pH following a

Gaussian curve. At laboratory scale, perfect pH control can be easily achieved

and assumed but at larger scales such control becomes challenging. When the

process runs in a continuous manner, the inflow composition varies due to different

pretreatment conditions or biomass composition and the concentration of acetic

acid has disturbances that affect the pH level [12]. Also, previous models do not

include xylan hydrolysis, which contributes to acetic acid formation inside the

reactor leading to a pH profile along the container that affects the enzymatic activity.

Another missing feature is viscosity calculations, which are important for estimating

diffusion coefficients and for assessing transportation and mixing effects.

With these in background, a dynamic lignocellulosic hydrolysis model adequate
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for demonstration and large scale processes is formulated with the following fea-

tures: the reactor is modeled as plug flow using the Convection-Diffusion-Reaction

(CDR) equation in one dimension in order to capture properly transport and mixing

effects along the length of the tank, i.e. the x axis; the reaction kinetics comprises

competitive cellulose and xylan hydrolysis with temperature and pH dependency

plus furfural inhibition; pH dynamics account for most of the relevant buffers that

come from the pretreatment process, i.e. acetic, succinic and lactic acids plus a

bicarbonate formation system with CO2 stripping effects. Chemical kinetics, and pH

and viscosity calculations are tracked in each cell of the 1-D CDR model.

The model is then analyzed in order to assess its sensitivity to kinetic and feed

parameters, and to quantify its predictions uncertainty.

This paper is structured as follows: section B.2 describes a typical demonstration

scale biorefinery and how measurements were recorded for comparing against

model predictions; section B.3 formulates the mathematical model and includes its

sensitivity and uncertainty analysis; and section B.4 illustrates and discusses the

model validation results.

B.2 Materials and Methods

A demonstration scale biorefinery is capable of transforming approximately

4 th−1 of biomass into three products, i.e. 576 kgh−1 2G bioethanol, 1484 kgh−1 C5

molasses and 1740 kgh−1 lignin pallets [3]. The biomass can be any lignocellulosic

material, preferably agricultural wastes, e.g. straw, bagasses or corn stover, or

forest wastes, e.g. saw dust, pulp waste or thinned wood [108]. There are various

biomass pretreatment methods, e.g. autohydrolysis, steam explosion, acid hydrolysis

etc., among which steam explosion is seen as a cheap and environmentally friendly

pretreatment [44]. In this investigation, wheat straw was pretreated with steam in a

large pressurized thermal reactor described in [71].

Figure B.1 illustrates the biomass conversion route with emphasis on the enzy-

matic hydrolysis process. The inflow of pretreated fibers is denoted as FFF and has

an initial chemical composition C0, which is measured with online NIR equipment

that performs a measurement every 5 min. A strong base, i.e. NaOH, is pumped into

the tank near the inlet for pH adjustments. The base inflow FB and its concentration

CB are considered known. A certain amount of enzymes proportional to cellulose

content from the pretreated fibers is added by a pump from a storage tank. The

flow of enzymes FE and its concentration CE are considered known. Water is also

added with a known flow rate FW . The reactor is mass controlled using a mass

measurement MFM and by manipulating the outflow of fiber mash FFM. The outflow
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concentration C is determined by grabbing a sample from the outflow every 6 h and

analyzing it in the laboratory with HPLC equipment. The fiber mash pH is measured

online with a sampling period of 10 s and all inflows are measured with a sampling

period of 2 s.

Feedstock

Steam
Pretreatment

Fibers

Enzymatic
Hydrolysis

Enzymes
Base

Fermentation

Water

Ethanol

Lignin

Water

Distillation
Separation

C0
(NIR)
FFF

CE
FE

CB
FB

FW

C
(HPLC)

FFM
pH

MFM

Figure B.1: Biorefinery setup with focus on the enzymatic hydrolysis reactor. All flows are

measured, i.e. pretreated fibers FFF , base FB, water FW , enzymes FE and fiber mash FFM .

Inflow concentration C0 is measured by online NIR equipment while CB and CE are considered

known. There are 2 additional measurements, i.e. a pH sensor on the outflow and a mass

indicator MFM for the reactor holdup. The outstream concentration C is determined by

analyzing fiber mash samples in the laboratory with an HPLC device.

B.3 Model Development

For this investigation, the mechanistic approach suggested by Kadam et al. [60]

is preferred as a starting base. This semi-mechanistic model seems suitable for the
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purpose of process operation studies as opposed to the more complex and detailed

depolymerization type models [8].

B.3.1 Total Mass Balance

All flows are measured and a total mass balance can be easily constructed:

dMFM

dt
= FW +FFF +FE +FB−FFM (B.1)

B.3.2 Transport Modeling

The pretreatment process creates a slurry with 25 % to 30 % of solid particles,

i.e. cellulose, xylan and lignin [55]. The viscosity of this slurry is relatively high in

the first phase of the hydrolysis leading to a plug flow transport phenomena in the

liquefaction reactor. The container is assumed to have a much larger length than its

height, the slurry traversing the tank horizontally from left to right. The mixture is

assumed to have uniform properties along the height of the reactor due to vertical

mixers.

The species concentration change with respect to time is a combination of

convection and diffusion effects plus production or consumption terms. The process

normally runs in a continuous manner and slurry transportation is dominated by

convection effects. However, sometimes it is necessary to stop the outflow of the

tank due to mechanical faults, for example. In such a case, the hydrolysis switches

to batch mode and diffusion effects become prominent as cellulosic conversion

continues. Convection and diffusion effects are well captured by the Convection-

Diffusion-Reaction mass conservation equation [70]:

∂C
∂ t

=−∇(~vC)+∇(D∇C)+R (B.2)

where C is the species concentration,~v is the speed vector, D is the diffusion coeffi-

cient and R is the production or consumption rate. The term containing~v indicates

the concentration change due to advection while the term containing D indicates

the concentration rate due to diffusion effects. The advection term appears negative

because the axis orientation is positively aligned with~v in the continuity equation.

The gradient operator ∇ from Equation (B.2) contains the derivatives only along the

x axis due to the vertical uniformity assumption. In this case, the diffusion part of

Equation (B.2) is found according to Fick’s second law [70]:

∇(D∇C) =
∂
∂x

(
D

∂C
∂x

)
(B.3)
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Substituting Equation (B.3) in (B.2) yields:

∂C
∂ t

=−vx
∂C
∂x

+
∂
∂x

(
D

∂C
∂x

)
+R (B.4)

Equation (B.4) is solved following a finite element method specific to computa-

tional fluid dynamics. Briefly, the reactor is divided into n cells and the space partial

derivatives from Equation (B.4) are approximated using a finite volume method as

described in [72].

The horizontal speed vx is considered constant along the length of the reactor

and is computed as follows:

vx =
LR

tR
(B.5)

where LR is the length of the liquefaction reactor and tR is the retention time. The

retention time is the ratio between total mass and outflow:

tR =
MFM

FFM
(B.6)

where MFM is the total mass of fiber mash inside the tank and FFM is the outflow.

Diffusion occurs only in the liquid fraction of the slurry and affects only soluble

particles, not solids. It is expected to have a varying diffusion along the x axis

because the slurry viscosity is changing (expected to decrease) as the liquefaction

progresses while liquid viscosity is expected to increase as sugars are formed and

dissolved. The Stokes-Einstein equation describes the diffusion coefficient D of

solubles as a function of temperature T and liquid viscosity µl:

D =
kT

6πrµl
(B.7)

where k is the Boltzmann constant and r is the molecular radius of the dissolved

particle. The radius r of the molecule can be approximated with the following

relation:

M = NρV = Nρ
(

4
3

πr3
)
⇒ r =

(
3M

4πNρ

) 1
3

(B.8)

where M is the molecular mass of soluble component, N is the Avogadro’s number, ρ
is the solute density and V is its molecular volume. The liquid viscosity µl remains

to be computed in order to solve Equation (B.7). An empirical relative viscosity

equation for high concentration slurries was derived by Thomas [109]:

µr = a0 +a1Φ+a2Φ2 (B.9)

where Φ is the volume fraction of solid particles and a1 and a2 are calibration

coefficients estimated as follows by Thomas [109]:

a0 = 1 a1 = 2.5 a2 = 10.05 (B.10)
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The relative viscosity µr and the liquid viscosity µl can then be used to compute

the slurry viscosity µs:

µs = µrµl (B.11)

As glucose is produced and dissolved in the liquid part of the slurry, the liquid

viscosity changes following a simple linear relation as given by Converti et al. [110]:

µl = µW +CGkGµ (B.12)

where µW is the viscosity of the pure liquid solvent, CG is the glucose concentration

and kGµ is a correlation parameter for glucose. kGµ and µW follow an empirical

exponential law also known as the Guzman-Andrade equation [111]:

µW = AW e
BW
T kGµ = AGe

BG
T (B.13)

where AW and BW are fitting parameters for pure liquid, T is the reactor temperature,

and AG and BG are parameters for sugar correlation. µW is approximately water

viscosity and numerical values for AW , BW , AG and BG are given by Converti et al.

[110]:

AW = 2.41×10−3 gm−1 s−1

BW = 1774.9K

AG = 8.65×10−10 m2 s−1

BG = 2502K

(B.14)

B.3.3 pH Modeling

The pH model is an extension of the model presented in an earlier publication

[12] and comprises a set of 8 weak acids and strong base hydration reactions: self-

ionization of water (Equation (B.15c)), acetic acid dissociation (Equation (B.15a)),

carbonic acid formation and dissociation (Equations (B.15d) and (B.15e)), succinic

acid dissociation (Equations (B.15f) and (B.15g)) and lactic acid dissociation (Equa-

tion (B.15h)). The hydration equations are modeled using the approach described

by McAvoy et al. [112]. The complete set of equilibrium dissociation equations is
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shown next:

C2H4O2 ↽−−−⇀ C2H3O −
2 +H+ (B.15a)

NaOH−−→ Na++OH− (B.15b)

H++OH− ↽−−−⇀ H2O (B.15c)

CO2 +H2O ↽−−−⇀ HCO −
3 +H+ (B.15d)

HCO −
3 ↽−−−⇀ CO 2−

3 +H+ (B.15e)

C4H6O4 ↽−−−⇀ C4H5O −
4 +H+ (B.15f)

C4H5O −
4 ↽−−−⇀ C4H4O 2−

4 +H+ (B.15g)

C3H6O3 ↽−−−⇀ C3H5O −
3 +H+ (B.15h)

Due to the fact that the reactor tank is exposed to atmospheric pressure, it is

expected to have a CO2 stripping process from liquid to gas phase that leads to

changes in the carbonic acid and bicarbonate buffers. The CO2 stripping process or

CT R is modeled as in [113] with typical saturation kinetics:

CT R = KLaCO2

(
CO ∗

2 −CO2[aq]

)
(B.16)

where KLaCO2
is the mass transfer coefficient, CO *2 is the atmospheric CO2 concen-

tration and CO2[aq] is the dissolved CO2 concentration in the reactor.

The dissociation constants for each species at 50 ◦C, which is a typical optimal

reactor temperature for an enzymatic process, are given in Table B.1.

The pH system of equations is solved in each cell of the grid following the

procedure from [12]. Thus, the concentration of H+ is found, which is necessary to

compute the pH level:

pH =− log10[H
+] (B.17)

Table B.1: Chemical compounds relevant to pH calculation with their dissociation or hydration

constants at 50 ◦C.

Formula Description Value Reference Variable

C2H4O2 Acetic acid 1.63 ·10−5 [114] KA

H2O Water 5.39 ·10−14 [114] KW

H2CO3 Carbonic acid 5.14 ·10−7 [114] KC1

HCO –
3 Bicarbonate 6.69 ·10−11 [114] KC2

C4H6O4 Succinic acid 6.51 ·10−5 [114] KS1

C4H5O –
4 Succinate ion 2.08 ·10−6 [114] KS2

C3H6O3 Lactic acid 1.27 ·10−4 [114] KL
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B.3.4 Modeling of Cellulose and Xylan Conversion

The kinetic model is an extension of the work performed by Kadam et al. [60].

Here, the Kadam model is extended taking into consideration enzymes that are

capable of decomposing both celullose and xylan, inhibition by furfural of the

enzymatic activity, and pH dependency of the enzymatic activity. During xylan

hydrolysis, acetic acid is released contributing to lowering the pH level in the

mixture. Tracking the acetic acid formation is crucial for building the pH profile of

the reactor.

The overall conceptual hydrolysis mechanism is shown in Figure B.2. Cellulose is

decomposed into cellobiose and glucose with reaction rates r1 and r2, respectively.

Cellobiose is further decomposed into glucose with rate r3. Xylan is hydrolyzed

into xylose with an r4 rate and acetic acid is released as a by-product with an r5

rate. Cellobiose and glucose formation are inhibited by the sugars themselves or by

furfural, which was formed in the pretreatment process.

Cellulose Cellobiose

Glucose

Xylan

Xylose

Furfural

Acetic Acid

r1

r2 r3

r4

r5

Figure B.2: Conceptual hydrolysis mechanism extended from Kadam et al. [60]. Cellulose

is converted by CBH+EG and G into cellobiose and glucose with reaction rates r1 and r2,

respectively. Cellobiose is converted into glucose with rate r3. Hemicellulose hydrolysis is

illustrated by xylan conversion into xylose with rate r4, which also releases acetic acid with

rate r5. Dashed lines show inhibition by sugars and furfural (extended from Kadam et al.

[60]).
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The following chemical species are tracked in the conversion model:

CK =
[

CCS CXS CLS CC CG CX CF CE

]>
(B.18)

where CCS , CXS and CLS are solid components from the slurry, i.e. cellulose, xylan and

lignin concentrations, and CC, CG, CX , CF and CE constitute the liquid part of the

slurry, i.e. cellobiose, glucose, xylose, furfural and enzymes, respectively. Equation

(B.4) is evaluated for each species from Equation (B.18). The boundary conditions

of Equation (B.4) are constructed from the initial chemical composition of pretreated

fibers, or CK0 , which is measured in reality with NIR equipment.

The enzymes cocktail is a complex mixture containing many protein types that

could be divided into cellulase, hemicellulase and other type of proteins. Cel-

lulose is hydrolyzed by the cellulase group, which is subdivided into exo-β -1.4-

cellobiohydrolase and endo-β -1.4-glucanase (CBH+EG), notated as CE1 , and β -

glucosidase (G) enzymes, i.e. CE2 . Xylan is hydrolyzed by the hemicellulase (X)

group, i.e. CE3 . There are other types of enzymes in the mixture in negligible

amounts and their concentration is notated as CE4 . The enzymatic cocktail can then

be parametrized in αi with i from 1 to 4 representing the fraction of each enzyme

type. The total enzyme concentration can then be expressed as the sum of each

enzyme concentration:

CE =CE1 +CE2 +CE3 +CE4 (B.19)

There is an equilibrium between bounded and free enzymes, which is simplified

to the following equation:

EnzymeF +Solids←−→ Enzyme−SolidsB (B.20)

where EnzymeF are free enzymes and Enzyme-SolidsB are bounded enzymes to

solids. Therefore, enzymes can be in one of the two states: bounded to solids (B) or

free (F). The total concentration of CBH+EG, G or X enzymes consists of bounded

and free enzymes:

CEi =CEiB
+CEiF

(B.21)

where i = 1,2,3. The effects of the other type of enzymes, i.e. i = 4, is neglected as

they do not participate actively to cellulose and xylan decomposition.

The equilibrium between adsorbed and free enzymes follows a Langmuir isotherm

expression. In the case of type i enzymes, where i can be CBH+EG, G or X, the

Langmuir isotherm relation expresses the ratio between concentration of adsorbed

enzymes and solids:
CEiB

CS
= EMi

KAiCEiF

1+KAiCEiF

(B.22)
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where CEiB
represents the bounded enzymes, CS is the total concentration of solids,

EMi is the maximum adsorbed enzymes, KAi is the adsorption constant and CEiF
is

the free enzymes concentration. Cellulose is a percentage of the total solids from

the mixture. The concentration of adsorbed enzymes to cellulose CC
EiB

can then be

calculated as:

CC
EiB

=CEiB

CCS

CS
= EMi

KAiCEiF

1+KAiCEiF

CCS (B.23)

where CCS is the substrate or cellulose concentration for i= 1,2. Similar computations

are performed in the case of hemicellulases, or i = 3, but the substrate is the xylan

concentration this time, or CXS :

CX
E3B

= EM3

KA3CE3F

1+KA3CE3F

CXS (B.24)

where CX
E3B

represents the concentration of enzymes bound to xylan.

The cellulose to cellobiose reaction rate r1 with competitive glucose, cellobiose,

xylose and furfural inhibition is developed starting from the expression given in

Kadam et al. [60] with the extension of pH dependency and furfural inhibition:

r1 =
K1η1(T, pH)CC

E1B
CCS

1+ CC
IC1

+ CX
IX1

+ CG
IG1

+ CF
IF1

(B.25)

where K1 is the reaction constant, η1(T, pH) is the temperature and pH dependency

term, IC1 is the cellobiose inhibition term, IX1 is the xylose inhibition term, IG1 is

the glucose inhibition term, and IF1 is the furfural inhibition term. Only CBH+EG

participate in this reaction.

The cellulose to glucose reaction rate r2 with competitive glucose, cellobiose,

xylose and furfural inhibition is extended similarly:

r2 =
K2η2(T, pH)

(
CC

E1B
+CC

E2B

)
CCS

1+ CC
IC2

+ CX
IX2

+ CG
IG2

+ CF
IF2

(B.26)

where K2 is the reaction constant, η2(T, pH) is the temperature and pH dependency

term, IC2 is the cellobiose inhibition term, IX2 is the xylose inhibition term, IG2 is the

glucose inhibition term, and IF2 is the furfural inhibition term. Both CBH+EG and G

enzymes participate in this reaction.

The cellobiose to glucose reaction rate r3 with competitive glucose, cellobiose,

xylose and furfural inhibition is extended similarly starting form [60]:

r3 =
K3η3(T, pH)CE2F

CC

I3

(
1+ CX

IX3
+ CG

IG3
+ CF

IF3

)
+CC

(B.27)
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where K3 is the reaction constant, I3 is an overall inhibition term and IX3 , IG3 and IF3

represent inhibition from xylose, glucose and furfural, respectively.

Xylan decomposition is modeled similarly to reaction rate r1 but with xylan

substrate:

r4 =
K4η4(T, pH)CX

E3B
CXS

1+ CC
IC4

+ CX
IX4

+ CG
IG4

+ CF
IF4

(B.28)

where r4 is the xylan to xylose reaction rate, K4 is the reaction constant, η4(T, pH)

represents the temperature and pH dependency, CX
E3B

is the concentration of bounded

hemicellulases to xylan, and CXS is the xylan substrate. IC4 , IX4 , IG4 and IF4 are

inhibition terms for cellobiose, xylose, glucose and furfural, respectively.

The temperature and pH dependency can be usually retrieved from the enzymes

supplier (e.g. Novozymes). If such data are available the following relation is

proposed:

ηi(T, pH) = ηT (T )ηpH(pH) (B.29)

where ηT and ηpH are efficiency factors with values between 0 to 1 related to

temperature and pH, respectively. The efficiency factors can be either table based

or following any arbitrary Gaussian curve functions. Two typical curves for pH

and temperature dependency can be found in the supplementary material. These

dependencies are implemented as numerical tables and linear interpolation between

data points is used throughout simulation.

The amount of acetic acid contained in the hemicellulose part depends on biomass

type. For example, in the case of hardwood biomass, 0.5 mol of acetic acid is released

for every 1 mol of xylose [115]. Using the molaric mass of xylose and acetic acid,

it is found that for every 1 g of xylose, 0.2 g of acetic acid is released. This ratio is

parametrized with β and the acetic acid production rate r5 becomes:

r5 = β r4 (B.30)

The predictions of cellobiose, glucose and xylose concentrations are regarded as

model outputs:

y = [CC CG CX ] (B.31)

The complete model has 31 parameters: 4 that describe the enzyme mixture

composition, i.e. αi, 1 for the acetic acid to xylose ratio, i.e. β , and 26 parameters

relevant for the enzymatic hydrolysis kinetics. αi and β are fixed a priori and put

into vector θF . The enzymatic kinetics parameters are gathered into vector θK .
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B.3.5 Model Calibration, Sensitivity and Uncertainty Analysis

The previous analysis of the Kadam model performed by Sin et al. [8] indicated

that the model was over parameterized with respect to available measurements.

Hence, for a proper model calibration, a sensitivity analysis was performed to find

out the most significant parameters to be used as subset for fine tuning of the model

fits to the available data. The sensitivity analysis is conducted by calculating a

measure called δ msqr
k as in the methodology described in [64]:

δ msqr
k =

√
1
N

N

∑
i=1

(
snd,ik

)
(B.32)

where k is the parameter index in the hydrolysis parameter vector θK , i is the model

output index and snd,ik is the non dimensional sensitivity defined as:

snd,ik =
∂yi

∂θk

θk

sci
(B.33)

where ∂yi/∂θk represents the output variation with respect to a variation in pa-

rameter θk and sci is a scaling factor with the same physical dimension as the

corresponding observation. All parameters are ranked according to δ msqr
k and a

subset θS is built with the most significant parameters.

A model calibration follows, which adjusts the parameters from the θS subset in

order to obtain a better fit. For this calibration, only 50 h out of the 170 h of recorded

data are used, while the remaining 120 h data are used for validation. It is noted

that the calibration of the model parameters is meant to be a fine-tuning around

the nominal values of the model parameters estimated from batch assays by Kadam

et al. [60]. A comprehensive system identification is not pursued due to the fact that

available plant measurements were obtained from closed loop operation and not

under proper optimal experimental design.

Uncertainty Analysis

The uncertainty analysis is carried out using the engineering standard Monte

Carlo technique, which includes the following four steps [9]: (1) define input

uncertainties with their range; (2) sampling of kinetics and feed parameters using the

Latin hypercube sampling with correlation control; (3) run Monte Carlo simulations

with sampled values; (4) evaluate results. In the last step, in addition to inference

statistics, a sensitivity analysis was also performed using linear regression of Monte

Carlo outputs, also known as the standardized regression coefficients (SRC). The

methodology is detailed in [9].

In step 1, the uncertainty analysis considers two sources of uncertainty, namely

kinetic parameters and feed composition (mass). For definition of the kinetic
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parameter uncertainty, a uniform distribution with the corresponding lower and

upper bounds are used as defined in [9], while the correlation matrix between the

parameters was taken from [8]. Bias and standard deviation of measurements due

to sensors were considered for the characterization of feed composition uncertainty.

The feed measurements are subject to errors either due to a miss calibration of the

NIR equipment or because of a wrongly placed sensor, which often indicates offsets

in the mass inflow of fibers. The most relevant feed variables are cellulose and xylan

content, and fiber mass inflow. The error that affects these signals are statistically

characterized using normal distributions with the following parameters:

εC ∈ N(µC,σ2
C) εX ∈ N(µX ,σ2

X ) εF ∈ N(µF ,σ2
F) (B.34)

where εC, εX and εF are cellulose, xylan and inflow errors, and N is the normal

distribution. The mean values µC, µX and µF represent sensor offsets and are

normally distributed such that to cover a range of 5 % to 10 % of their nominal

operational values, an error range assumed for NIR equipments. The standard

deviations of the measurements are considered to follow gamma distributions, which

is good practice in measurement error modeling. Hence the uncertainty on the

measured feed composition are generated by performing LHS on 2 parameters of

the normal distribution: one that characterizes the probability of the mean value,

notated as Fµ , and another one for the standard deviation, i.e. Fσ .

The SRC method fits a linear regression model to Monte Carlo simulation outputs

[65]:

yreg = b0 +
Nθ

∑
i=1

biθi (B.35)

where θi is the uncertain parameter vector of length Nθ , bi are the regression

coefficients and yreg is the fitted model output. The regression coefficients bi are then

scaled with respect to the standard deviation in parameters and simulation outputs:

βi =
σθi

σy
bi (B.36)

where βi are the standardized regression coefficients, σθi is the standard deviation

of parameter uncertainty and σy is the simulation output standard deviation.

B.3.6 Simulation Scenarios

The model is evaluated in two different scenarios: the first one concerns a steady-

state average performance simulation while in the second one the model is driven by

real measurements and its predictions are compared against HPLC data throughout

170 h of operation.
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In the first scenario, the reactor is assumed to be filled initially with water and all

model inputs, including feed composition, are set to a typical operational point of a

demonstration scale biorefinery as in Table B.2. The reactor is capable of processing

4 th−1 of fibers. Water and enzymes inflows are adjusted proportionally to fibers

inflow. A mass controller automatically sets the outflow of fiber mash in order to

keep a constant holdup. The purpose of this scenario is to observe the steady-state

concentrations, pH, viscosity and solids profiles from the reactor.

Table B.2: Dry matter composition of steam pretreated wheat straw at 170 ◦C: demonstration

scale plant values against composition determined by [116].

Component Demonstration Plant [116]

Cellulose 45.0 % 50.0 %

Xylan 10.0 % 13.6 %

Lignin 32.0 % 20.8 %

Other 13.0 % 15.6 %

B.4 Results and Discussion

B.4.1 Model Sensitivity and Calibration

Model parameters are initialized to reported values from [60], which are given

in Table B.3. There are a few missing parameters referring to xylan hydrolysis and

furfural inhibition, which have not been reported earlier in the literature. These

parameters are initialized to reasonable values.

The δ msqr sensitivity measure is numerically computed for each output as δ msqr
C ,

δ msqr
G and δ msqr

X , representing cellobiose, glucose and xylose, respectively, and also

as an overall indicator δ msqr. Parameters are ranked with respect to δ msqr and the

results are shown in Figure B.3. As expected, the model is over parametrized and

only a subset of parameters is relevant for the output dynamics. A threshold for

δ msqr is set to 0.025 in this case (there is no absolute threshold value reported [8])

and shown in the bottom plot of Figure B.3. The subset of significant parameters is

found as follows:

θS = [K1 K2 K4 EM1 KA1 IC1 IG1 IX1 IG2 IX2 IG4 ]
> (B.37)

The sensitivity analysis results indicate that the reaction rates that participate

in cellobiose, glucose and xylose formation, i.e. K1, K2 and K4, are influential

parameters. Inhibition of r1 and r2 by glucose and xylose, i.e. IG1 , IG2 , IX1 and IX2 , as

well as IG4 or inhibition of r4 by glucose, and IC1 or inhibition of r1 by cellobiose, also
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constitute important model parameters. The cellullase adsorption parameters EM1

and KA1 are the parameters closest to the threshold indicating a slight significance.

The furfural inhibition parameters, i.e. IF1 , IF2 , IF3 and IF4 have low sensitivity on

model outputs, which is in accordance to [52] who observed a reduced inhibitory

effect of furfural in the enzymatic hydrolysis process. All other model parameters, i.e.

the ones that influence the cellobiose to glucose reaction r3, and cellobiose inhibition

on the other reactions, have almost no sensitivity on model outputs.

The parameters in θS are calibrated on a reduced set of recorded data in order to

obtain a better fit. The calibrated values are shown in the second column of Table

B.3. As indicated by Sin et al. [8], there is a high correlation between parameters

and a large confidence interval for their numerical values. Therefore, a physical

meaning cannot be attached to these parameters. This explains why some calibrated

parameters are significantly different than those reported by [60].

Table B.3: Model parameters initialization and calibration.

Parameter Value [60]

θF Independently fixed parameters

α1 0.5 -

α2 0.3 -

α3 0.2 -

α4 0 -

β 0.2 -

θS Calibrated parameters

K2 0.0053 0.002

EM1 0.015 0.06

IX2 0.029 0.2

K1 0.00034 0.0062

K4 0.0027 -

IC1 0.0014 0.015

IG4 2.39 -

IG1 0.073 0.1

KA1 0.84 0.4

IG2 0.34 0.04

IX1 0.1007 0.1

Parameters with low sensitivity

EM2 0.01 0.01

EM3 0.01 -

KA2 0.1 0.1
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KA3 0.1 -

IF1 10 -

IC2 132 132

IF2 10 -

I3 24.3 24.3

IX3 201 201

IG3 3.9 3.9

IF3 10 -

IC4 24.3 -

IX4 201 -

IF4 10 -

K3 0.07 0.07

B.4.2 Steady State Average Performance Simulation Scenario

The model inputs are set to the constants given in Table B.4, which represent

an average performance operating point of the biorefinery. The percentage values

from Table B.2 for the demonstration plant are transformed into gkg−1 in Table B.4,

given the fact that the fibers have a 25 % dry matter. The CO2 concentration is set to

the saturation point, i.e. 0.0011 gkg−1 at 50 ◦C. The simulation runs for 20 h and the

stabilized reactor profiles can be observed in Figure B.4 drawn with a solid black

line.

Subplot A illustrates the buffer concentrations in molL−1 relevant for pH calcula-

tions. The acetic acid concentration, notated as AT , increases along the reactor due

to xylan hydrolysis, as expected. The base concentration BT , the bicarbonate CT , the

succinic acid ST and lactic acid LT are constant throughout the reactor as there is no

production or consumption of these species.

Subplot B shows the conversion of cellulose and xylan into cellobiose, glucose and

xylose. Cellulose CCS and xylan CXS drop along the reactor as the liquefaction process

progresses. As sugars are formed, the conversion rate decreases due to the inhibition

effects of newly created xylose and glucose, which is in accordance with Equations

(B.26) and (B.28). This is why glucose and xylose are formed more rapidly in the

first sections of the reactor. Approximately 20 % of the entering cellulose is converted

into glucose for the given reactor.

Subplots C, D and E illustrate the pH, viscosity and solids profiles. Acetic acid

formation leads to a drop in pH level of 0.4 units along the reactor. This pH deviation

affects the optimal performance of the enzymes, which also contributes to a slower
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Figure B.3: Sensitivity measure δ msqr of model outputs with respect to kinetics parameters

θK . The first 3 plots show δ msqr for cellobiose (δ msqr
C ), glucose (δ msqr

G ) and xylose (δ msqr
X ).

The bottom plot illustrates the overall sensitivity measure δ msqr and a threshold that delimits

the relevant parameters subset θS from the rest of the parameters.

conversion. Monitoring the pH profile can tell how optimal a hydrolysis process runs

from the point of view of enzymatic activity. The slurry viscosity drops along the

reactor by 0.15 units and is a good indicator of how liquid the mixture becomes, i.e.

viscous or not. The solids profile shows a reduction of 3 % in solids, mainly due to

cellulose and xylan liquefaction. The other solids, e.g. lignin, remain in the mixture

unchanged. The reactor retention time in this simulation scenario is 7.8 h, which

is enough time to create a transportable slurry that can be pumped to subsequent

tanks for continuing the hydrolysis process. A typical hydrolysis process requires

140 h to 160 h [60].
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Figure B.4: Reactor profiles from the average performance simulation scenario with constant

inputs (drawn with ) and from time t = 24h when the model is driven by real mea-

surements (drawn with ). Subplot A shows the buffer concentrations relevant for pH

calculations, i.e. acetic acid AT , base BT , bicarbonate CT , succinic acid ST and lactic acid LT .

Subplot B illustrates cellulose CCS and xylan CXS conversion into cellobiose CC, glucose CG and

xylose CX . Subplots C, D and E display the pH, viscosity and solids profiles along the reactor.
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Table B.4: Boundary conditions for a typical demonstration scale process operation used in

the average performance simulation scenario.

Input Description Value Unit

FFF Fiber flow 1.11 kgs−1

FB Base flow 0.012 kgs−1

FE Enzymes flow 0.025 kgs−1

FW Water flow 0.014 kgs−1

FFM Fiber mash outflow 1.16 kgs−1

CE Enzymes concentration 500.0 gkg−1

CB0 Base concentration 270 gkg−1

Fiber fraction composition

CCS0
Cellulose concentration 112.5 gkg−1

CXS0
Xylan concentration 20 gkg−1

CLS0
Lignin concentration 80 gkg−1

CAT0
Acetic acid concentration 5.0 gkg−1

CCT0
CO2 concentration 0.0011 gkg−1

CST0
Succinic acid concentration 0.4 gkg−1

CLT0
Lactic acid concentration 0.7 gkg−1

CG0 Glucose concentration 0.5 gkg−1

CC0 Cellobiose concentration 0.0 gkg−1

CX0 Xylose concentration 2.5 gkg−1

CF0 Furfural concentration 1.8 gkg−1

T Optimal enzymatic activity temperature 50.0 ◦C

B.4.3 Dynamic Simulation Scenario with Full Scale Real

Measurements and Uncertainty Analysis

Real data from a demonstration scale biorefinery have been recorded throughout

170 h of operation. The model is simulated by using the recorded plant online data

including feed composition and flux. A snapshot of the reactor profiles is caught at

time t = 24h. The profiles are drawn with red lines in Figure B.4 overlapped with

the simulation scenario profiles. In subplot A it is seen that real data show a higher

concentration of acetic acid in the reactor, which causes a lower enzymatic activity.

More base starts to be pumped (shown with dotted red line in subplot A) in order

to adjust the pH level and an overshoot is recorded as the pH level increases to 5.5
units near the inlet (subplot C). Still, the overall enzymatic activity is improved and a

conversion close to the theoretical profile found in the previous scenario is recorded.

Consequently, the slurry viscosity µs and the total solids percentage start to drop as
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illustrated in subplots D and C. Conversion still occurs even though the hydrolysis

process runs suboptimal from the point of view of the enzymatic activity.

The top plot in Figure B.5 illustrates the outstream pH prediction, which fits rela-

tively well with the sensor data. There are several reasons that can cause estimation

differences: the online HPLC analyzer of pretreated fibers is the major source of

inaccuracies regarding the relevant buffer concentrations for pH calculations; the

flow measurement of fibers also presents drifts and offsets leading to an erroneous

calculation of the incoming acids affecting the estimated pH; estimation errors could

also occur due to unknown buffers created in the pretreatment process; a last source

of errors could be the pH sensor itself, which can have offsets if the cleaning proce-

dure is not followed properly. For example, it is suspected that the pH sensor has an

offset error between 90 h to 140 h because the pH measurement drops below 4 units,

which is unlikely to happen in reality. Also, the measurements in this time frame

are very noisy compared to the non-faulty case and there is a sudden change in the

measurement at approximately t = 140h, which can happen only if the sensor has

been cleaned at that specific time.

The pH estimation is more dynamic than the measurement, presenting several

spikes when the reactor holdup is changing but stays most of the time within 4 to 5
pH units with an error below 1 unit, which is considered satisfactory knowing the

complexity of the chemical species in the slurry.

The bottom plot from Figure B.5 shows the calculated fiber mash viscosity or µS.

The values indicate a rather liquid mixture that can be pumped further to subsequent

tanks. Typically, the viscosity near the tank inlet is above 1.3 units as indicated in

subplot D from Figure B.4.

Throughout the operation of the biorefinery, samples were grabbed at the outflow

every 6 h. These samples were then analyzed with an HPLC device in the laboratory

in order to observe the sugar concentrations. Figure B.6 displays glucose, xylose and

cellobiose concentrations from the outstream, i.e. measurements with bullet points

and predicted values with solid lines. The gray area indicates the 5th-95th percentile

interval obtained after running the Monte Carlo simulations with LHS sampling on

kinetics and feed parameters as explained in the methodology. The sugar formation

fits fairly well within the 5th-95th percentile. Some differences appear when the

reactor holdup changes, which can be due to non trivial mixing effects that are not

captured well by the 1-D transport equation.

The SRC coefficients are summarized in Table B.5, where all kinetic and feed

parameters are ranked with respect to the βi coefficients. The ranking shows that

most of the model output uncertainty is explained by the uncertainties in the kinetic

parameters. The contribution of the feed composition uncertainties to the model



126 Paper B. Enzymatic Hydrolysis Modeling

4

5

6
pH

[−
]

pH
pĤ
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Figure B.5: pH and viscosity calculations for the reactor outstream. The top plot compares

the calculated pH, i.e. pĤ, against the real measurement pH. The bottom plot shows the

calculated slurry viscosity.
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Figure B.6: Cellobiose, glucose and xylose formation during the enzymatic hydrolysis process.

ĈC, ĜC and X̂C are estimated concentrations of cellobiose, glucose and xylose as predicted

by the model while CC, CG and CX are sugar concentrations measured by the HPLC equip-

ment. The gray area shows the 5th-95th percentile interval considering kinetics and feed

uncertainties.
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output are much smaller. This makes sense because the hydrolysis tank has large

volume and acts as a buffer to feed variations while the intrinsic uncertainties of the

enzyme kinetics affect the degree of conversion of cellulose, hence the predicted

performance of the reactor.

Table B.5: Parameter ranking with respect to the SRC coefficients: βiC , βiG and βiX are the

standardized regression coefficients for cellobiose, glucose and xylose, respectively.

Rank Parameter βiC Parameter βiG Parameter βiX

1 K1 1.00 IG2 1.00 IG2 0.99

2 IG2 1.00 IX1 0.99 K2 0.95

3 IG1 1.00 K2 0.99 K4 0.68

4 IC1 1.00 IG1 0.72 IG4 0.56

5 IX2 0.66 EM1 0.71 Fµ 0.31

6 IX1 0.42 K1 0.60 EM1 0.21

7 K2 0.27 K4 0.42 IX1 0.17

8 EM1 0.25 IC1 0.33 K1 0.16

9 K4 0.24 IG4 0.28 IX2 0.08

10 Fµ 0.17 KA1 0.21 IC1 0.07

11 KA1 0.15 Fµ 0.18 KA1 0.06

12 IG4 0.08 Fσ 0.06 IG1 0.04

13 Fσ 0.01 IX2 0.04 Fσ 0.03

B.4.4 Perspectives

The presented model of the hydrolysis reactor is a promising tool for simulation

based process studies. One example is monitoring using soft sensors. A soft sensor is

an application of the formulated dynamic model that is able to provide information

about variables of interest that cannot be directly measured or, for which, sensors

are missing. In the hydrolysis reactor case, the pH and viscosity profiles cannot be

directly measured but can be constructed by the model. These profiles constitute

important monitoring tools for assessing the performance of the enzymatic process.

Another application deals with fault diagnosis. Algorithms can be developed that

investigate the differences between the model predictions and the real measurements

in order to detect and isolate any faults that drifts the process from running normally.

For example, it could be automatically found when the pH sensor would need to be

cleaned.

Process control could also be performed with the current model. Advanced

observer based control strategies can be derived for controlling the pH level, the
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glucose formation or enzyme dosage. Other possibilities will be investigated in the

future.

While many promising applications are possible, one area of improvement is

in the calculation of viscosity and its comparison to real-measurements which is

subject to ongoing work. Additionally, given how uncertainty in model parameters

affects the prediction quality, robust techniques can be used for both control and

optimization purposes. These are subject to ongoing work.

B.5 Conclusions

This investigation formulated and analyzed an enzymatic hydrolysis dynamic

model for demonstration scale processes. The model consists of a transport mod-

ule, coupled viscosity estimation and dynamic pH prediction, and pH dependent

enzymatic kinetics. The uncertainty analysis performed on the model predictions

indicated an acceptable variance that matches well with the measured variability

of glucose, xylose and cellobiose of long term plant data. This indicates the quality

and reliability of the model as a valuable tool for monitoring, diagnosis and control

design.
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Supplementary Material

Finite Volume Method for CDR Equation

Equation (4) is discretized in space and appropriate boundary conditions are

set, i.e. Neumann type on the western border and Dirichlet type at east [72]. To

perform the space discretization, the reactor is sliced along the x axis as in Figure

B.7, creating cells of width δx.

Each unit P has two neighbors, i.e. W to the west and E to the east. The border

between the slices is denoted as w and e, respectively. Following a finite volume

method, Equation (4) is integrated in the volume unit:

∫
∆V

∂C
∂ t

dV =−vx

∫
∆V

∂C
∂x

dV +
∫

∆V

∂
∂x

(
D

∂C
∂x

)
dV +

∫
∆V

RdV (B.38)

δx

x x+δx
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w e×
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Figure B.7: Discretization of the reactor in cells along the x axis. Fin is the mass inflow,

Fout is the cell outflow and δx is the cell width. P denotes the current cell, W is its western

neighbor while E denotes the eastern cell. w and e indicate the western and eastern borders,

respectively.
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Enzymatic Activity Dependency

Figure B.8 shows the dependency of enzymatic activity on pH and temperature

as it appears in the enzyme data sheet [58].
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Figure B.8: Enzymatic activity dependency on pH and T [58]. These dependencies resemble

Gaussian curves and are implemented as numerical tables with linear interpolation for

simulation.

Parameter Uncertainty Definition for Monte Carlo Simulations

Table B.6 shows the uncertainty in kinetics parameters that was considered in

the investigation for generating the Latin hypercube samples.

Most uncertainty definitions are adapted from [9] while the uncertainty definition

for the kinetic parameters related to hemicellulose hydrolysis and furfural inhibition

are defined assuming a class 2 uncertainty, i.e. 25 % uncertainty around the nominal

value with uniform distribution.

The correlation matrix between kinetic parameters is adapted from [8]. This is

used within the Latin hypercube sampling to introduce correlation control.

Latin Hypercube Sampling on Feed Parameters

Figure B.9 shows 5 feed scenarios after performing the Latin hypercube sampling

on the feed parameters, i.e. bias and standard variation.
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Table B.6: Expert review of uncertainty for kinetics parameters adapted from [9].

Parameter Default Value Lower Bound Upper Bound

K1 0.00034 0.000255 0.000425

K2 0.0053 0.00398 0.00663

K4 0.0027 0.00203 0.00338

EM1 0.015 0.0113 0.0188

KA1 0.84 0.63 1.05

IC1 0.0014 0.00105 0.00175

IG1 0.073 0.0548 0.0913

IG2 0.34 0.255 0.425

IG4 2.39 1.79 2.99

IX1 0.101 0.0755 0.126

IX2 0.029 0.0218 0.0363

Table B.7: Correlation matrix for the Latin hypercube sampling from the kinetic parameter

uncertainty space.

K2 EM1 IX2 K1 K4 IC1 IG4 IG1 KA1 IG2 IX1

K2 1 0 −1.00 0.29 0 −0.29 0 −0.29 0 −1 −0.29

EM1 0 1 0 0 0 0 0 0 0 0 0

IX2 −1.00 0 1 −0.29 0 0.29 0 0.29 0 1.00 0.29

K1 0.29 0 −0.29 1 0 −1.00 0 −1 0 −0.29 −1.00

K4 0 0 0 0 1 0 0 0 0 0 0

IC1 −0.29 0 0.29 −1.00 0 1 0 1.00 0 0.29 1.00

IG4 0 0 0 0 0 0 1 0 0 0 0

IG1 −0.29 0 0.29 −1 0 1.00 0 1 0 0.29 1.00

KA1 0 0 0 0 0 0 0 0 1 0 0

IG2 −1 0 1.00 −0.29 0 0.29 0 0.29 0 1 0.29

IX1 −0.29 0 0.29 −1.00 0 1.00 0 1.00 0 0.29 1
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Figure B.9: Model inputs generated after Latin hypercube sampling for feed parameters, i.e.

Fµ and Fσ . The bias and the variance vary depending on the Latin hypercube samples. In this

figure, only 5 samples are plotted for the purpose of visualization while 250 samples were

generated for the Monte Carlo simulations presented in the manuscript. CCS is the cellulose

composition, CXS is the xylan content and FFF is the mass flow of fibers.
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Abstract:

Second generation biorefineries transform lignocellulosic biomass into chemicals

with higher added value following a conversion mechanism that consists of: pretreat-

ment, enzymatic hydrolysis, fermentation, and purification. The objective of this

study is to identify the optimal operational point with respect to maximum economic

profit of the large scale biorefinery plant using a systematic model-based plantwide

optimization methodology. The key process parameters or decision variables are

identified as: pretreatment temperature, enzyme dosage in enzymatic hydrolysis,

and yeast loading per batch in fermentation. The plant is treated in an integrated

manner taking into account the interactions and trade-offs between the conversion

steps. A sensitivity and uncertainty analysis follows for the optimal solution consid-

ering both model and feed parameters. It is found that an optimization supervisory

layer is superior to a traditional refinery operation, and also reduces the uncertainty

on the profit curve.
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C.1 Introduction

Second generation lignocellulosic biorefineries reached commercial reality in

2012 [3], and consequently many large scale plants are in operation nowadays: e.g.

Beta Renewables, Abengoa Bioenergy, GranBio, POET-DSM [2]. Most biorefineries

produce bioethanol but the drop in oil price reduced the demand on the biofuel.

However, plant upgrades for chemicals with higher-added values are recommended

making biorefineries still competitive in an oil dependent environment [26].

This study deals with optimizing the operation of a large scale second generation

biorefinery with a well established conversion route for bioethanol production using

modeling and simulation as enabling technology. The objective of the optimization

problem is to maximize the plant economical profit, considering prices for the most

important inputs and outputs: biomass, steam, enzymes, yeast, and ethanol among

others.

The conversion route from lignocellulosic material to products with higher added

value consists of: pretreatment, enzymatic hydrolysis, fermentation, and purification

[3, 4]. Lignocellulosic biomass contains cellulose, hemicellulose (xylan and arabi-

nan), lignin, ash, and other residues [37]. The scope of the pretreatment process is

to open the biomatrix, relocate lignin and partially hydrolyze the hemicellulose such

that cellulose would become more accessible to the downstream process of enzy-

matic hydrolysis [40]. During pretreatment, inhibitors such as organic acids, furfural,

and 5-Hydroxymethylfurfural (5-HMF) are also created due to sugar degradation.

Organic acids change the pH of medium, but can be automatically neutralized by a

pH controller for ensuring optimal enzymatic conditions [11]. Furfural, 5-HMF, and

acetate are fermentation inhibitors [52], while the remaining hemicellulose fraction

leads to xylooligomers and xylose formation in the enzymatic hydrolysis process,

which strongly inhibit the enzymatic activity [51].

There are trade-offs between the conversion steps. Too little biomass pretreat-

ment would reduce the exposed cellulose to enzymes, and also increases the amount

of hemicellulose for enzymatic hydrolysis, which would eventually decrease the

glucose yield due to xylose and xylooligomers inhibition. On the other hand, too

much biomass pretreatment would increase the amount of fermentation inhibitors

leading to a lower ethanol yield.

Most existing studies focus on operational optimization conducting small scale

experiments in the laboratory for finding the best pretreatment conditions such

that ethanol yield is maximized [50, 116, 117, 118]. The focus is on one unit at

a time (pretreatment versus enzymatic hydrolysis versus fermentation) but rarely

consider the steps simultaneously in an integrated manner. Such methods are time
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consuming, suboptimal from an economic point of view as they do not take into

account process economics, and not suitable for large scale facilities. Also, in these

studies, the enzymatic hydrolysis and fermentation processes are usually conducted

following a fixed recipe, i.e. no correction action or feedback is taken to counteract

the effects of inhibitors. For example, one could increase the enzyme dosage when

xylooligomers and xylose inhibit glucose production, or adjust the yeast seed in

fermentation to compensate for inhibitors.

Therefore there is a need for systematic methods and tools to facilitate the

further process optimization and operation of second generation bioethanol plants,

which is the objective of this study. Moreover, the optimal solution proposed is also

analyzed from a sensitivity and uncertainty point of view with respect to feedstock

composition and kinetic parameters. A Monte Carlo technique with Latin Hypercube

Sampling and correlation control is used for the uncertainty analysis following the

methodology from [9, 66].

This paper is structured as follows: the methods section revises the methodology

for building the optimization layer for plantwide operation, along with the theoret-

ical part of the sensitivity and uncertainty analysis as well as the development of

necessary plant models. The results and discussion follow where the profit curve,

costs, and optimal solutions are presented along with their uncertainty bounds. The

paper concludes with a summary of all important findings.

C.2 Methods

C.2.1 Second Generation Bioethanol Plant

Figure C.1 illustrates the second generation biorefinery concept for bioethanol

production. The pretreatment process consists of a continuous thermal reactor and a

separation press, which were modeled and analyzed in [5, 71]. The thermal reactor

is equipped with a temperature controller for adjusting the reaction temperature

Ttr [12]. When hemicellulose is hydrolyzed, it produces xylose and arabinose (C5

sugars). After separation, the liquid part containing the C5 sugars is directly pumped

into fermentation reactors, bypassing the enzymatic hydrolysis reactors. Cellulose

can also be degraded in the pretreatment process, but the produced glucose (C6

sugar) is not lost as it is added to fermentation along with the C5 sugars from the

liquid fraction.

The enzymatic hydrolysis process was thoroughly described and analyzed in [6].

It runs at a high dry matter content in a continuous mode and consists of a series

of hydrolysis tanks. The first reactor is described in [54] followed by conventional

continuous stirred tank reactors in order to meet the necessary hydrolysis retention
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Figure C.1: Biorefinery diagram with assumed instrumentation. Pretreatment, the enzymatic

hydrolysis, and purification are continuous processes, while fermentation occurs in scheduled

batch reactors. Feedstock composition is assumed to be known, and can be measured in

reality with NIR equipment.

time of 140 h. The tanks are equipped with pH and temperature controllers in order

to keep optimal conditions for the enzymatic activity: e.g. pH = 5, and T = 50 ◦C
[58]. Enzymes are added by a pump from a storage tank. The enzyme dosage Fe

can be adjusted accordingly and constitutes a degree of freedom in the optimization

problem.

The fermentation process runs in scheduled batch mode in a number of tanks

with a maximum holdup of 250 m3. The fermentation tanks have pH and temperature

controllers. Each batch consists of an inoculum phase, the fed-batch phase (which

cannot be neglected because it takes 60 h to fill the tank, time when reactions already

take place), the batch stage, and an unload step. These stages are illustrated in

Figure C.2(a). In the inoculum phase, 10 t of hydrolyzed fibers rich in glucose are

mixed with My kilograms of yeast and diluted with water. The amount of yeast

addition My is one of the degrees of freedom for operation. The fed-batch phase

starts as soon as the inhibitors were removed, after about 10 h. The fermentation

tank is filled up to 220t with a constant feed rate calculated as the sum between the

enzymatic hydrolysis outflow rate and the C5 liquid from the pretreatment process.

Once the tank is filled, the batch phase begins where the C5 and C6 sugars are

depleted. The batch stage has a fixed duration set to 120 h.

A large scale biorefinery has several fermentation reactors running in parallel

following a certain scheduling algorithm. Figure C.2(b) shows the scheduling
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(a) Fermentation process consisting of 4 phases: inoculum (10 h), fed-batch (60 h), batch (120 h),
and unload (70 h).

(b) An example of a fermentation process with 5 scheduled reactors. The reactors are scheduled
such that the liquefied fiber inflow and ethanol outflow stay constant with minimum interrupts.

Figure C.2: Fermentation process: sequential operation and scheduling.

algorithm for 5 reactors such that the inflow and outflow rates have minimum

interruptions. This is achieved by aligning in series the fed-batch phases from all

tanks, and by synchronizing the unload stages.

The distillation and purification phase separates lignin and water from ethanol.

Lignin is then recovered as bio-pellets in a nearby evaporation unit, while ethanol

achieves a high concentration of 99.5 % with the help of several molecular sieves.

One can change either the reaction time by modifying the retention time of each

individual process, or adjusting the pretreatment temperature, enzyme dosage, and

yeast seed to maximize ethanol yield. In large scale plants it is desired to keep a

constant throughput. This constraint translates to a fixed pretreatment time, i.e.

15 min, a constant enzymatic hydrolysis time of 140 h, and a fermentation time of

190 h per batch for the demonstration scale plant studied here. The degrees of
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freedom then become: the thermal reactor temperature Ttr, the enzyme dosage Fe,

and yeast seed My, which are the key process parameters sought by the optimization

layer.

C.2.2 The Optimization Layer

This study aims to develop an optimization method that can be implemented as a

supervisory layer at a large scale facility. Figure C.3 shows the role of the optimization

layer, and how it interacts with the system identification layer, the control system,

and the real plant. The model identification layer utilizes real measurements to

calibrate the plant model such that predictions become more accurate. The control

layer translates the optimal setpoints into actuator commands to ensure reference

tracking for the key process parameters. A pretreatment temperature regulator has

been designed in a previous study [12]. The enzyme dosage controller is based on a

flow rate meter and a variable positioning valve mounted on the supply pipe. The

yeast seed controller requires a mass estimator for added yeast and an on/off valve.

The control system is assumed to maximize the efficiency at a constant throughput,

which is common practice for a new plant [81].

Figure C.3: Block diagram showing the interaction between the optimization layer designed

in this study and the real plant. The optimization layer calculates setpoints for pretreat-

ment temperature, enzyme dosage and yeast seed. All models are calibrated by the system

identification layer based on plant measurements.

The optimization solver can be triggered either when prices change (e.g. ethanol
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price increases, enzymes price decreases, yeast can be grown at a lower price

etc.), or when disturbances occur in the process (e.g. changes in feedstock content

due to biomass composition variety, or biomass type change). The solution of the

optimization problem provides setpoints for the pretreatment temperature, enzyme

dosage, and yeast seed. The system constraints are formulated based on validated

large scale models for: hydrothermal pretreatment with steam [5], enzymatic

hydrolysis [6], and C5 and C6 co-fermentation [74]. The optimizer searches for the

best nominal operational point by evaluating different scenarios with the help of

an integrated biorefinery simulator that embeds all these models. The optimization

problem has the following generic formulation [82]:

max
u

c(x,u)

subject to f (x,u) = 0
g(x,u)≤ 0

(C.1)

where u is a vector of the decision variables or degrees of freedom, x represents the

process variables, and c(x,u) is the objective function. f (x,u) = 0 and g(x,u)≤ 0 are

equality and inequality constraints as functions of process and decision variables.

Optimization problem (C.1) is solved in a scientific software that has a solver for

finding the minimum of a constrained nonlinear multivariable function.

C.2.3 Mathematical Models

The optimization layer uses a dynamic biorefinery simulator to calculate the

stabilized or steady-state process outputs for pretreatment and enzymatic hydrolysis.

The mathematical models are complex and nonlinear. Finding an analytical solution

for steady-states is not trivial. An alternative is to run a sufficient long simulation

until all outputs are stabilized. The fermentation model is a batch process and the

outputs are collected after running a dynamic simulation for 190 h, i.e. the end of

the batch phase, which is a fixed amount of time due to a constant throughput. The

pretreatment and enzymatic hydrolysis models have already been published in [5]

and [6], and a summary of all equations is given in the supplementary material. The

fermentation model is detailed next.

C.2.3.1 C5 and C6 Co-Fermentation Model

The fermentation tank is modeled as a continuous stirred tank reactor (CSTR)

with reaction kinetics derived from [74]. Since it can take 70 h for filling the tank, it

is important to track the total mass change in time:

dM f

dt
= Fin f −Fout f (C.2)
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where M f is the fermenter hold-up in kg, and Fin f and Fout f are the mass inflow and

outflow rates in kgs−1.

Component composition is tracked with the following equation for variable

hold-up:
d(C f M f )

dt
= Fin f Cin f −Fout f C f +R f M f (C.3)

where C f is the composition vector in gkg−1, Cin f is the inflow composition of

liquefied fibers coming from the enzymatic hydrolysis process, and R f is the reaction

rate vector in g/(kgs).
Substituting Equation (C.2) into (C.3) yields:

dC f

dt
=

1
M f

[
Fin f

(
Cin f −C f

)]
+R f (C.4)

The reaction rates are calculated using standard global black box model to

represent fermentation activity [119]:

• Glucose uptake:

RG =−qGI (C.5)

where RG is the glucose uptake rate, and equals the glucose consumption rate

with inhibition qGI , which is calculated as follows:

qGI =
1

YEthG

qEthGI
(C.6)

YEthG is the yield parameter for ethanol production from glucose. qEthGI
repre-

sents ethanol production rate from glucose with inhibition:

qEthGI
= qEthG · IEthG · IFG · IAG · IHMFG (C.7)

qEthG is ethanol production from glucose only with substrate inhibition, while

IEthG , IFG , IAG , and IHMFG are inhibitory terms for ethanol (product inhibition),

furfural, acetate, and 5-HMF respectively. qEthG is modeled as in [120] with

pH dependency extension:

qEthG = qMaxG(pH) ·CCell
CG

KSPG +CG +
CG

2

KIPG

(C.8)

where CG and CCell are glucose and cell biomass concentrations, and KSPG and

KIPG are glucose self-inhibition terms.
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The pH dependency is built empirically to resemble a bell with qMaxG as peak:

qMaxG(pH) = qMaxG

K0G(
1+

10pH

K1G

+
K2G

10pH

) (C.9)

where K0G , K1G , and K2G parametrize the shape of the bell.

Ethanol inhibition on glucose uptake or product inhibition has been defined in

[120]:

IEthG = 1−
(

CEth

PMPG

)γG

(C.10)

with PMPG and γG as parameters. CEth is the concentration of ethanol.

Furfural, acetate and 5-HMF inhibition are modeled as below:

IiG =
KIiG

KIiG
+Ci

(C.11)

where IiG is the inhibition from component i, KIiG
is the inhibitory constant,

and Ci is the concentration. Index i can be {F , Ac, HMF} signifying furfural,

acetate, or 5-HMF.

• Xylose uptake follows the same equation structure as glucose uptake but with

different parameter values:

RX =−qXI (C.12)

Xylose consumption with inhibition is calculated based on ethanol production

from xylose qEthXI
with inhibition, and yield parameter YEthX :

qXI =
1

YEthX

qEthXI
(C.13)

Ethanol production from xylose comprises inhibition terms from product IEthX ,

furfural IFX , acetate IAcX , and 5-HMF IHMFX :

qEthXI
= qEthX · IEthX · IFX · IAcX · IHMFX (C.14)

qEthX shows ethanol production with substrate inhibition modeled as in [120]

with pH dependency extension:

qEthX = qMaxX (pH) ·CCell
CX

KSPX +CX +
CX

2

KIPX

(C.15)
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CX and CCell are xylose and cell biomass concentrations, while KSPX and KIPX

are xylose inhibitory parameters.

The pH dependency curve is parametrized in K0X , K1X , and K2X with qMaxX as

peak:

qMaxX (pH) = qMaxX

K0X(
1+

10pH

K1X

+
K2X

10pH

) (C.16)

Product inhibition is similar to the glucose case with parameters for xylose

PMPX and γX :

IEthX = 1−
(

CEth

PMPX

)γX

(C.17)

Furfural, acetate and 5-HMF inhibition have the following equations:

IiX =
KIiX

KIiX
+Ci

(C.18)

with index i ∈ {F , Ac, HMF}.

• Ethanol production is the sum between the rates from glucose and xylose

uptake shown in Equations (C.6) and (C.13):

REth = qGI +qXI (C.19)

• Furfural uptake rate RF is calculated as:

RF =−qF (C.20)

qF = qMaxF CCell
CF

KFS +CF
(C.21)

where qMaxF is the maximum uptake rate, CCell is the cell biomass concentration

and KFS is a substrate inhibition parameter.

• 5-HMF uptake is modeled similarly as in the furfural case with an inhibitory

term addition due to furfural:

RHMF =−qHMFI (C.22)

qHMFI = qHMF · IFHMF (C.23)
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qHMF = qMaxHMF CCell
CHMF

CHMF +KHMFS

(C.24)

IFHMF =
KIHMFF

KIHMFF
+CF

(C.25)

where KHMFS and KIHMFF
are inhibition parameters.

• Acetate uptake and production:

RAc = qAcHMF −qAc (C.26)

where qAcHMF is the production rate and qAc is the uptake rate. The acetate

production rate is calculated based on Equation (C.23) and the yield parameter

YAcHMF :

qAcHMF = qHMFI ·YAcHMF (C.27)

Acetate uptake is modeled similarly to 5-HMF uptake:

qAc = qMaxAcCCell
CAc

CAc +KAcS

(C.28)

with qMaxAc as maximum uptake rate and KAcS as substrate inhibition term.

• CO2 production occurs in glucose, xylose and acetate uptake:

RC = qGIYCG +qXIYCX +qAcYCAc (C.29)

where YCG , YCX and YCAc are yield parameters.

• Cell biomass growth is modeled as in [120]:

RCell = µT (C.30)

where µT is the specific growth of C5 and C6 mixture detailed as follows:

µT =
CG

CG +CX
µG +

CX

CG +CX
µX (C.31)

µG and µX are the specific growths on glucose and xylose:

µG = (qGI −mGCCell)YCellG (C.32)

µX = (qXI −mXCCell)YCellX (C.33)

mG and mX are maintenance coefficients for glucose and xylose, while YCellG

and YCellX are yield parameters.
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C.2.3.2 Biorefinery Model Summary

Table C.1 offers a summary of the integrated model complexity. The overall model

accounts for 96 kinetic parameters, 580 states, 10 inputs and 25 outputs. The table

also offers a split of the modular model based on the refinery step. The high number

of states in pretreatment and enzymatic hydrolysis is due to the computational fluid

dynamics tools (the convection equation discretized in space) used for modeling the

thermal reactor and the first enzymatic hydrolysis tank. Nominal values for kinetic

and feed parameters are given in Table C.3 from the model initialization section.

Table C.1: Model summary: number of parameters, states, inputs and outputs. Half of the

pretreatment outputs (the pretreated fibers) are directed to the enzymatic hydrolysis process,

while the other half (the C5 liquid) is connected to fermentation. The outputs from the

enzymatic hydrolysis are connected to fermentation.

Model Parameters States Inputs Outputs

Pretreatment 17 298 10 36

Enzymatic Hydrolysis 46 257 18 19

Fermentation (1 tank) 33 25 37 25

Total 96 580 10 25

C.2.4 Plantwide Optimization Methodology

The methodology steps for finding the optimal operational point of a plant are

extended from [82]:

1. Select the objective or cost function;

2. Identify the decision variables;

3. Formulate process model constraints and set bounds for decision variables;

4. Formulate and solve the optimization problem;

5. Sensitivity and uncertainty analysis of the optimal solution.

The optimal solution is analyzed from a sensitivity point of view using similar

tools as in [5, 9, 66]. Mathematical models that describe complex systems are often

over-parametrized. The sensitivity analysis quantifies the relation between the cost

function and model parameters when the system runs at the optimal point. The

aim is to rank all model parameters by their significance with respect to the profit
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value at the nominal operational point. Also a subset of relevant parameters can be

extracted for calculating the uncertainty bounds.

A measure of sensitivity suitable for steady-state signals is [8, 64]:

δk =
∂ck

∂θk

θk

cssk

(C.34)

where ∂ck/∂θk is the variation in profit with respect to a model parameter, and is

calculated based on finite differences. θk is the kth parameter, and cssk is the profit or

the value of the cost function in steady-state. All model parameters are sorted in

descending order with respect to δk, and a subset is created with all parameters that

have δk above a threshold. The reduced subset of model parameters is then used in

the uncertainty analysis.

The propagation of uncertainty is analyzed with a Monte Carlo procedure as

described in [9]:

1. Define input uncertainty;

2. Parameter sampling;

3. Monte Carlo simulations;

4. Output uncertainty.

The input uncertainty is defined with standard deviations and correlation matri-

ces obtained from previous studies. Dealing with many parameters implies a large

number of combinations of parameter values with high correlation between them.

In order to reduce the number of parameter samples, a Latin Hypercube Sampling

(LHS) technique with correlation control is utilized [65]. LHS generates less samples

of parameters but still statistically plausible with the help of a distribution function,

standard deviation, and correlation matrix. For each set of samples, a simulation

is then run and the output is collected. After all Monte-Carlo simulations are per-

formed, enough output information is obtained to statistically compute the median

and the 5th-95th percentile confidence interval.

C.3 Results and Discussion

This section starts with model initialization where the values of both model

and feed parameters are given in tabular format. The solution of the optimization

problem is then found and discussed. The sensitivity analysis with respect to model

kinetic parameters follows. A parameter subset is then identified, which is used in

Monte Carlo simulations for quantifying the uncertainty of the optimal solution. The
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costs and profit curves are also computed with uncertainty bounds. Uncertainty can

be embedded in the formulation of the optimal problem and the results are shown

for a stochastic optimization problem. The section ends with dynamic simulations

showing the refinery operation at the optimal point.

C.3.1 Model Initialization

Table C.2 shows the feed parameters, i.e. raw biomass inflow rate, composition

and initial temperature. The inflow rate is set to 1000 kgh−1, the throughput of a

demonstration scale plant. The biomass composition resembles wheat straw with an

initial dry matter of 89 % [40].

Table C.2: Biorefinery inputs: inflow rate, raw biomass composition, and initial temperature.

Description Value Unit % of dry matter

1 Inflow rate 1000 kgh−1

2 Cellulose 360 gkg−1 40.45

3 Xylan 187 gkg−1 21.01

4 Arabinan 23 gkg−1 2.58

5 Lignin 200 gkg−1 22.47

6 Acetyls 44 gkg−1 4.94

7 Ash 26 gkg−1 2.92

8 Water 110 gkg−1 -

9 Other 50 gkg−1 5.63

10 Temperature 15 ◦C

Table C.3 indicates the values with units for all 96 model parameters. The
table is split into pretreatment, enzymatic hydrolysis and fermentation. The model
parameter values are taken from [6], [5], and [74].

Table C.3: Model kinetic parameters: description, numerical values and

measuring unit.

θk Description Value Unit

Pretreatment

1 EXo Xylooligomers activation energy 298011 Jmol−1

2 EX Xylose activation energy 304680 Jmol−1

3 EG Glucose activation energy 335614 Jmol−1

4 EPL Pseudo-lignin activation energy 325629 Jmol−1

5 EF Furfural activation energy 327253 Jmol−1

6 EHMF 5-HMF activation energy 300000 Jmol−1
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7 EAc Organic acid activation energy 242687 Jmol−1

8 EA Arabinose activation energy 61229 Jmol−1

9 kXo Xylooligomers reaction constant 2.78×1031 s−1

10 kX Xylose reaction constant 1.31×1034 s−1

11 kG Glucose reaction constant 1.11×1035 s−1

12 kPL Pseudo-lignin reaction constant 1.03×1033 s−1

13 kF Furfural reaction constant 5.09×1033 s−1

14 kHMF 5-HMF reaction constant 1×1031 s−1

15 kAc Organic acid reaction constant 4.88×1024 s−1

16 kA Arabinose reaction constant 106225 s−1

17 αPL Pseudo-lignin and inhibitors fraction 0.1019 −

Enzymatic Hydrolysis

18 αE
C Endo-exo cellulase fraction 0.25 −

19 αG
C β -glucosidase fraction 0.25 −

20 αE
X Endo-exo xylanase fraction 0.25 −

21 αG
X β -xylosidase fraction 0.25 −

22 K1 Cellulose to cellobiose reaction constant 0.005916 kg/(gs)

23 K2 Cellulose to glucose reaction constant 0.0065075 kg/(gs)

24 K3 Cellobiose to glucose reaction constant 0.0055227 kg/(gs)

25 K4 Xylan to xylooligomers reaction constant 0.0020026 kg/(gs)

26 K5 Xylan to xylose reaction constant 0.0033936 kg/(gs)

27 K6 Xylooligomers to xylose reaction constant 0.0028228 kg/(gs)

28 K7 Enzyme deactivation reaction constant 2.5×10−7 kg/(gs)

29 KE
AC

Exo-endo cellulase Langmuir adsorption

constant

1.0444 −

30 KE
AX

Exo-endo xylanase Langmuir adsorption

constant

0.37844 −

31 KG
AC

β -glucosidase Langmuir adsorption constant 0.056976 −
32 KX

AX
Xilosidase Langmuir adsorption constant 0.093253 −

33 EE
MC

Maximum exo-endo cellulase adsorption 0.016042 −
34 EG

MC
Maximum β -glucosidase adsorption 1.5×10−5 −

35 EE
MX

Maximum endo-exo xylanase adsorption

constant

0.38978 −

36 EX
MX

Maximum xylosidase adsorption 0.51178 −
37 IC1 Cellobiose inhibition on r1 0.02014 gkg−1

38 IG1 Glucose inhibition on r1 0.10255 gkg−1

39 IXo1 Xylooligomers inhibition on r1 0.0078145 gkg−1

40 IX1 Xylose inhibition on r1 0.01503 gkg−1

41 IEth1 Ethanol inhibition on r1 0.15 gkg−1

42 IC2 Cellobiose inhibition on r2 69.539 gkg−1
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43 IG2 Glucose inhibition on r2 0.067554 gkg−1

44 IXo2 Xylooligomers inhibition on r2 0.059612 gkg−1

45 IX2 Xylose inhibition on r2 0.14843 gkg−1

46 IG3 Glucose inhibition on r3 8.7211 gkg−1

47 IXo3 Xylooligomers inhibition on r3 111.6822 gkg−1

48 IX3 Xylose inhibition on r3 210.1911 gkg−1

49 IO3 Overall inhibition on r3 15.949 gkg−1

50 IC4 Cellobiose inhibition on r4 53.4804 gkg−1

51 IG4 Glucose inhibition on r4 2.0899 gkg−1

52 IXo4 Xylooligomers inhibition on r4 113.4492 gkg−1

53 IX4 Xylose inhibition on r4 233.0874 gkg−1

54 IC5 Cellobiose inhibition on r5 2.7413 gkg−1

55 IG5 Glucose inhibition on r5 4.7951 gkg−1

56 IXo5 Xylooligomers inhibition on r5 83.5479 gkg−1

57 IX5 Xylose inhibition on r5 271.2334 gkg−1

58 IC6 Cellobiose inhibition on r6 46.9663 gkg−1

59 IG6 Glucose inhibition on r6 3.0412 gkg−1

60 IX6 Xylose inhibition on r6 198.3351 gkg−1

61 IO6 Overall inhibition on r6 28.2079 gkg−1

62 RA Severity dependency 9 −
63 RB Severity dependency 2.915 −

Fermentation

64 YCO2G
CO2 production from glucose uptake 0.47 kgkg−1

65 YCO2X
CO2 production from xylose uptake 0.4 kgkg−1

66 KFS Furfural uptake self inhibition constant 0.05 gkg−1

67 KIFG
Glucose inhibition on furfural uptake 0.75 gkg−1

68 KIHMFF
Furfural inhibition on 5-HMF uptake 0.25 gkg−1

69 KIFX
Xylose inhibition on furfural uptake 0.35 gkg−1

70 qFMax Maximum furfural uptake 4.6706×10−5 s−1

71 KIPG Glucose uptake self inhibition parameter 4890 gkg−1

72 KSPG Glucose uptake self inhibition parameter 1.342 gkg−1

73 PMPG Ethanol inhibition on glucose uptake 103 gkg−1

74 γG Ethanol inhibition on glucose uptake 1.42 −
75 YEthG Ethanol production from glucose uptake 0.47 kgkg−1

76 YCellG Biomass growth on glucose 0.115 kgkg−1

77 mG Maintenance coefficient for biomass growth on

glucose

2.6944×10−5 s−1

78 qMaxG Maximum glucose uptake rate 0.000318 s−1

79 KIPX Xylose uptake self inhibition parameter 81.3 gkg−1

80 KSPX Xylose uptake self inhibition parameter 3.4 gkg−1
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81 PMPX Ethanol inhibition on xylose uptake 100.2 gkg−1

82 γX Ethanol inhibition on xylose uptake 0.608 −
83 YEthX Ethanol production from xylose uptake 0.4 kgkg−1

84 YCellX Biomass growth on xylose 0.162 kgkg−1

85 mX Maintenance coefficient for biomass growth on

xylose

1.8611×10−5 s−1

86 qMaxX Maximum xylose uptake rate 0.00083444 s−1

87 KAcS Acetate uptake self inhibition 2.5 gkg−1

88 KIAcG
Acetate inhibition on glucose uptake 2.74 gkg−1

89 KIAcX
Acetate inhibition on xylose uptake 0.2 gkg−1

90 YAcHMF Acetate production from 5-HMF uptake 0.23392 kgkg−1

91 YCO2S
CO2 production from 5-HMF uptake 0.1 kgkg−1

92 qMaxAc Maximum acetate uptake rate 1.2292×10−5 s−1

93 KHMFS 5-HMF uptake self inhibition 0.5 gkg−1

94 KIHMFG
5-HMF inhibition on glucose uptake 2 gkg−1

95 KIHMFX
5-HMF inhibition on xylose uptake 10 gkg−1

96 qMaxHMF Maximum 5-HMF uptake rate 8.7576×10−5 s−1

C.3.2 The Optimization Problem

The generic method steps from [82] are detailed next:

1. Select the objective or cost function:

The cost function from this study represents the profit for one fermentation

batch defined as the difference between ethanol revenue and operating costs

related to biomass, steam, enzymes, and yeast:

c(MEth,Fb,Fs,Fe,My) = MEth(t f )PEth− (FbPb +FsPs +FePe +MyPy) (C.35)

Ethanol revenue is calculated as MEth(t f )PEth, i.e. mass of ethanol in kg at

the end of the batch phase t f times its price per kilogram PEth. My is the

mass of yeast added to the fermentation tank in the inoculum phase. The

operating costs are defined as flow rate or mass of utility times its price. The

refinery consists of two continuous processes, i.e. pretreatment and enzymatic

hydrolysis, and a batch process, i.e. fermentation. The weights Pb (cost of

biomass), Ps (cost of steam), and Pe (cost of enzymes) are related to the

continuous processes, i.e. pretreatment and liquefaction, and are measured

in unitcost/(kg/h). Py (cost of yeast) is measured in unitcost/kg as it gets

multiplied with a mass. The overall measuring unit of the cost function

becomes the unitcost, which can represent any currency.
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The feedstock flow rate or refinery throughput Fb is kept constant and therefore

can be dropped from the cost function as the derivative of the cost function

with respect to Fb becomes 0. Table C.4 shows the weight values used in

this study. Distillation cost is a function of water content of the stream from

fermentation. As none of the decision variables influence the water content, the

distillation costs can also be removed from the objective function, Fs showing

only the steam used for pretreatment. The cost function then becomes:

c(MEth,Fs,Fe,My) = MEth(t f )PEth− (FsPs +FePe +MyPy) (C.36)

Table C.4: Cost function weights (prices).

Parameter Description Value

PEth Ethanol 5 unitcost/kg

Pe Enzymes 25 unitcost/(kg/h)

Ps Steam 1 unitcost/(kg/h)

Py Yeast 50 unitcost/kg

2. Identify the decision variables:

The outcome of the pretreatment process is sensitive to the thermal reactor

temperature and retention time [50]. However, it is desired to have a constant

throughput as mentioned earlier, which makes the retention time constant.

The thermal reactor temperature then becomes the only degree of freedom in

pretreatment.

The key parameters in enzymatic hydrolysis are: pH, temperature, and concen-

tration of enzymes. The enzymatic activity is a function of pH and temperature,

which resemble Gaussian curves with single peaks at pH of 5 units and tem-

perature 50 ◦C [6]. Any deviations from the optimal point would reduce the

enzymatic efficiency. Control loops keep the pH and temperature close to

optimality [11] and it is not indicated to vary these variables. However, the

concentration of enzymes can be adjusted by changing the inflow rate of en-

zymes Fe and constitutes the only degree of freedom in enzymatic hydrolysis

for the optimization problem.

The efficiency of the fermentation process is a function of pH, temperature, and

yeast seed. The optimal pH level of the GMO yeast is relatively close to that of

the enzymes, i.e. 5.5 units. The optimal fermentation temperature is at 35 ◦C,

which is different than the enzymatic optimal temperature. Controllers keep

the pH and temperature conditions at the GMO yeast optimal levels throughout
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the entire fermentation process. The only degree of freedom considered for

the optimization problem is the yeast seed My in the inoculum phase.

As a summary, the decision variables are: the pretreatment temperature Ttr

defined as the set-point for the thermal reactor temperature controller, the

inflow rate of enzymes Fe expressed in kgh−1, and the yeast seed My in kg as a

set-point for the amount of yeast used to start the inoculum phase:

u = [Ttr Fe My]
> (C.37)

3. Process model constraints, and bounds for decision variables:

The dynamic integrated models for pretreatment and enzymatic hydrolysis are

formulated as:

ẋ = f (x,u) (C.38)

where f (x,u) is a nonlinear function of states x and inputs u. The steady states

are then found as the solution of ẋ = 0:

0 = f (x,u) (C.39)

Due to the model complexity and the nonlinear nature of f (x,u), an analytical

solution to (C.39) cannot be easily found. As an alternative, the steady states

are calculated by running a sufficient long simulation till all states stabilize.

The dynamic model for fermentation is described by:

ẋ f = h(x f ,u f ) (C.40)

where h(x f ,u f ) represents a nonlinear complex model of states x f and inputs u f .

The final states at time 190 h are found by integrating the model numerically

(dynamic simulation):

x f (t f ) =

t f∫
0

h(x f ,u f )dt (C.41)

where t f = 190h, i.e. the end of the batch phase.

The decision variables are bounded as follows:

150 ≤ Ttr ≤ 210 ◦C
10 ≤ Fe ≤ 1000kgh−1

10 ≤ My ≤ 1000kg

(C.42)

which allows a wide range of operation for searching the optimal point.
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4. Formulate and solve the overall optimization problem:

max
Ttr ,Fe,My

MEth(t f )PEth− (FsPs +FePe +MyPy)

subject to 0 = f (x(t),u(t))

ẋ f = h(x f ,u f )

150 ≤ Ttr ≤ 210 ◦C
10 ≤ Fe ≤ 1000kgh−1

10 ≤ My ≤ 1000kg

(C.43)

The previous optimization problem is solved numerically leading to the follow-

ing solution:

zo =

 Ttr

Fe

My

=

 172 ◦C
110kgh−1

142kg

 (C.44)

The thermal reactor temperature should be set to 172 ◦C, the enzyme dosage

is of about 109 kgh−1, and the yeast seed is of 142 kg. This optimal set point

gives a profit of:

co = 7.6714×104 unitprofit (C.45)

disregarding raw biomass and distillation costs.

In order to gain process insight and to observe how pretreatment conditions

affect the downstream processes, an iteration is created through pretreatment

temperatures between 160 ◦C to 180 ◦C with a step of 1 ◦C. Each pretreatment

temperature changes the fibers and C5 liquid composition. The enzymatic hydrolysis

and fermentation processes are then optimized in an integrated manner for each

pretreatment temperature:

max
Fe,My

MEthPEth− (FePe +MyPy)

subject to 0 = f (x(t),u(t))

ẋ f = h(x f ,u f )

10 ≤ Fe ≤ 1000kgh−1

10 ≤ My ≤ 1000kg

(C.46)

In this way the pretreatment, liquefaction and fermentation costs, as well as

refinery profit can be observed with respect to pretreatment conditions. The same

methodology can be applied even if there are recycles between fermentation and

liquefaction because these two processes are analyzed in an integrated manner in

optimization problem (C.46). Algorithm 5 shows how to calculate the curves for
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profit, costs, and optimal solution as functions of pretreatment temperature. z is

the optimal solution returned by the optimization problem solver, cp, ceh, c f are the

pretreatment, enzymatic hydrolysis, and fermentation costs, and c is the value of the

cost function or the profit.

Algorithm 5 Calculate optimal costs and profit with respect to pretreatment temper-

ature given a fixed set of model parameters θ and feedstock composition Cb.

1: function
[
z,cp,ceh,c f ,c

]
= COSTS(θ , Cb)

2: Set a range of pretreatment temperatures Ttr← 160 ◦C : 1 ◦C : 180 ◦C
3: Set initial solution guess to z0← [100kgh−1 80kg]>

4: for Each temperature in Ttr do

5: Run pretreatment process at temperature Ttri and obtain composition of

pretreated fibers and C5 liquid, and steam inflow into the thermal reactor Fsi .

6: zi← Solution of optimization problem (C.46) given the pretreated fibers

composition and C5 liquid from previous step as inputs. Use as initial guess the

solution from previous iteration zi−1.

7: Calculate mass of ethanol at final fermentation time: MEthi ← M(t f ) ·
CEth(t f ) where t f is the final batch time, M(t f ) is the reactor mass in kg at time

t f , and CEth(t f ) is the ethanol concentration at time t f in gkg−1.

8: Enzyme dosage: Fei ← zi(1).
9: Yeast seed: Myi ← zi(2).

10: Calculate pretreatment cost: cpi ← FsiPs.

11: Calculate liquefaction cost: cehi ← FeiPe.

12: Calculate fermentation cost: c fi ←MyiPy.

13: Calculate revenue: ri←MEthiPEth.

14: Calculate profit ci← ri− (cpi + cehi + c fi).

C.3.3 Sensitivity Analysis of Profit Value at the Optimal Point

Figure C.4 illustrates the sensitivity analysis of the profit curve with respect to all

model parameters from Table C.3 calculated at the optimal solution (C.44).

The most sensitive parameter is EF , i.e. the furfural formation activation energy.

Furfural is a strong fermentation inhibitor produced during pretreatment, and

ethanol yield is directly affected by the amount of furfural. The next sensitive

parameter is YPSG , a yield parameter indicating the amount of ethanol in g produced

per 1 g of glucose. EG or glucose activation energy follows indicating that cellulose

degradation in pretreatment impacts the ethanol yield. Three more fermentation

parameters with similar sensitivity follow, i.e. maximum acetate uptake parameter
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Figure C.4: Sensitivity measure δk of profit value with respect to model parameters.

qAcMax , cell biomass yield on glucose YXSG , and ethanol yield on xylose YPSX . 5-HMF

production during pretreatment has a relatively high sensitivity too as it influences

both the glucose yield, by degrading it further, and also by inhibiting ethanol

production in fermentation.

The first sensitive enzymatic hydrolysis parameter is RB, i.e. the severity de-

pendence of the enzymatic activity. RB shows the importance of biomatrix opening

from the pretreatment process as a structural breakdown of the fiber, which affects

cellulose accessibility for enzymes. Other important liquefaction parameters are K2

and K7, which indicate glucose production rate and enzyme deactivation in time.

The placement of pretreatment parameters such as EF , EG, EH , and EAc among

the sensitive parameters shows how important pretreatment conditions are for

downstream. Fermentation parameters are also numerous among the sensitive

parameters. Fermentation with enhanced GMO yeast for bioethanol production is

a key process in the biorefinery together with steam pretreatment. Liquefaction

parameters have a lower importance because the overall hydrolysis time is long

enough to compensate for any parameter uncertainties. The liquefaction process

has a pure hydrolysis phase of 140 h followed by fermentation where enzymes

are still active continuing cellulose degradation (simultaneous saccharification and

fermentation).

The sensitivity threshold is set at 0.046, which reduces the parameters count to

22 out of 96 showing the importance of the sensitivity analysis. These parameters

are then used in the following uncertainty analysis.

C.3.4 Uncertainty Analysis of Costs, Profit and Optimal Solution

The standard deviation and correlation matrix for pretreatment and enzymatic

hydrolysis parameters can be obtained from [5] and [8], respectively. Regarding the
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fermentation model, there is no real data that could be used to obtain parameter

estimates. However, one can generate measurements through simulation, i.e. glu-

cose, xylose and ethanol levels, add measurement noise, and then run a parameter

estimation procedure for estimating the standard deviation and correlation matrix

for these parameters, which is done here in this study.

Latin Hypercube Sampling (LHS) with correlation control can then be performed

for all model parameters. Feedstock composition is sampled with uniform LHS

considering a 5 % variation in composition. N = 44 samples are extracted for model

and feed parameters. The Monte Carlo simulations are performed by running

Algorithm 5 for each set of parameters. The simulation outputs are collected, and

the 5th, 50th and 95th percentiles are then calculated for profit, costs, and optimal

solution.

The uncertainty analysis is carried separately for feed, and then for model

parameters in order to observe the contribution of each source of uncertainty. A

last analysis combines the samples of feed and model parameters to find the overall

effect of the uncertainty sources on the outputs.

The entire sensitivity and uncertainty analysis for combined model and feed

parameters is summarized in Algorithm 6. To run a separate model, and then feed

uncertainty analysis, the algorithm can be trivially modified either by keeping Cb or

θ constant in step 11.

Algorithm 6 Sensitivity and uncertainty analysis with combined model and feed

parameters.
1: Initialize model parameters θ and feed composition Cb.

2: Optimal deterministic solution: [Ttr,Fe,My]← (C.43).

3: Sensitivity analysis of the cost function in [Ttr,Fe,My]: calculate δk as in equation

(C.34).

4: Rank all parameters with respect to δk.

5: Select a subset θR such that θR is above a threshold.

6: Set standard deviations and correlation matrices for θR.

7: θ ← LHS of θR with correlation control to generate N sets of model parameters.

8: Set bounds for feedstock composition.

9: Cb← Uniform LHS for feedstock composition to generate N sets of compositions.

10: for Each set of model and feed parameters do

11:
[
zi,cpi ,cehi ,c fi ,ci

]
= COSTS(θi,Cbi)

12: Calculate the 5th, median and 95th percentile for profit, costs, and optimal

solution.

The results of the uncertainty analysis are displayed in Figure C.5 and commented
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below:

• The profit curve is drawn in Figure C.5(a), which is used to identify the optimal

operational point. The traditional biorefinery operation is to follow a fixed

recipe with little adjustments to pretreatment conditions. This traditional

recipe is most often found by offline experiments on decoupled refinery steps

that do not take into account the interactions between the conversion stages

and utilities prices. This is why the traditional operation is sub-optimal from

an economic point of view. In contrast, the optimization layer is capable

of adapting to pretreatment temperatures and finds the optimal operation

by considering the integrated process. The optimized operation is superior

to a traditional recipe with a higher mean profit curve at any pretreatment

temperature.

At low temperatures, most of the uncertainty is due to model parameters, but

it shifts after 165 ◦C when feed uncertainty becomes dominant. The traditional

operation is highly affected by feed uncertainty, while the optimized operation

has a reduced uncertainty on the profit curve.

Another important result is that the optimized profit curve is flatter than the

traditional curve allowing a wider range of operation with little impact on

profit value. The optimal operational point can be picked as the maximum

point on the median profit curve, and lies between 171 ◦C to 176 ◦C. The

optimal refinery operates at around 18 % higher profit than a traditional plant

without an optimization layer.

• Figure C.5(b) shows the refinery costs split into pretreatment, liquefaction

and fermentation as a function of pretreatment conditions. From left to

right, the uncertainty analysis is carried with respect to separate feed and

model parameters (left and center plots), and combined parameters (right

plot). The pretreatment costs are only due to the steam used in the thermal

reactor. The biorefinery is considered to be integrated with a local power

plant, possibly owned by the same company following the IBUS principle [4].

Such a design lowers the cost of steam significantly. A higher pretreatment

temperature demands more steam but the overall increase in cost for modifying

the temperature from 160 ◦C to 180 ◦C is approximately 100 unitcost, which is

negligible compared to enzymatic hydrolysis or fermentation.

Liquefaction costs are high at low temperature because: (1) the biomatrix is

not sufficiently opened to expose the whole cellulose, and (2) there is a large

amount of unhydrolyzed hemicellulose, which leads to a high production of
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Figure C.5: Optimal costs, potential profit, and solution of the optimization problem.
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xylooligomers and xylose that inhibit the enzymatic hydrolysis further. In order

to compensate for these negative effects, both the enzyme and yeast dosage

are increased. The liquefaction costs decrease as the pretreatment temperature

increases, which makes sense as the biomatrix opens significantly to expose

cellulose, and also hemicellulose is partially removed from the enzymatic

hydrolysis process.

Fermentation costs have the shape of a convex curve due to: (1) at low pretreat-

ment temperatures a higher yeast seed could contribute to a faster digestion

of sugars, which enhances the saccharification process from fermentation by

reducing the C5 sugars inhibition leading to a higher ethanol yield; (2) at

high temperatures the amount of inhibitors negatively affect fermentation but

more yeast could compensate for the inhibitory effects of the pretreatment

degradation products.

Feed uncertainty is rather constant through the entire temperature range.

Uncertainty due to model parameters is high at low temperatures where the

biomatrix opening highly affects the cost range. After 165 ◦C the model uncer-

tainty is significantly reduced becoming lower than the feed. The combined

model and feed uncertainty indicate high uncertainty at low temperatures

when the pretreatment is insufficient.

• Figure C.5(c) illustrates the optimal solution as a function of pretreatment

temperatures. Enzyme dosage is expressed in kgh−1, while yeast seed is given

in kg. Uncertainty is higher at lower temperatures when the biomass is not

sufficiently pretreated, and remains relatively constant once the biomatrix

opens. Also, feed uncertainty has a higher impact than model parameters after

165 ◦C.

Increasing pretreatment temperatures is beneficial for enzymatic hydrolysis

as it lowers the necessary enzyme dosage, but is negative for fermentation

as the amount of inhibitors rises with temperature. Also, around the optimal

operational point, uncertainty due to feed parameters dominates that of model

parameters.

In reality there are several factors that can degrade the performance of the

optimization layer, and should be accounted for in real implementation. The feed

rate in this study case was set to a low value, which does not allow inhibitors

accumulation in the fermentation tank. However, at higher feed rates inhibitors

accumulation becomes a bottleneck, which can be counteracted by calculating

an optimal feed rate profile [86]. This study also disregards the temperature
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dependence of the yeast performance. In reality the enzymatic hydrolysis and

fermentation processes run at different optimal temperatures. The solution is

to calculate a temperature profile for finding the best trade-off between the two

processes [79, 85].

C.3.5 Stochastic Optimization Solution

Finding the optimal point by running the process through a wide range of

pretreatment temperatures requires a long computational time, and is not feasible in

an industrial application. A better way is to embed the feed and model parameters

uncertainty into the objective function, and pick the mean cost value:

max
Ttr ,Fe,My

1
N

N
∑
1

[
MEth(t f )PEth− (FsPs +FePe +MyPy)

]
subject to 0 = f (x(t),u(t))

ẋ f = h(x f ,u f )

150 ≤ Ttr ≤ 210 ◦C
10 ≤ Fe ≤ 1000kgh−1

10 ≤ My ≤ 1000kg

(C.47)

N is the number of parameter sets generated through LHS with correlation control,

or the Monte Carlo simulations count. The cost function is evaluated by running N

simulations selecting the profit mean value. The following optimal solution and cost

value are found:

zso =

 Ttr

Fe

My

=

 171.5 ◦C
113kgh−1

146kg

 cso = 7.6015×104 unitprofit (C.48)

where zso is the optimal solution in the stochastic optimization case, and cso is the

value of the cost function. Solution (C.48) is relatively close to the one found in the

deterministic case from (C.44) with a slightly lower profit value.

C.3.6 Deterministic Simulations at the Optimal Point

A deterministic simulation is run corresponding to the optimal operational point

from solution (C.44). The pretreatment and the enzymatic hydrolysis are continuous

processes and the steady state values at the optimal point are shown in Table C.5. The

pretreated fibers are rich in cellulose and have a dry matter content of about 35 % as

suggested by [55] for an efficient liquefaction process. Most solubles were separated

from the fibers in the pretreatment process before liquefaction. The remaining

hemicellulose continues to be degraded to sugars in the enzymatic hydrolysis tanks.
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When the level of C5 sugars increase, they strongly inhibit glucose production and

a part of cellulosic fibers remain in solid state. This is why the liquefied fibers still

contain cellulose before fermentation, i.e. 50 gkg−1, approximately 30 % of the initial

cellulose content. The remaining cellulose continues conversion to glucose in the

fermentation tank where enzymes are still active.

Table C.5: Steady states for pretreatment and enzymatic hydrolysis at the optimal point.

Pretreated fibers C5 liquid Liquefied fibers Fermentation

Flow/Mass 2316 kgh−1 628 kgh−1 2487 kgh−1 220 t

Composition 1000 gkg−1 1000 gkg−1 1000 gkg−1 1000 gkg−1

Cellulose 146 1.2 50 4.4

Xylan 60 0.5 1 0

Arabinan 0 0 0 0

Lignin 85 0.7 78 60

Acetyls 16 0.1 0.1 0

Ash 6 18 5.7 7.8

Acids 1.5 4.1 16 0

Glucose 3.5 10 98 0

Xylooligomers 0.5 1.2 5.8 0.1

Xylose 10 29.7 59 0

Arabinose 5 15.5 5 0

Furfural 0.2 0.5 0.2 0

5-HMF 0.1 0.3 0.1 0

Base 0 0 6.6 9.5

Enzymes 0 0 4.9 2.4

Biomass 0 0 0 8.4

Ethanol 0 0 0 79

CO2 0 0 0 80

Water 645 918 643 702

Other 21.2 0.2 26.6 46.4

Temperature 50 ◦C 50 ◦C 50 ◦C 35 ◦C

Figure C.6 shows the fermentation batch process at the optimal point. The top

plot illustrates C6 and C5 sugars depletion, ethanol production, and biomass growth.

The bottom plot displays remaining cellulose and xylan conversion during simul-

taneous saccharification and fermentation. In the inoculum phase (first 10 h) the

yeast concentration is high but as the fed-batch phase starts, biomass concentration

is diluted in liquefied fibers from the enzymatic hydrolysis and C5 liquid from the

pretreatment process. Ethanol production has several stages: (1) formation on
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glucose consumption till around 100 h, (2) production based on xylose consumption

till 170 h, (3) as xylose is depleted, its inhibition on enzymatic hydrolysis disappears

and glucose production from simultaneous saccharification and fermentation is

accelerated in the last 20 h.
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Figure C.6: Simultaneous saccharification and C5-C6 co-fermentation.

C.4 Conclusions

This was a study on economical optimization of a large scale second generation

biorefinery in a simulated environment. The proposed optimization procedure is

based on steady-state models (pretreatment and enzymatic hydrolysis), and dynamic

fermentation model. Optimal operation depends on pretreatment temperature,

enzyme dosage in liquefaction, and yeast seed in fermentation. Increasing pretreat-

ment temperature is positive for the performance of the enzymatic hydrolysis while
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negative for ethanol yield. Uncertainties in kinetics of pretreatment, liquefaction

and fermentation were negligible on the economic objective function around the

optimal operational point. The main source of uncertainty was found to be the inflow

feed composition. The optimization layer reduced the uncertainty and flattened

the profit curve allowing a wider range of operation with higher profit. The overall

improvement of the optimization layer is of approximately 18 % over the traditional

plant.
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Introduction

This supplementary material summarizes the dynamic mathematical models for

pretreatment and enzymatic hydrolysis used in the plantwide optimization study.

These models are necessary for calculating the steady state values. Due to the high

complexity and model nonlinearities, an analytical steady state solution is hard to

find. The alternative is to run a sufficiently long simulation with constant inputs and

grab the final stabilized state values.

Mathematical Models

Pretreatment

The pretreatment process occurs in a large horizontal thermal reactor, which

is pressurized with steam till the necessary reaction pressure/temperature. The

following parameter distributed equation models the biomass transportation from

inlet to outlet subject to conversion due to the steam temperature [5]:

dCk

dt
=

uz

δz
(Ck−1−Ck)+Rk (C.49)

Ck is the composition vector in central cell k, Ck−1 is the composition vector from the

western neighbor, and Rk is the reaction rate vector from current cell k. Movement

from west to east (left to right) is assumed.

The pretreatment conversion mechanism is shown in Figure C.7. The reaction

rates for building vector Rk are modeled as first order Arrhenius type reactions, and

are detailed in Prunescu et al. [5]. A summary is given below:

• Glucose production due to cellulose hydrolysis:

rG = kG exp
(
− EG

R ·TK

)
CCS (C.50)
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Figure C.7: Hydrothermal pretreatment conversion mechanism [5].

where kG is th reaction rate constant, EG is the activation energy, and CCS is

the cellulose is solid state. R and TK are the universal gas constant, and the

cell temperature in Kelvin degrees.

• 5-HMF production due to glucose degradation:

rH = kH exp
(
− EH

R ·TK

)
CG (C.51)

where CG is the glucose concentration.

• Arabinan CAS is in low concentration and fully hydrolyzes to arabinose follow-

ing the rate:

rA = kA exp
(
− EA

R ·TK

)
CAS (C.52)

• Xylan is hydrolyzed having xylooligomers as an intermediate product:

rXo = kXo exp
(
− EXo

R ·TK

)
CXS (C.53)

where CXS is xylan in solid state.

• Xylooligomers are further decomposed into xylose:

rX = kX exp
(
− EX

R ·TK

)
CXo (C.54)

with CXo as the concentration of xylooligomers.

• Xylose CX and arabinose CA are C5 sugars and can degrade into furfural:

rF = kF exp
(
− EF

R ·TK

)
(CX +CA) (C.55)
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• Carbohydrates can react with inhibitors (furfural and 5-HMF) to create spheri-

cal droplets called pseudo-lignin [53]:

rL = kL exp
(
− EL

R ·TK

)
(CXo +CX +CA +CG)(CF +CH) (C.56a)

rL = rLXo + rLX + rLA + rLG (C.56b)

rL = rLF + rLH (C.56c)

rLXo , rLX , rLA , and rLG show pseudo-lignin production due to xylooligomers,

xylose, arabinose, and glucose participation expressed separately [5]:

rLXo = kL exp
(
− EL

R ·TK

)
CXo(CF +CH) (C.57a)

rLX = kL exp
(
− EL

R ·TK

)
CX (CF +CH) (C.57b)

rLA = kL exp
(
− EL

R ·TK

)
CA(CF +CH) (C.57c)

rLG = kL exp
(
− EL

R ·TK

)
CG(CF +CH) (C.57d)

rLF and rLH express pseudo-lignin production with furfural and 5-HMF partici-

pation [5]:

rLF = kL exp
(
− EL

R ·TK

)
(CXo +CX +CA +CG)CF (C.58a)

rLH = kL exp
(
− EL

R ·TK

)
(CXo +CX +CA +CG)CH (C.58b)

• Hemicellulose contains acetyls CAcS that hydrolyze to produce acetic acid:

rAc = kAc exp
(
− EAc

R ·TK

)
CAcS (C.59)

The composition vector Ck and the reaction rate array Rk from Equation (C.49)
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then become:

Ck =



CCS

CXS

CAS

CLS

CAcS

CG

CXo

CX

CA

CAc

CF

CH

CW

CO



Rk =



−rG

−rXo

−rA

rL

−rAc

rG− rOG − (1−α)rLG

rXo− rX − (1−α)rLXo

rX − rFX − rOX − (1−α)rLX

rA− rOA − rFA − (1−α)rLA

rAc

rF −αrLF

rH −αrLH

0
rOX + rOG + rOA



(C.60)

The mass balance is ensured by the following conditions:

∑Rk = 0g/(kgs) ∑Ck = 1000gkg−1 (C.61)

Enzymatic Hydrolysis

The enzymatic hydrolysis model has been formulated and analyzed in Prunescu

and Sin [6]. The competitive conversion routes are presented in Figure C.8. The

model has been extended in this study with enzyme deactivation in time as suggested

by Zhang et al. [61] plus enzymatic efficiency with respect to biomatrix opening

described by the severity factor. A summary of the model equations is given next:

• The mass balance is built similarly to the thermal reactor case because the

enzymatic hydrolysis runs at a very high initial dry matter, i.e. 40 %. If Equation

(C.49) is discretized into a single cell then it is equivalent to a continuous

stirred tank reactor (CSTR). The enzymatic hydrolysis occurs in several tanks

interconnected in series. In the first tank viscosity has a significant drop and is

discretized in N = 6 cells, while the other tanks behave as CSTRs such that the

retention time meets the 140 h constraint.

• The enzymatic solution parametrization:

CE =CEC +CEX (C.62)
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Figure C.8: Enzymatic hydrolysis conversion mechanism with inhibition. Extended from

Prunescu and Sin [6] with xylooligomers intermediate product, acetyl groups, and enzyme

deactivation.

The enzymatic solution contains cellulase CEC and xylanase CEX . Cellulase is

made up of endo-exo type cellulase CE
EC

and β -glucosidase CG
EC

:

CEC =CE
EC

+CG
EC

(C.63)

Xylanase consists of exo-endo type xylanase CE
EX

and xylosidase CX
EX

:

CEX =CE
EX

+CX
EX

(C.64)

The total concentration of enzymes can be parametrized using fractions:

CE = αE
C CE +αG

C CE +αE
X CE +αX

X CE (C.65)

where αE
C , αG

C , αE
X , and αX

X are fractions of each type of cellulase and xylanase.

Enzymes can be in two states: bounded or free. There is an equilibrium

between the states described by:

CE
ECB

= EE
MC

KE
AC

CE
ECF

1+KE
AC

CE
ECF

CS (C.66)

where CE
ECB

are bounded exo-endo type cellulase, CE
ECF

are free same type en-

zymes. EE
MC

is a maximum adsorption term, and KAC the Langmuir adsorption



168 Paper C. Model-based Plantwide Optimization

constant. CS is the solid substrate that enzymes are bound to. Equation (C.66)

applies to all types of enzymes, i.e. β -glucosidase, endo-exo type xylanase,

and xylosidase.

• Kinetic modeling of the reaction rates from Figure C.8: Reaction r1 describes

cellulose hydrolysis to cellobiose:

r1 =
K1η(T, pH,r)CE

ECB
CCS

1+ CC
IC1

+ CX
IX1

+ CG
IG1

+ CXo
IXo1

+ CEth
IEth1

(C.67)

K1 is the reaction rate, η(T, pH,r) is the temperature, pH, and severity depen-

dency of the enzymatic activity, CE
ECB

are the bounded exo-endo type cellulase,

and CCS is the concentration of solid cellulose. The reaction rate is inhibited by

cellobiose CC, xylose CX , xylooligomers CXo, and glucose CG through inhibition

terms IC1 , IX1 , IXo1 , and IG1 . In simultaneous saccharification and fermentation

(SSF) ethanol also inhibits cellobiose formation [96] modeled through IEth1 in

the above rate.

Cellulose is also decomposed straight to glucose by the action of both endo-exo

type enzymes and β -glucosidase:

r2 =
K2η(T, pH,r)

(
CE

ECB
+CG

ECB

)
CCS

1+ CC
IC2

+ CXo
IXo2

+ CX
IX2

+ CG
IG2

+ CEth
IEth2

(C.68)

Cellobiose decomposes to glucose:

r3 =
K3η(T, pH)CG

ECF
CC

I3

(
1+ CXo

IXo3
+ CX

IX3
+ CG

IG3
+ CEth

IEth3

)
+CC

(C.69)

Xylan hydrolysis follows a similar path. Xylan form a xylooligomers pool:

r4 =
K4η(T, pH)CE

EXB
CXS

1+ CC
IC4

+ CXo
IXo4

+ CX
IX4

+ CG
IG4

+ CEth
IEth4

(C.70)

Xylan could also be decomposed straight to xylose in a smaller amount:

r5 =
K5η(T, pH)

(
CE

EXB
+CX

EXB

)
CXS

1+ CC
IC5

+ CXo
IXo5

+ CX
IX5

+ CG
IG5

+ CEth
IEth5

(C.71)

Xylooligomers are further decomposed to xylose:

r6 =
K6η(T, pH)CX

EXF
CXo

I6

(
1+ CC

IC6
+ CX

IX6
+ CG

IG6
+ CEth

IEth6

)
+CXo

(C.72)
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Acetic acid production happens due to acetyls being released along with xylan

hydrolysis:

r7 = βAc(r4 + r5) (C.73)

Enzymes deactivate in time due to thermal inactivation and exposure to ethanol

[61]:

r8 =−K8C2
E (C.74)

• pH is modeled based on the charge balance equation:

[H+]− [OH−]− [Ac−]+ [Na+] = 0 (C.75)

The hydrogen ion concentration is found as the solution to the charge balance

equation. The other ions are expressed using the states and dissociation

constants. pH is then defined as:

pH =− log10[H
+] (C.76)

• The enzymatic activity is a function of temperature, pH and severity factor as

illustrated in Figure C.9:

η(T, pH,r) = ηT (T )ηp(pH)ηr(r) (C.77)

The temperature and pH dependency are determined based on linear inter-

polation of experimental tabular data, and have the shape of a bell with a

single optimal peak [57, 58]. The severity [50, 97] dependency illustrate the

biomatrix opening, and models how hard the enzymes can access the cellulosic

and hemicellulosic fibers due to the physical structure of the biomass. The

severity factor is a function of retention time and temperature [97]. Insufficient

pretreatment can block enzymes accessibility to fibers.



170 Paper C. Model-based Plantwide Optimization

2 4 6 8

0

0.5

1

pH [-]

A
ct

iv
it

y
Pe

rf
or

m
an

ce
[0

-1
]

pH Dependency

Cellic CTec2
Cellic CTec3

40 50 60

T [◦C]

Temperature Dependency

2 3 4

log10(r) [-]

Severity Dependency

Figure C.9: Enzymatic activity dependency on temperature, pH, and severity factor r.

The composition vector Ck and the reaction rates array Rk are shown next:

Ck =



CCS

CXS

CLS

CAcS

CAc

CC

CG

CXo

CX

CF

CH

CB

CE

CW

CO



Rk =



−r1− r2

−r4− r5

0
−r7

r1− r3

r2 + r3

r4− r6

r5 + r6

r7

0
0
0
−r8

0
r8



(C.78)

Conservation of mass is ensured by the following conditions:

∑Rk = 0g/(kgs) ∑Ck = 1000gkg−1 (C.79)
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Abstract:

Biomass steam pretreatment is a key process in converting agricultural wastes to

bioethanol. The pretreatment occurs in a large pressurized tank called a thermal

reactor. Two key parameters influence the successfulness of the process: the reactor

temperature, and the retention time. A particle pump pressurizes untreated biomass

from atmospheric to reactor pressure with recycled steam from the reactor. This

paper formulates a steam mathematical model both for the thermal reactor and the

particle pump, which is then used to design an L1 adaptive output feedback controller

for the reactor temperature. As steam is recycled from the reactor to pressurize the

particle pump, pressure drops and the reactor temperature is disturbed. The main

control challenge is to reject these disturbances and keep a steady temperature. The

nonlinear process model embeds mass and energy balances, valve characteristics,

and enthalpy-pressure and pressure-temperature dependencies. Nonlinear feed-

forward terms are added in the control strategy. The process model, the control

strategy, the application of the L1 adaptive controller and its tuning method based

on minimizing a cost function represent novelties of this paper.
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D.1 Introduction

Biofuel receives more interest lately due to the increase in oil price worldwide,

and due to the green commitments that governments have taken for reducing

emissions of greenhouse gases, e.g. the Kyoto protocol [19]. In this context, many

private companies and governments invest in large scale biofuel production plants

[3].

The conversion of agricultural wastes to ethanol requires several steps. A thermal

reactor pretreats the biomass by removing the wooden part of the plant, i.e. lignin,

and creates a mixture rich in cellulose fibers. Enzymes breakdown the fibers in

a liquefaction process and large tanks store the resulting slurry for fermentation.

Distillation columns recover ethanol, which is used in preparation of fuel blends. Two

more by-products are obtained: lignin, which is recovered from the pretreatment

process as bio-pallets and co-combusted in a power plant; and C5 molasses, which is

a syrup rich in nutrients and sold to farmers for feeding their animals. The entire

biofuel production cycle is thoroughly described in [3, 4].

The biomass pretreatment process is the key step in biofuel production. There

are various methods of pretreatment, most of them involving steam, strong acids or

weak acids [121]. The effects of different pretreatment methods were investigated

in [44, 122]. A combination of steam and weak acids gives the best results. Also, to

reduce steam operating costs, refineries are integrated with a power plant following

the IBUS principle [4].

The steam pretreatment process occurs in a pressurized continuous thermal

reactor, which is preceded by a pressurization unit also known as a particle pump

[71]. Depending on the load, the particle pump releases an amount of biomass to

the thermal reactor with a certain frequency. The degree of pretreatment determines

the chemical composition of the outstream. Steam pretreatment started to be

investigated in [97] and an empirical pretreatment model for ethanol production

was formulated in [50]. Two key parameters of the process, i.e. retention time and

reactor temperature, are vital to an effective process.

Various disturbances have been identified for a large thermal reactor in [71],

among which the most important one is the particle pump operation cycle, which

is causing oscillations in the steam layer temperature. These oscillations further

disturb the temperature of the biomass layer, causing an irregular pretreatment

process. Temperature matters because a deviation of 10 ◦C can cause a drop of

10% in cellulose recovery [50]. A poor pretreatment can also lead to formation

of inhibitors that affect the downstream processes of enzymatic hydrolysis and

fermentation, or it could disturb the pH level of the outstream by releasing more
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or less acetic acid from the biomass. It is well known that enzymes are sensitive to

pH following a bell-shaped curve [123]. Therefore, the main control challenge in

this investigation is to reject any disturbances that affect the reactor temperature

in order to ensure a uniform temperature environment in the steam and biomass

layers.

To achieve this objective, an adaptive control strategy for the pretreatment

temperature is proposed in this article. First, a nonlinear model of the steam layer

is formulated from mass and energy balances, enthalpy-pressure and enthalpy-

temperature dependencies, and nonlinear valve characteristics. Disturbance sources

are also introduced, i.e. condensation of steam and uncertainties in the measurement

of recycled steam. The biomass load in the reactor is also a factor and the controller

will be tuned for a specific load and tested in another operational point. A disturbance

can take the system to multiple operational points and adaptation should improve

the control performances. Therefore, an adaptive control strategy is developed

based on the L1 adaptive output feedback controller. L1 adaptive control represents

the latest novelty in control theory [10]. Also, a new tuning method of the L1

controller is proposed in this paper based on minimizing the integral absolute error

(IAE) performance function. The modelling work, the application of the L1 adaptive

controller on a biomass pretreatment process and the tuning method of the controller

have not been reported earlier in the literature.

D.2 Process Description

The process has been described in [71] and is briefly reiterated in this section.

A process diagram is illustrated in Figure D.1. The particle pump receives small

amounts of soaked biomass and pressurizes them till the reactor pressure. Afterward,

the particle pump releases the biomass into the thermal reactor and the cycle

repeats. In the thermal reactor, the biomass is pushed horizontally by a snail. The

particle pump operates at various frequencies depending on the desired load of the

thermal reactor. A fast operation increases the load in the reactor assuming the snail

speed constant. When the load increases the available volume for the steam layer

diminishes. A reduced air volume can be pressurized faster by steam, so the time

constants of the system change according to the load.

It is assumed that the particle pump is pressurized only with recycled steam from

the reactor while the thermal reactor is pressurized only with fresh steam, which

enters the tank through the bottom. It is preferred to use recycled steam when

pressurizing the particle pump because it would create a pressure disturbance that

causes a burst of steam from the bottom, which would facilitate the breakdown of
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Figure D.1: Process diagram with instrumentation. Green arrows follow the biomass path

while red arrows indicate steam flow. There are 3 steam valves, i.e. QFS or fresh steam

valve, QRS or recycled steam valve and QE or evacuation valve. PPP, PT R and PFS measure

the pressure in the particle pump, thermal reactor and fresh steam pipe, respectively. TT R

indicates the reactor temperature.

soaked biomass leading to a more uniform pretreatment process.

The pressure in the particle pump and the pressure in the reactor are measured

as PPP and PT R. Another pressure sensor is positioned in the fresh steam pipe and

the measurement is denoted as PFS. The fresh steam arrives from a flash tank and

is assumed to be saturated. The temperature in the thermal reactor is of interest

and directly measured as TT R. The recycle steam flow is also measured as QRS and

is necessary to construct a feed-forward action. The steam layers from the particle

pump and thermal reactor are assumed to be uniform. There are 3 steam valves that

can be manipulated and their strokes are denoted as SE
PP, SFS

T R and SRS.

D.3 Mathematical Model
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Table D.1: Process model nomenclature.

States

mS
PP Steam mass in particle pump (PP) kg

hS
PP Specific steam enthalpy in PP kJkg−1

mS
T R Steam mass in thermal reactor (TR) kg

hS
T R Specific steam enthalpy in TR kJkg−1

mB
PP Mass of biomass in PP kg

mB
T R Mass of biomass in TR kg

Inputs

SFS
T R Stroke of fresh steam valve in TR %

SRS Stroke of recycle steam valve %

SE
PP Stroke of evacuation valve in PP %

QBi
PP Inflow of biomass in PP kgs−1

QBi
T R Inflow of biomass in TR kgs−1

QBo
T R Outflow of biomass from TR kgs−1

hS
FS Fresh steam enthalpy kJkg−1

PFS Fresh steam pressure bar

Outputs

PPP Pressure in PP bar

PT R Pressure in TR bar

PA Atmospheric pressure bar

TPP Temperature in PP ◦C

TT R Temperature in TR ◦C

Auxiliary Variables

QRS Mass flow of recycled steam kgs−1

QE
PP Mass outflow of steam from PP kgs−1

QFS
T R Mass inflow of fresh steam in TR kgs−1

ρS
PP Density of steam in PP kgm−3

ρS
T R Density of steam in TR kgm−3

V S
PP Steam volume in PP m3

V S
T R Steam volume in TR m3

Constant Parameters

VPP Total volume of PP m3
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VT R Total volume of TR m3

Disturbances

QC
T R Condensing steam in TR kgs−1

QM
RS Recycle steam measurement noise kgs−1

D.3.1 Process Model

The process model consists of mass and energy balances of the steam layer for

both the particle pump and the thermal reactor:

d(mS
PP)

dt
= QRS−QE

PP (D.1a)

d(mS
PPhS

PP)

dt
= QRShS

T R−QE
PPhS

PP (D.1b)

d(mS
T R)

dt
= QFS

T R−QRS−QC
T R (D.1c)

d(mS
T RhS

T R)

dt
= QFS

T RhS
FS− (QRS +QC

T R)h
S
T R (D.1d)

Equation (D.1a) is the particle pump steam mass balance and Equation (D.1b) is

the energy balance of the steam layer from the particle pump. All notations are

explained in Table D.1. Similarly, Equation (D.1c) shows the mass balance from the

thermal reactor and Equation (D.1d) contains the energy balance of the steam layer

in the reactor.

The mass of soaked biomass in both the particle pump and thermal reactor are

also tracked as it affects the available volume for steam expansion:

d(mB
PP)

dt
= QBi

PP−QBi
T R (D.2a)

d(mB
T R)

dt
= QBi

T R−QBo
T R (D.2b)

D.3.2 Valve Modelling

The valve characteristics can be retrieved from the valve manufacturer and shows

KV as a function of the valve opening or stroke S. KV represents the flow of steam

in m3 s−1 when the pressure drop across the valve is 1 bar. A typical characteristic is

displayed in Figure D.2 and can be accurately approximated by a cubic polynomial:

KV (S) = k3S3 + k2S2 + k1S+ k0 (D.3)

where ki are the polynomial coefficients and S is the valve stroke.
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Figure D.2: Steam valve characteristics. Solid line shows the polynomial fit while bullet

points indicate measurements taken from the valve datasheet.

The fresh steam is, in fact, saturated steam because it is supplied by a flash tank.

The steam flow is approximated by:

QSS = f (S, pi, po) =

 KV (S) ·22.4 ·
√
(pi− po)po , po >

pi
2

KV (S) ·11.2 · pi , po <
pi
2

(D.4)

where QSS is the flow of saturated steam, KV (S) is the valve characteristic given in

Equation (D.3), pi is the valve inlet pressure, and po is the outlet pressure expressed

in bar. The recycled steam extracted from the thermal reactor is assumed to be near

saturation with a flow approximated by Equation (D.4).

D.3.3 State Space Model

State vector x contains:

x =
[

mS
PP hS

PP mS
T R hS

T R mB
PP mB

T R

]T
(D.5)

Vector u gathers all manipulated variables, i.e. the valve strokes:

u =
[
SRS SE

PP SFS
T R
]T

(D.6)

The biomass flows are not considered manipulated variables for steam regulation

and are placed in vector ũ:

ũ =
[
QBi

PP QBo
PP QBo

T R

]T
(D.7)

Disturbances enumerates condensation effects and measurement errors of the

recycle steam. Condensation occurs inside the reactor either due to heat losses to



178 Paper D. Modeling and L1 Adaptive Control of Pretreatment Temperature

the environment or because of temperature differences between the biomass and

the steam layer. Measurement errors in the recycle steam flow may appear due to its

fast and turbulent dynamics. Vector d comprises all disturbances:

d =
[
QC

T R QM
RS
]T

(D.8)

The steam volume in each container is found by subtracting the biomass volume

from the total volume:

VS =V −VB (D.9)

where VS is the steam volume, V is the total volume and VB is the biomass volume.

Steam volumes are gathered in vector v:

v =
[
V S

PP V S
T R
]T

(D.10)

Steam densities from both containers are placed into the following vector:

ρ =
[
ρS

PP ρS
T R
]T

(D.11)

Steam density is found by dividing the mass of steam by volume. For example, the

steam density in the thermal reactor can be computed in the following way:

ρ2 =
x3

v2
(D.12)

where index 2 and 3 selects the corresponding element from vector ρ, x or v.

All pressure variables are gathered in vector p:

p = [PFS PPP PT R PA]
T (D.13)

where PA is the outlet pressure of the evacuation valve, which is, in fact, atmospheric

pressure.

In case of saturated steam, one steam variable is sufficient to determine any of the

other variables. In case of wet or superheated steam, 2 steam variables are necessary

to determine its state. Steam properties are inferred from the IAPWS IF97 standard.

The fresh steam is saturated and its enthalpy is found from its pressure, which is

directly measured. The reactor pressure is determined from enthalpy and density

while the temperature is found from enthalpy and pressure. Figure D.3 displays

these steam properties. Pressure has a rather linear dependence with respect to

density and enthalpy (left plot). Nonlinearities are spotted in temperature variations

with respect to pressure in the wet steam region and in the saturation zone (right

plot).
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Figure D.3: Steam functions - IAPWS IF97 standard. Left plot shows steam pressure as a

function of density and enthalpy while right plot displays steam temperature as a function of

enthalpy and pressure.

Considering the notations introduced above, the state derivatives from (D.1a),

(D.1c), (D.1b) and (D.1d) become:

ẋ1 = f (u1, p3, p2)− f (u2, p2, p4) (D.14a)

ẋ2 =
1
x1

[ f (u1, p3, p2)(x4− x2)] (D.14b)

ẋ3 = f (u3, p1, p3)− f (u1, p3, p2)−d1 (D.14c)

ẋ4 =
1
x3

[ f (u3, p1, p3){g(p1)− x4}] (D.14d)

ẋ5 = ũ1− ũ2 (D.14e)

ẋ6 = ũ2− ũ3 (D.14f)

where f is the function describing the flow through a steam valve shown in Equation

(D.4) and g is the pressure-enthalpy function for saturated steam as found in the

IAPWS IF97 standard. States x1−4 are coupled with states x5,6 through the following

equations:

p2 = fP(ρ1,x2) (D.15a)

p3 = fP(ρ2,x4) (D.15b)

ρ1 =
x1

v1
(D.15c)

ρ2 =
x3

v2
(D.15d)

v1 =VPP− x5ρB (D.15e)

v2 =VT R− x6ρB (D.15f)
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where ρB is the soaked biomass density set to 1000 kgm−3.

The model outputs are gathered in vector y and comprise the pressure and

temperature in both process units:

y = [pPP pT R TPP TT R]
T (D.16)

where TPP and TT R are calculated as:

y3 = fT (x2, p2) (D.17a)

y4 = fT (x4, p3) (D.17b)

Overall, a nonlinear model with 6 states, 3 inputs and 4 outputs is obtained.

D.3.4 Open Loop Simulation

An open loop simulation is prepared in order to observe the system response.

The simulation scenario is synthesized in Table D.2.

Table D.2: Open loop simulation scenario.

Time [s] QFS [%] QRS [%] QE
PP [%]

0 0 0 0

10 100 0 0

30 0 0 0

50 0 100 0

70 0 0 0

90 0 0 100

110 0 0 0

The reactor fresh steam valve is fully opened at time t = 10s for 20 s. The recycle

steam valve is fully opened at time t = 50s for another 20 s. The particle pump

evacuation valve is opened at time t = 90s for the last 20 s of the simulation. The

results are plotted in Figure D.4. Pressurization of the thermal reactor takes a much

longer time than the particle pump because it has a larger volume. The reactor

pressure resembles a second order system response while the temperature could

be approximated by a first order response. The particle pump pressurizes in only

several seconds and the pressure in both the reactor and the particle pump equalize.

There is a small drop in pressure in the reactor because steam is extracted in order

to pressurize the particle pump. These disturbances need to be rejected and ensure

a steady temperature in the process.
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Figure D.4: Open loop simulation. The top plots show the pressure and temperature in the

particle pump while the bottom plots display the pressure and temperature in the thermal

reactor.

D.4 Control Design

A control strategy is built based on the novel L1 adaptive controller. A nonlinear

feed-forward term is also added to the control law based on the measurement or

estimation of the recycle steam flow.

Pressurization of the particle pump and its evacuation are achieved by fully

opening the recycle and the evacuation valve, respectively. No feedback controllers

are required for these actions. The sequence of openings and closings of these valves

is determined based on a reference signal RP
PP resembling a square wave with a

period τPP. When the reference signal is 1, the recycle steam valve fully opens and

the evacuation valve is closed. When the reference signal is 0, the recycle valve

closes and the evacuation valve opens.

D.4.1 Feed-forward Calculation

The flow of recycled steam can be estimated using the valve model formulated in

section D.3.2 or directly measured with a flow sensor. It is desired to find the stroke

of the thermal reactor fresh steam valve that would compensate the recycled steam.
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The stroke of the thermal reactor fresh steam valve is different than the stroke of

the recycle valve because the inlet and outlet pressures are different. From Equation

(D.4) the valve characteristic KV can be determined:

KV (t) =


QRS(t)

22.4·
√

(pi−po)po
, po >

pi
2

QRS(t)
11.2·pi

, po <
pi
2

(D.18)

The valve stroke S can be expressed as a function of the valve characteristic KV

by conducting the inverse of function (D.3). However, for simplification, a linear

characteristic is used for this computation:

SFF(KV (t)) =
100KV (t)

0.05
(D.19)

where 0.05 is the steam volumetric flow (in m3 s−1) when the valve is 100% open

with 1 bar pressure drop.

The stroke SFF is fed-forward through a trust gain KFF . The feed-forward control

signal becomes:

uFF(t) = KFF SFF(t) (D.20)

In this application, the trust gain KFF is set to 1 but could be reduced for a more

conservative feed-forward action.

D.4.2 L1 Adaptive Control

Figure D.5 shows the system in closed loop with an L1 adaptive output feedback

controller. The pressurization of the particle pump is shown in the upper part of

the figure. There is no feedback action because the pressure in the particle pump

should equalize the pressure in the reactor and this objective can be achieved by

fully opening the recycle steam valve. The L1 output feedback control strategy is

designed for temperature regulation and only one measurement is considered, i.e.

TT R. The manipulated variable is the fresh steam valve stroke, i.e. SFS
T R. Therefore,

the control object becomes a SISO model.

The L1 output feedback controller consists of an output predictor, an adaptation

law and a control filter C(s) [10, 124]. The classical model reference adaptive

controller implies a compromise between adaptation and robustness. Moreover,

there are no trivial ways of finding a suitable adaptation gain. The L1 adaptive

controller separates robustness from fast adaptation by introducing a filter C(s) in

the control channel. The analysis of the new controller i.e. the computation of the

uniform bounds on outputs and control signals, is performed using the L1 norm,

hence the name of L1 adaptive controller.
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Figure D.5: L1 adaptive output feedback control.

The open loop process can be expressed as follows [10]:

y4(s) = A(s){u3(s)+ d̃(s)} (D.21)

where y4(s) is the reactor temperature, A(s) is an unknown transfer function, u3(s) is

the fresh steam valve opening and d̃(s) lumps all the uncertainties and disturbances

that affect A(s). Transfer function A(s) can be approximated as the linearized model

around a nominal temperature, e.g. 195 ◦C, resulting the following general structure:

A(s) =
K(s+ z1)

(s+ p1)(s+ p2)
(D.22)

where K is the process gain, z1 is a stable zero, and p1 and p2 are real stable poles.

Figure D.6 shows the placement of poles p1 and p2, and zero z1 as functions of load

and fresh steam valve stroke. The plot was generated for 25 %, 50 % and 75 % load

and for 0 %, 25 %, 50 %, 75 % and 100 % valve strokes. The plot tells that, at low

load the zero is canceled by a pole and the resulting system resembles a first order

response but as the load and the valve stroke increase, not only the system dynamics

become faster as its poles get more negative but also the zero detaches from the

pole.

The output predictor contains the desired closed loop dynamics and is chosen as

a first order system due to the nature of transfer function A(s):

˙̂y4(t) =−mŷ4(t)+m{u3(t)+ σ̂(t)} (D.23)

where ŷ4(t) is the reactor temperature estimation, m is the pole of the closed loop

system, u3(t) is the fresh steam valve stroke and σ̂(t) is the estimation of all uncer-
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Figure D.6: Poles and zero migration as a function of load and recycle steam valve stroke.

tainties and unmodeled dynamics. In frequency domain, the model reference system

is denoted as:

M(s) =
m

s+m
(D.24)

System (D.21) can be rewritten in terms of the model reference system [10]:

y4(s) = M(s){u3(s)+σ(s)} (D.25)

where σ(s) is identified as:

σ(s) =
{A(s)−M(s)}u3(s)+A(s)d̃(s)

M(s)
(D.26)

The idea is to cancel uncertainties σ(s) with the help of the control signal u3(s).

Therefore, the control signal is defined as [10]:

u3(s) =C(s){r(s)− σ̂(s)} (D.27)

where C(s) is chosen in this application as a first order filter:

C(s) =
c

s+ c
(D.28)

If Equation (D.27) is substituted in (D.25) then:

y4(s) = M(s)C(s)r(s)+M(s){σ(s)−C(s)σ̂(s)} (D.29)

If σ(s) is perfectly estimated then σ̂(s) = σ(s) and the disturbances will be rejected

only in the bandwidth of C(s).
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In [10] the adaptation law is implemented as a projection algorithm. In this

application, because there is only one parameter to estimate, the adaptation law is

simplified to an integrator:
˙̂σ(t) =−Γỹ4(t) (D.30)

where ỹ4(t) = ŷ4(t)−y4(t) is the estimation error of the output and Γ is the integrator

gain.

The resulting L1 adaptive output feedback controller has 3 tuning parameters, i.e.

the desired closed loop dynamics m, the adaptation gain Γ and the eigenfrequency

of the control filter c.

The reference model and the control signal filter can be designed systematically

[125]. Assuming perfect knowledge of disturbances, an ideal system y4(s) can be

built and used for tuning [125]:

y4(s) = H(s)C(s)r(s)+H(s){1−C(s)}d̃(s) (D.31)

where H(s)C(s) is the transfer function from r(s) to y4(s) and H(s) is defined as:

H(s) =
A(s)M(s)

C(s)A(s)+{1−C(s)}M(s)
(D.32)

Parameters m and c must be chosen such that H(s) is stable and the following L1

norm holds [10]:

||G(s)||L1L < 1 (D.33)

where G(s) = H(s){1−C(s)} is the transfer function from d̃(s) to y4(s) and L is the

Lipschitz constant required to guarantee BIBO stability (Lemma 4.1.1 in [10]).

In this application, parameters m, c and Γ are found by minimizing the integral

absolute error (IAE) function:

min
m,c,Γ

∞∫
0

|r(t)− y4(t)| (D.34)

where r(t)− y4(t) is the tracking error and y4(t) is the output of the nonlinear model.

A numerical search procedure is instantiated to obtain parameters m, c and

Γ. The simulation scenario for minimizing the objective function contains the

normal operation cycle, i.e. the particle pump extracting steam from the reactor,

which causes a disturbance in the reactor temperature. Therefore, the controller

is optimized for disturbance rejection. The objective function (D.34) cannot be

minimized analytically due to the complexity of the nonlinear model. The numerical

search procedure performs various simulations in closed loop, for each simulation

evaluating the IAE function from (D.34). The search algorithm is initialized by

following the tuning procedure shown in [12]. A temperature reference of 195 ◦C
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and 0 % biomass load are held in all simulations. The numerical search procedure

found the following parameters:

m = 0.07 c = 20 Γ = 3135 (D.35)

With these optimal parameters, transfer function H(s) becomes:

H(s) = 0.018
s+20

(s+5.3)(s+0.07)
(D.36)

which has stable poles, as required by the design specifications. Transfer function

G(s) is:

G(s) = 0.018
s

(s+0.07)(s+5.3)
(D.37)

The L1 norm of G(s) is computed and the Lipschitz constant is found:

L = 310.64 (D.38)

which ensures BIBO stability of the closed loop system according to Lemma 4.1.1

from [10].

The tracking error between a real and an ideal system, which assumes perfect

knowledge of the disturbances, is uniformly bounded with respect to a constant

proportional to 1/
√

Γ [10]. The larger Γ is, the better is the performance. Therefore,

a high adaptation gain Γ is desired. At the same time, the stability and dynamics of

σ̂ depend on Γ. The transfer function from r(s) and d(s) to σ̂(s) is [125]:

σ̂ = F(s)[C(s){A(s)−M(s)}r(s)+A(s)d(s)] (D.39)

where F(s) is identified as:

F(s) =
1

s
Γ +C(s)A(s)+{1−C(s)}M(s)

(D.40)

Γ should be chosen such that F(s) is stable. Considering the optimal parameters

from (D.35), the following poles of F(s) are found:[
−5.04±9.26i −10 −0.07 −0.011

]
(D.41)

which are all stable. Therefore, the adaptation algorithm is stable.

D.5 Benchmark Tests

The L1 adaptive controller is tested in three scenarios that are described below.

The feed-forward term is always enabled and the reactor biomass load is set to 25 %.
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The first scenario corresponds to the normal operation cycle, which assumes

pressurization of the particle pump with recycled steam every 180s. The controller

has to keep the reactor temperature at an optimal level, e.g. 195 ◦C. Condensation

of steam cannot be directly measured and is treated as unmeasured disturbance.

Steam condensation is modeled as normally distributed white noise with mean mC

and standard deviation σC:

QC
T R ∈ N(mC,σC) (D.42)

where mC = 2kgs−1 and σC = 0.3kgs−1.

The second scenario treats measurement noise, which affects the computation of

the feed-forward term. The measurement noise specifications are:

QM
RS ∈ N(mM,σM) (D.43)

where mM = 0kgs−1 and σM = 0.5kgs−1.

The temperature reference signal changes during production mode typically

when the refinery switches to another type of biomass. Therefore, the temperature

controller is also tested with respect to reference step changes in the last simulation

scenario.

D.6 Results

The scenario comprising a normal operation with condensation disturbances

can be observed in Figure D.7. The pressurization of the particle pump is shown

in the top left subplot. Two cycles were captured in the plot. The thermal reactor

pressure and temperature are displayed in the bottom subplots. Naturally, when the

particle pump starts to inhale steam from the thermal reactor, the temperature inside

the reactor drops as a consequence of the pressure drop. However, the controller

with the feed-forward term is able to reject the disturbance effectively leading to an

unnoticeable change in the reactor temperature and pressure as illustrated in the

bottom subplots of the figure. The control effort is shown in the top right subplot

and is translated into mass flow of fresh steam. It has a non-zero steady-state value

due to a non-zero mean value of the condensation disturbance.

In the second simulation scenario, the feed-forward term is considered partially

non-reliable and a large noise is injected in the measurement of the recycle steam

flow. The results can be observed in Figure D.8. The L1 controller tolerates feed-

forward noise effectively. The reactor pressure is not as white as in the first scenario

but it translates to negligible variations in the reactor temperature.

The reference tracking case is treated in Figure D.9. The feed-forward term has

no effect since the particle pump is stopped when changing the reactor temperature.
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Figure D.7: Normal operation cycle with condensation noise.
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Figure D.8: Normal operation cycle with measurement noise.
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Figure D.9: Reference tracking with condensation noise.

Cooling the reactor is performed by interrupting the supply of fresh steam. The

L1 adaptive controller has good performances changing the temperature in less

than 1 min, which is satisfactory since temperature set point changes do not occur

frequently in production mode.

D.7 Conclusions

For the first time, to our knowledge, a steam layer model has been formulated

for a particle pump connected to a thermal reactor in biomass pretreatment. The

process model embeds nonlinear valve characteristics and steam states dependencies,

e.g. pressure, temperature, enthalpy and density.

The developed control strategy based on the novel L1 adaptive output feedback

controller proved to have very good performances in all simulation scenarios. Mea-

surement noise that affects the feed-forward term and condensation disturbances

were handled satisfactory. The application of such a controller to regulate the tem-

perature in a biomass pretreatment reactor has not been reported earlier in the

literature.

The last achievement of the paper is the tuning method of the L1 adaptive

controller. It proved successfully to formulate the tuning of the controller as an
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optimization problem. The integral absolute error (IAE) has been used as an objective

function and the determined controller parameters proved to give satisfactory results

in simulation.

The temperature controller developed in this paper is part of an inner control

loop layer of a biorefinery. The temperature setpoint will be given by an outer

control loop layer that is using the pretreated biomass composition as feedback. The

objective is to obtain a steady pretreatment process and any variations in biomass

composition or type can be rejected by changing the temperature in the reactor.
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Abstract:

The enzymatic process is a key step in second generation bioethanol production.

Pretreated biomass fibers are liquefied with the help of enzymes to facilitate fer-

mentation. Enzymes are very sensitive to pH and temperature and the main control

challenge in the nonlinear process is to ensure minimum deviations from the optimal

pH level. This article develops a mathematical model for the pH, which has not been

reported earlier for this particular process. The new model embeds flow dynamics

and pH calculations and serves both for simulation and control design. Two control

strategies are then formulated for pH level regulation: one is a classical PI controller;

the other an L1 adaptive output feedback controller. Model-based feed-forward

terms are added to the controllers to enhance their performances. A new tuning

method of the L1 adaptive controller is also proposed. Further, a new performance

function is formulated and tailored to this type of processes and is used to monitor

the performances of the process in closed loop. The L1 design is found to outperform

the PI controller in all tests.

*Principal corresponding author. Tel.: +45 45253565; E-mail: mb@elektro.dtu.dk
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E.1 Introduction

Bioethanol is thought to become the primary renewable liquid fuel [1, 126]

and extensive endeavors have been conducted to make the production process

feasible on a large scale [3]. In order to reduce operating costs, bio-refineries are

integrated with power plants following the IBUS principle [4, 55]. The conversion

of lignocellulosic biomass to ethanol is performed only with steam and enzymes,

therefore categorizing the technology as a green process.

In a second generation bioethanol production process, the enzymatic liquefaction

step prepares the pretreated biomass for fermentation [4, 55]. In the pretreatment

phase, the biomass is soaked with acetic acid and then pretreated with steam. Studies

show that a steam/acetic acid combination improves the pretreatment process [121]

and it will be considered that the stream of fibers is mildly acidic, thus lowering the

pH level. Acetic acid is also produced in reduced quantities during the pretreatment

stage.

The enzyme activity is influenced both by pH and temperature. Enzyme activity

versus pH follows a certain bell-shaped curve [123]. Optimal pH activity differs for

each enzyme type. For example, in the case of Accellerase TRIO, a pH level of 4.8
should be set 2. Another type of enzymes, i.e. Cellic CTec3 produced by Novozymes,

requires a pH of 5.0 3. A small deviation from the pH optimal value, e.g. 0.2, can

cause a significant drop in the process efficiency, e.g. 20 %. Therefore, the main

control challenge in such a process is to minimize deviations from the optimal pH

level.

Controlling the pH has been the topic of many research activities and there are

many generic solutions in the literature. A comprehensive review of the existing

generic control strategies can be found in [127]. Control strategies vary from pure

feed-forward control, where the inflow of hydroxide is manually adjusted by an

operator, to more sophisticated schemes like adaptive fuzzy control [128], nonlinear

adaptive control [129, 130] or model predictive control [131, 132]. The most

common application of pH control is the neutralization process but, in an enzymatic

liquefaction process, it is desired to keep the pH level somewhere in the range 4-6

depending on the enzyme type.

To our knowledge, pH modelling for an enzymatic liquefaction process has not

been conducted earlier. Therefore, a process model is first formulated. Two control

schemes are then designed, a PI controller and an L1 adaptive output feedback

controller. Classical PI control is wide spread in industry and is used as a reference

2Accelerase R© TRIO
TM

datasheet from Genencor.com
3Cellic CTec3 datasheet from Novozymes.com
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for control performance. The L1 adaptive controller represents a novelty in control

theory and has never been applied to pH control of liquefaction processes. Major

disturbances will be identified and model based feed-forward terms will be added

to the controllers in order to improve their action. Also, a new tuning method of

the L1 controller is proposed as an enhancement of the method developed in [125].

Finally, the controllers are tested on large scale benchmark scenarios that cover

both reference tracking and disturbance rejection cases. A performance function is

formulated based on the enzymatic activity curve and the controllers are compared

using the enzymatic efficiency associated with their action.

E.2 Process Description

A generic enzymatic liquefaction process is illustrated in Figure E.1.

The pretreated biomass was decomposed into fibers in the pretreatment stage

and arrives in the liquefaction reactor having a high dry matter content T S typically

between 25−30%. A high dry matter is required in order to make the technology

cost-effective but it cannot increase indefinitely due to mixing technical problems

that may appear [55, 133]. A sample of fibers is extracted automatically and an NIR

analysis is performed in order to determine its chemical composition, including the

concentration of acetic acid denoted as [AcH]0 or CA0 , which is of interest in this

case. The mass flow of fibers is also directly measured and denoted as FFF .

pH control is achieved by pumping a strong base i.e. sodium hydroxide, NaOH,

into the fiber fraction before entering the liquefaction tank. The inflow of base is

measured as FB and its concentration is 10wt%.
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Enzymes are pumped into the reactor proportional to cellulose quantity and

the inflow of enzymes is measured as FE . A quantity of water FW is also poured

into the tank. The weight of the tank, the outflow and the pH value are directly

measured as MFM, FFM, and pH, respectively. Nominal values of the inflows, acetic

acid concentration, tank load and total solids are presented in Table E.1. The data

refer to a bioethanol plant that was designed to handle 1000kgh−1 of fibers. The

enzymatic liquefaction tank has a nominal load capacity of 5000kg of fiber mash and

the concentration of acetic acid varies around 5gkg−1 depending on the pretreatment

process parameters.

Table E.1: Nominal operation of a hydrolysis process.

FFF 1000 kgh−1 [AcH]0 5 gkg−1

FE 20 kgh−1 MFM 5000 kg

FW 80 kgh−1 T S 25 %

E.3 Control Challenge

Several theoretical enzymatic activity bell-shaped curves are shown in Figure

E.2. The optimal pH level corresponds to an enzymatic activity of 100%. In case of

disturbances that occur in the pretreatment process, the acetic acid concentration

in the inflow changes and affects the pH level. A small deviation from the optimal

pH level can cause a significant drop in the enzymatic activity. This means that the

quality of the outflow drops. An increase in enzyme quantity is necessary to meet

the same quality constraints on the outflow but enzymes are very expensive. It is a

lot cheaper to properly control the pH level with a base.

Another control challenge arises from the large scale nature of the process. The

pH sensor is positioned on the outflow of the tank because it is easier to measure

the pH level on a liquefied substance. The flow dynamics of the reactor are slow and

a large quantity of fibers can be compromised due to a small deviation in the pH

level. Therefore, a model and feed-forward terms for the controllers are necessary

to obtain a high performance control strategy.

E.4 Process Model

The pH calculation is derived using the classical physico-chemical approach,

which considers a set of weak acid/base equilibrium in liquid phase [112] and

gas-liquid CO2 stripping process [113]. It is assumed that CO2 is not produced in the

enzymatic liquefaction process but traces of bicarbonate can exist in the inflows due
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Figure E.2: Different enzymatic activity bell-shaped curves.

to upstream subprocesses or process water utilization. The process model captures

flow dynamics and considers the mixture in chemical equilibrium at any given time.

E.4.1 pH Calculation

In total, the model has 6 weak acid/base equilibrium equations and CO2 stripping.

It is also assumed that production and consumption of ions are negligible from

enzymatic reactions.

Acetic acid is a weak acid and partially dissociates into Ac− and H+ with an equi-

librium constant KA (E.1a). Sodium hydroxide is a strong base and fully dissociates

into Na+ and OH− (E.1b). Ac− and Na+ combine to form the salt sodium acetate

NaAc (E.1c). Water self-ionizes with an equilibrium constant KW (E.1d). The liquid

phase is not pure and is considered to contain CO2, which is the cause of a buffer

formation that affects the pH level. Carbon dioxide forms carbonic acid H2CO3 in

water, which dissociates with an equilibrium constant KC1 into bicarbonate HCO −
3

and H+ as in (E.1e). The bicarbonate continues to decompose forming carbonate

CO 2−
3 and H+ with an equilibrium constant KC2 like in (E.1f).

AcH ↽−−−⇀ Ac−+H+ (E.1a)

NaOH−−→ Na++OH− (E.1b)

Ac−+Na+ −−→ NaAc (E.1c)

H++OH− ↽−−−⇀ H2O (E.1d)

CO2 +H2O−−→ H2CO3 ↽−−−⇀ HCO −
3 +H+ (E.1e)

HCO −
3 ↽−−−⇀ CO 2−

3 +H+ (E.1f)
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Three variables are defined:

[AT] = [AcH]+ [Ac−] (E.2a)

[BT] = [Na+]+ [NaOH] (E.2b)

[CT] = [CO2]+ [HCO −
3 ]+ [CO 2−

3 ] (E.2c)

The presence of other acids like lactic acid or succinic acid was also recorded but

in negligible amounts and there might be other buffers in the stream. Therefore, the

concentration of all unmodeled ions will be lumped into a single variable [Z−] and

the charge balance is then formulated:

[H+]− [Z−]+ [Na+]−
−[OH−]− [Ac−]− [HCO −

3 ]−2[CO 2−
3 ] = 0

(E.3)

Each term from the charge balance can be found as a function of variables [AT],

[BT], [CT] or [H+] and equilibrium constants KA, KW , KC1 and KC2 . Therefore, [H+]

can be determined by finding the real positive zero of (E.3). Afterwards, the pH

level is computed using its definition:

pH
de f
= − log10[H

+] (E.4)

There might be an offset between the estimated and measured pH level. The

difference can be canceled by adjusting the concentration of Z– i.e. CZ0 . An online

estimation of [Z−] could be implemented in reality.

E.4.2 State Space Model

In this section, the flow dynamics and the pH calculation are embedded into a

single model that has the structure from Figure E.3. It is important to conduct all

pH calculations only on the liquid part of the mixture. All notations are gathered in

Table E.2 with their measuring units.

Ideal Mixing
Enzymatic

Reactor

FB

CB0

FFF CA0 FE CZ0

FW T S FFM

ui,uo

ua0 ,ub0

uc0 ,uz0

ypH

Figure E.3: Process flow scheme.
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Perfect and instantaneous mixing of the tank is assumed and this is represented

as an Ideal Mixing block, which combines all inflows into a single input ui without

solids. The outflow without solids is denoted as uo. The inflow concentrations ua0 ,

ub0 and uc0 include a measuring unit transformation and are expressed in molL−1.

The state variables of the dynamic model are defined as:

xz = [Z−] (E.5a)

xat = [AT] (E.5b)

xbt = [BT] (E.5c)

xct = [CT] (E.5d)

and xm, which is the mass of liquid inside the reactor.

Two more algebraic variables are also defined:

xh = [H+] (E.6a)

xco2 = [CO2] (E.6b)

The system dynamics read as:

dxm

dt
= ui−uo (E.7a)

d(xmxz)

dt
= uiuz0 −uoxz (E.7b)

d(xmxat )

dt
= uiua0 −uoxat (E.7c)

d(xmxbt )

dt
= uiub0 −uoxbt (E.7d)

d(xmxct )

dt
= uiuc0 −uoxct + rctrxm (E.7e)

where rctr is the CO2 stripping rate [113]:

rctr = kctr
(
u∗co2
− xco2

)
(E.8)

The dissolved concentration of CO2 is denoted as u∗co2
and is governed by the Henry

law [113].

The charge balance can be rewritten as a polynomial:

x5
h + p1x4

h + p2x3
h + p3x2

h + p4xh + p5 = 0 (E.9)

where coefficients pi are found by identification after expanding equation (E.3). The

nonlinearity of the process arises from the fact that coefficients pi are functions of

model states and change in time. xh is then determined as the positive real zero of

polynomial (E.9) and the output of the model is defined as:

ypH =− log10 xh (E.10)
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Table E.2: Explanation of symbols that were used in the process model.

ui Liquid part of fibre fraction inflow kgh−1

uo Liquid part of fibre mash outflow kgh−1

ua0 Inflow concentration of acetic acid molL−1

ub0 Inflow concentration of sodium hydrox-

ide

molL−1

uc0 Inflow concentration of carbon dioxide molL−1

uz0 Inflow concentration of unmodelled ions molL−1

xm Mass of liquid fibre mash kg

xat Total molar concentration of acid species molL−1

xbt Total molar concentration of base species molL−1

xct Total molar concentration of carbonic

species

molL−1

xz Molar concentration of unmodelled ions molL−1

xh Total molar concentration of H+ molL−1

xco2 Total molar concentration of CO2 molL−1

uco∗2 Molar concentration of CO2 in the atmo-

sphere

molL−1

kctr CO2 stripping process parameter h−1

KW H2O dissociation constant -

KA AcH dissociation constant -

KC1 CO2 dissociation constant -

KC2 HCO3 dissociation constant -

ρFM Fiber mash density kgL−1

MA Molar mass of AcH gmol−1

MB Molar mass of NaOH gmol−1

CA0 Inflow concentration of AcH gkg−1

CB0 Inflow concentration of NaOH gkg−1

CC0 Inflow concentration of CO2 gkg−1

CZ0 Inflow concentration of Z– molL−1

T S Total solids in inflow stream %
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The numerical values of all model parameters are listed in Table E.3.

Table E.3: Model parameters.

KW 1×10−14 MA 60.05221 gmol−1

KA 1.7378×10−5 MB 39.99715 gmol−1

KC1 4.3003×10−7 MC 44.01 gmol−1

KC2 4.7995×10−11 CA0 5 gkg−1

u∗co2
1.71×10−5 molL−1 CB0 100 gkg−1

ρFM 1.05 kgL−1 CC0 7.1673×10−4 gkg−1

CZ0 0.08molL−1

E.4.3 Titration Simulation

The model is tested by performing a classical titration simulation, i.e. feeding

into the process an inflow of hydroxide resembling a stairway shape with a stair

amplitude of 1kgh−1 starting at time 20h. The concentration of Z− is disregarded.

The results can be observed in Figure E.4.
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Figure E.4: Titration simulation for verifying the implementation of the model.

The acetic acid and the carbonic acid keep a low pH but after adding a substantial

amount of base, approximately at time t = 500h, the buffers are depleted and the

pH increases to a value greater than 7, which is an expected result.
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E.5 Control Design

The enzymatic liquefaction tank is assumed to have a mass controller, which can

be easily constructed as a feed-forward strategy combined with feedback.

A bioethanol plant may switch between enzyme types but such an action does not

happen often during production mode. Therefore, reference tracking is necessary

but emphasis will be placed on disturbance rejection. There are many sources of

disturbances that affect the pH level, e.g. pretreatment conditions, which influence

the concentration of acetic acid, the presence of other weak acids and negative ions

or the imperfect mixing effects, which might be significant since the tank has a large

volume and a homogenous environment cannot be guaranteed.

E.5.1 Feed-forward Combined With PI Control

In this section, a classical PI controller combined with a nonlinear feed-forward

signal is derived following a traditional design algorithm, i.e. linearization of the

process model around the nominal operational point from Table E.1 with pH = 5,

and derivation of the controller using the Skogestad internal model control (SIMC)

approach. The pH level is mainly disturbed by the initial concentration of AcH,

which is measured through NIR analysis. A feed-forward term can be created using

the nonlinear model to compensate for this type of disturbance. The block diagram

of the closed loop system is shown in Figure E.5.

Process Model
CB0

FFF CA0

FE CZ0

FW T S FFM

PI
+

FF

+
ypH

−
rpH

+

Figure E.5: Closed loop system with a feed-forward and a PI controller.

The PI control law is defined as:

uPI(t) = KPe(t)+KI

t∫
0

e(t) (E.11)
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where uPI(t) is the feedback contribution to the flow of hydroxide, e(t) is the pH

error signal defined as e(t) = rpH(t)− ypH(t), rpH(t) is the pH reference signal, KP is

the proportional gain and KI is the integral gain. Following SIMC rules [90], KP and

KI were set to:

KP = 22.8kg/h/pHunit (E.12a)

KI = 16.8kg/h/pHunit (E.12b)

The feed-forward term is found from the charge balance (E.3) from where [Na+]
or ub0 is isolated:

[Na+] =−[H+]+ [OH−]+ [Ac−]+ [HCO −
3 ]+2[CO 2−

3 ]+ [Z−] (E.13)

The required concentration of [H+] is found from the reference level:

[H+] = 10−rpH (E.14)

and all the other concentrations are derived with the help of [H+] and using the

steady-state values for [CT] and [AT]. The contribution of the feed-forward term to

the total inflow of hydroxide can then be computed. The total flow of base becomes:

FOHi = uFF +uPI (E.15)

where uFF is the feed-forward contribution and uPI is computed by the controller

using feedback action.

E.5.2 L1 Adaptive Control

The L1 adaptive controller is a modified version of the model reference adaptive

controller with a state predictor. In the MRAC architecture, the key to a high

performance control strategy is the adaptation gain, which is subject to a compromise

and there are no systematic ways of finding an optimal value. A high adaptation

gain introduces high-frequency noise in the control channel and the stability margins

are affected. In order to separate robustness from adaptation performance, a filter

C(s) is introduced in the control channel [10]. The analysis of the new controller i.e.

the computation of the uniform bounds on outputs and control signals, is performed

using the L1 norm, hence the name of L1 adaptive controller.

The process in open loop can be expressed as follows [10]:

y(s) = A(s){u(s)+d(s)} (E.16)

where y(s) is the pH level, A(s) is an unknown transfer function, u(s) is the system

input and d(s) lumps all the uncertainties and disturbances that affect A(s). Transfer
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function A(s) can be approximated as the linearized model around the nominal point

from Table E.1 with a base flow set such that pH = 5.

The L1 adaptive output feedback controller consists of an output predictor, an

adaptation law and a control law [10, 124]. The structure of the closed loop system

with this type of controller is presented in Figure E.6.

Process Model
CB0

FFF CA0

FE CZ0

FW T S FFM

C(s)
+

FF

+
rpH

+

Output Predictor

Adaptive Law

ypH

−+

ŷ

ỹ

+

σ̂

+

−

Figure E.6: Closed loop system with an L1 adaptive output feedback controller.

The output predictor is built with the help of a first order model reference system:

˙̂y(t) =−mŷ(t)+m{u(t)+ σ̂(t)} (E.17)

where ŷ(t) is the output estimation, 1/m is the desired time constant of the closed loop

system, u(t) is the inflow of hydroxide and σ̂(t) is the estimation of all uncertainties

and unmodelled dynamics. The model reference system is also denoted as:

M(s) =
m

s+m
(E.18)

System (E.16) can be rewritten in terms of the model reference system [10]:

y(s) = M(s){u(s)+σ(s)} (E.19)

where σ(s) is identified as [10]:

σ(s) =
{A(s)−M(s)}u(s)+A(s)d(s)

M(s)
(E.20)

The idea is to cancel all the uncertainties σ(s) with the help of the control signal

u(s). Therefore, the control signal is defined as [10]:

u(s) =C(s){r(s)− σ̂(s)} (E.21)
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where C(s) is a first order filter in this application:

C(s) =
c

s+ c
(E.22)

If Equation (E.21) is substituted in (E.19) then:

y(s) = M(s)C(s)r(s)+M(s){σ(s)−C(s)σ̂(s)} (E.23)

If σ(s) is perfectly estimated then σ̂(s) = σ(s) and the disturbances will be rejected

only in the bandwidth of C(s).

The adaptive estimate σ̂(t) is updated using a projection algorithm that ensures

boundedness of the estimate within a given ball [10]:

˙̂σ(t) = ΓProj(σ̂(t),−ỹ(t)) (E.24)

where ỹ(t) = ŷ(t)− y(t) is the estimation error of the output.

There are 3 parameters to set for the L1 adaptive output feedback controller,

i.e. the desired closed loop time constant 1/m, the adaptation gain Γ and the

eigenfrequency of the control filter c.

The reference model and the control signal filter can be designed systematically

[125]. Assuming perfect knowledge of disturbances, an ideal system y(s) can be

built and used for tuning [125]:

y(s) = H(s)C(s)r(s)+H(s){1−C(s)}d(s) (E.25)

where H(s)C(s) is the transfer function from r(s) to y(s) and H(s) is defined as:

H(s) =
A(s)M(s)

C(s)A(s)+{1−C(s)}M(s)
(E.26)

Parameters m and c must be chosen such that H(s) is stable and the following L1

norm holds [10]:

||G(s)||L1L < 1 (E.27)

where G(s) = H(s){1−C(s)} is the transfer function from d(s) to y(s) and L is the

Lipschitz constant required to guarantee BIBO stability (Lemma 4.1.1 in [10]).

By considering A(s) as the linearized system around the nominal point, a (m,c)

map can be built in order to facilitate the choice of these two parameters. The closed

loop system has several poles, which can cause oscillations if they are complex. As a

criterion for (m,c) determination, the worst damping ratio ζ should be higher than

0.7 in order to ensure acceptable oscillations. The damping ratio ζ is plotted as a

function of (m,c) in the top plot of Figure E.7.

In order to accelerate the system, parameter m should be increased. To reduce

oscillations in the system response, the bandwidth of filter C(s) needs to be enlarged



204 Paper E. Modeling and L1 Adaptive Control of pH

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

100

m [rads−1]

c
[r

ad
s−

1 ]
Choice of m and c

0.6

0.8

1.0

ζ

0 1000 2000 3000 4000 5000

0.4

0.6

0.8

1

Γ [−]

ζ Γ
[−

]

Choice of Γ

Figure E.7: Tuning of the L1 adaptive controller.

such that a more responsive control action would be allowed. The pair (0.6,60) is

chosen for this application, which corresponds to a ζ > 0.9:

m = 0.6 c = 60 (E.28)

The model reference has a time constant that corresponds to 1.6h. The Lipschitz

constant, for the selected m and c, is computed to be:

L = 78.6851 (E.29)

which ensures a BIBO closed loop system according to Lemma 4.1.1 [10].

In theorem 4.1.1 from [10] it is shown that the tracking error between the

real and the ideal system, which assumes perfect knowledge of the disturbance, is

uniformly bounded with respect to a constant proportional to 1/
√

Γ. Therefore, a

high adaptation gain Γ is desired. At the same time, the stability and dynamics of σ̂
are dependent on Γ. The transfer function from r(s) and d(s) to σ̂(s) is [125]:

σ̂ = F(s)[C(s){A(s)−M(s)}r(s)+A(s)d(s)] (E.30)
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where F(s) is identified as:

F(s) =
1

1
Γ s+C(s)A(s)+{1−C(s)}M(s)

(E.31)

Γ should be chosen such that F(s) is stable. To reduce the high frequency noise due

to adaptation, Γ can be set such that the worst damping ratio of F(s), denoted as ζΓ,

would be greater than 0.7. A plot of ζΓ as a function of Γ is shown in the bottom plot

of Figure E.7. A value Γ = 1000 would be a good choice for the current application

ensuring a damping ratio of σ̂ close to 1 and a relatively high adaptation gain.

Following the described procedure, the L1 controller can be tuned in different

pH operation points and parameters m, c and Γ could be adjusted in real time in

order to maximize performances. Table E.4 contains the controller parameters in 3

different operating points.

Table E.4: L1 controller parameters in multiple operational points.

pH m c Γ

3 1 50 800

5 0.6 60 1000

7 4 80 500

The feed-forward term developed in the classical control section is also added to

the L1 controller to test its efficiency.

E.6 Benchmark Tests

Reference tracking is tested by performing a square wave of magnitude 2 as

in Table E.5. The tests cover the entire pH interval 3− 7, which includes most of

the nonlinearity from the titration curve. Even though enzymes normally operate

around pH = 5, it is of theoretical interest to test the controller for a wider range of

operating points.

Table E.5: Reference tracking square wave scenario.

# rpH Time interval

1. 5 0−20

2. ↑ 7 20−40

3. ↓ 5 40−60

4. ↓ 3 60−80

5. ↑ 5 80−100
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Figure E.8: Reference tracking with a PI controller. Top plot shows the pH measurement and

the reference level while the bottom plot displays the control effort or the addition of base.

The disturbance rejection scenario is presented in Table E.6 and includes white

noise perturbations with 0 mean and standard deviation σ on the feed concentrations

of acetic acid, base and unknown buffers.

Table E.6: White noise disturbance rejection scenarios.

# Scenario σ Time interval

1. Acid disturbances 1gkg−1 0−133

2. Base disturbances 30gkg−1 133−266

3. Unknown buffers 0.02molL−1 266−400

Several theoretical bell shaped enzymatic activity curves were shown in Figure

E.2. The maximum efficiency of the enzymatic process is considered to be 1 and is

reached when the pH level equals the optimal value. A small deviation from the

optimal level can cause a significant drop in the enzymatic activity. The monitoring

cost function is constructed by integrating the deviations from maximum enzymatic

activity within a time window:

J =

t1∫
t0

{1−E(ypH)}dτ (E.32)
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Figure E.9: Disturbance rejection with a PI controller. Top plot shows the reactor pH level in

3 cases: open loop (OL), PI controller (PI) and PI controller with feed-forward action (PI+FF).

The bottom plot displays the control effort.

where t0 is the initial time, t1 is the final time and E(ypH) is the enzymatic activity

associated with pH level ypH and can be approximated with a Gaussian bell-shaped

curve:

E(ypH) =
1

σ
√

2π
· exp−0.5

( ypH−µ
σ

)2

(E.33)

where σ = 0.2 and µ = 5 for this application. These values correspond to E2 from

Figure E.2. The enzymatic activity is usually experimentally determined and can be

represented as a table based map in reality.

Both control strategies are tested in the scenarios described above and the results

are commented in the next section.

E.7 Results

The results for the reference tracking scenario can be viewed in Figures E.8 and

E.10.

The classical control strategy has overshoots that increase as the system moves

further from the design point. On the other hand, the L1 controller has a significant

overshoot only in the neutral area of pH = 7. Otherwise, the L1 controller responds

better than the PI controller following the model reference. The overshoots could
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Figure E.10: Reference tracking with an L1 controller. Top plot shows the pH measurement

and the reference level while the bottom plot displays the control effort or the addition of

base.

be accommodated by a reference filter in both cases. The control signal is within

acceptable limits.

The disturbance rejection scenario is shown in Figures E.9 and E.11 and the

evaluation of the cost function is performed in Table E.7. In the case of measured

disturbances, i.e. acetic acid disturbances, the L1 controller with feed-forward

performs better than the PI controller leading to a full rejection of these disturbances.

The nonlinear feed-forward term significantly helps both controllers.

In the second scenario, i.e. base disturbances, the L1 controller has better results

leading to smaller variations of the pH level, thus to a much lower J value. The

feed-forward term does not help in this case.

In the last scenario, i.e. unknown buffers, the L1 controller outperforms the

classical PI. Overall, regarding variations in the pH level, the L1 controller has better

performances.

E.8 Conclusions

In this article, for the first time to our knowledge, a pH model of the enzymatic

liquefaction process has been developed. Reference tracking and disturbance rejec-
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Figure E.11: Disturbance rejection with an L1 adaptive controller. Top plot shows the reactor

pH level in 2 cases: PI+FF and L1 controller with feed-forward (L1+FF). The bottom plot

displays the control effort.

Table E.7: Performance cost function.

Scenario PI PI+FF L1+FF

1. 62.87 18.67 6.93

2. 188.19 187.16 24.42

3. 237.39 184.95 21.44

tion scenarios were formulated resembling the production mode of a large scale

bioethanol plant and both measured and unmeasured disturbances were considered.

As classical control is wide spread within industry, a PI controller with feed-

forward action was first designed. A novel L1 adaptive output feedback controller

was then built and tuned in a systematic way in order to ensure high performance.

The feed-forward term was also added to the L1 controller. In the case of reference

tracking, the PI controller performed well with small overshoots that increased as

the process moved further from the design point. Re-tuning of the controller is

necessary when switching to a different pH level in order to preserve performances.

The L1 controller proved to behave similarly regardless of the nominal pH level

except in the neutral highly nonlinear area of pH = 7. However, the closed loop

system remained stable.
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In the case of measured disturbances, both control strategies were effective

and it was shown that the feed-forward term considerably improves the system

response. In the case of unmeasured disturbances, the L1 adaptive controller had

better performances.

A new cost function was derived from the enzymatic bell-shaped activity curve

to assess closed loop performances. This cost function was further used to monitor

the efficiency of the enzymatic process.

Finally, a tuning method was proposed for the L1 controller that proved to be

very effective for this application. This tuning procedure is an enhancement of the

method presented in [125].

Acknowledgements

The close collaboration and very helpful suggestions and detailed comments

received from Dr. Jakob M. Jensen on this research are gratefully acknowledged.



Bibliography

[1] R. Datta, M. A. Maher, C. Jones, and R. W. Brinker. “Ethanol-the primary

renewable liquid fuel”. Journal of Chemical Technology and Biotechnology 86

(2011), pp. 473–480. DOI: 10.1002/jctb.2580.

[2] R. C. Brown, T. Brown, S. Capareda, B. Dale, D. Edwards, V. Estes, C.

Granda, M. Holtzapple, S. Lonkar, and C. E. Wyman. “SBE Supplement:

Lignocellulosic Biofuels”. AIChE CEP (2015), pp. 33–64.

[3] J. Larsen, M. Ø. Haven, and L. Thirup. “Inbicon makes lignocellulosic ethanol

a commercial reality”. Biomass and Bioenergy 46 (Nov. 2012), pp. 36–45.

DOI: 10.1016/j.biombioe.2012.03.033.

[4] J. Larsen, M. Ø. Petersen, L. Thirup, H. W. Li, and F. K. Iversen. “The IBUS

Process - Lignocellulosic Bioethanol Close to a Commercial Reality”. Chemical
Engineering & Technology 31 (May 2008), pp. 765–772. DOI: 10.1002/ceat.

200800048.

[5] R. M. Prunescu, M. Blanke, J. G. Jakobsen, and G. Sin. “Dynamic modeling

and validation of a biomass hydrothermal pretreatment process - A demon-

stration scale study”. AIChE Journal (2015). DOI: 10.1002/aic.14954.

[6] R. M. Prunescu and G. Sin. “Dynamic modeling and validation of a lig-

nocellulosic enzymatic hydrolysis process - A demonstration scale study”.

Bioresource Technology 150 (Dec. 2013), pp. 393–403. DOI: 10.1016/j.

biortech.2013.10.029.

[7] R. M. Prunescu, M. Blanke, J. G. Jakobsen, and G. Sin. “Model-Based

Plantwide Optimization of a Large Scale Lignocellulosic Bioethanol Plant”.

Submitted to AIChE Journal (2015).

[8] G. Sin, A. S. Meyer, and K. V. Gernaey. “Assessing reliability of cellulose

hydrolysis models to support biofuel process design - Identifiability and

uncertainty analysis”. Computers & Chemical Engineering 34 (Sept. 2010),

pp. 1385–1392. DOI: 10.1016/j.compchemeng.2010.02.012.

http://dx.doi.org/10.1002/jctb.2580
http://dx.doi.org/10.1016/j.biombioe.2012.03.033
http://dx.doi.org/10.1002/ceat.200800048
http://dx.doi.org/10.1002/ceat.200800048
http://dx.doi.org/10.1002/aic.14954
http://dx.doi.org/10.1016/j.biortech.2013.10.029
http://dx.doi.org/10.1016/j.biortech.2013.10.029
http://dx.doi.org/10.1016/j.compchemeng.2010.02.012


212 Bibliography

[9] R. Morales-Rodriguez, A. S. Meyer, K. V. Gernaey, and G. Sin. “A framework

for model-based optimization of bioprocesses under uncertainty: Lignocellu-

losic ethanol production case”. Computers & Chemical Engineering 42 (July

2012), pp. 115–129. DOI: 10.1016/j.compchemeng.2011.12.004.

[10] N. Hovakimyan and C. Cao. L1 Adaptive Control Theory. SIAM, 2010.

[11] R. M. Prunescu, M. Blanke, and G. Sin. “Modelling and L1 Adaptive Control

of pH in Bioethanol Enzymatic Process”. Proceedings of the 2013 American
Control Conference. Washington D.C., USA, 2013, pp. 1888–1895.

[12] R. M. Prunescu, M. Blanke, and G. Sin. “Modelling and L1 Adaptive Control

of Temperature in Biomass Pretreatment”. Proceedings of the 52nd IEEE
Conference on Decision and Control. Florence, Italy, 2013, pp. 3152–3159.

[13] J. Conti, P. Holtberg, J. A. Beamon, S. Napolitano, M. A. Schaal, J. T. Turnure,

and L. Westfall. International Energy Outlook 2013. Tech. rep. 2013. DOI:

EIA-0484(2013).

[14] R. Guseo, A. Dalla Valle, and M. Guidolin. “World Oil Depletion Models: Price

effects compared with strategic or technological interventions”. Technological
Forecasting and Social Change 74.4 (2007), pp. 452–469. DOI: 10.1016/j.

techfore.2006.01.004.

[15] K. Mohaddes. “Econometric Modelling of World Oil Supplies: Terminal Price

and the Time to Depletion”. OPEC Energy Review (2012), pp. 162–193.

[16] C. McGlade and P. Ekins. “The geographical distribution of fossil fuels unused

when limiting global warming to 2C”. Nature 517.7533 (2014), pp. 187–190.

DOI: 10.1038/nature14016.

[17] T. Gasser, C. Guivarch, K. Tachiiri, C. D. Jones, and P. Ciais. “Negative

emissions physically needed to keep global warming below 2C”. Nature
Communications 6 (2015), p. 7958. DOI: 10.1038/ncomms8958.

[18] N. Armaroli and V. Balzani. “The legacy of fossil fuels”. Chemistry - An Asian
Journal 6.3 (2011), pp. 768–784. DOI: 10.1002/asia.201000797.

[19] United Nations. Kyoto Protocol To the United Nations Framework. 1998. DOI:

10.1111/1467-9388.00150.

[20] M. Wang, M. Wu, and H. Huo. “Life-cycle energy and greenhouse gas emis-

sion impacts of different corn ethanol plant types”. Environmental Research
Letters 2.2 (2007), pp. 1–13. DOI: 10.1088/1748-9326/2/2/024001.

[21] M. A. Martin. “First generation biofuels compete”. New Biotechnology 27.5

(2010), pp. 596–608. DOI: 10.1016/j.nbt.2010.06.010.

http://dx.doi.org/10.1016/j.compchemeng.2011.12.004
http://dx.doi.org/EIA-0484(2013)
http://dx.doi.org/10.1016/j.techfore.2006.01.004
http://dx.doi.org/10.1016/j.techfore.2006.01.004
http://dx.doi.org/10.1038/nature14016
http://dx.doi.org/10.1038/ncomms8958
http://dx.doi.org/10.1002/asia.201000797
http://dx.doi.org/10.1111/1467-9388.00150
http://dx.doi.org/10.1088/1748-9326/2/2/024001
http://dx.doi.org/10.1016/j.nbt.2010.06.010


Bibliography 213

[22] Novozymes A/S. “Beta Renewables opens biofuels plant in Italy”. Focus on
Catalysts (2013), p. 6. DOI: 10.1016/S1351-4180(13)70461-6.

[23] G. Dragone, B. Fernandes, A. Vicente, and J. Teixeira. “Third generation

biofuels from microalgae”. Current Research, Technology and Education Topics
in Applied Microbiology and Microbial Biotechnology (2010), pp. 1355–1366.

[24] F. Alam, S. Mobin, and H. Chowdhury. “Third Generation Biofuel from

Algae”. Procedia Engineering 105 (2015), pp. 763–768. DOI: 10.1016/j.

proeng.2015.05.068.

[25] J. Miranowski and A. Rosburg. “Long-term biofuel projections under different

oil price scenarios”. AgBioForum 16.1 (2013), pp. 79–87.

[26] P. Cheali, J. A. Posada, K. V. Gernaey, and G. Sin. “Upgrading of lignocel-

lulosic biorefinery to value-added chemicals: Sustainability and economics

of bioethanol-derivatives”. Biomass and Bioenergy 75 (2015), pp. 282–300.

DOI: 10.1016/j.biombioe.2015.02.030.

[27] C. E. Wyman and A. J. Ragauskas. “Lignin Bioproducts to Enable Biofuels”.

Biofuels, Bioproducts and Biorefining 9.5 (2015), pp. 447–449. DOI: 10.1002/

bbb.1582.

[28] A. J. Ragauskas, G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen, M. F.

Davis, B. H. Davison, R. a. Dixon, P. Gilna, M. Keller, P. Langan, A. K. Naskar,

J. N. Saddler, T. J. Tschaplinski, G. a. Tuskan, and C. E. Wyman. “Lignin

valorization: improving lignin processing in the biorefinery.” Science (New
York, N.Y.) 344.6185 (2014), p. 1246843. DOI: 10.1126/science.1246843.

[29] Innovation Fund Denmark. Innovation Fund Denmark 2015 Strategy. Tech.

rep. 2015.

[30] D. A. Mitchell, N. Krieger, and M. Berovič. Solid-State Fermentation Bioreac-
tors. Springer, 2006. DOI: 10.1007/3540312854.

[31] N. Silver. The Signal and the Noise: The Art and Science of Prediction. Allen

Lane, 2012.

[32] R. M. Prunescu, M. Blanke, J. G. Jakobsen, and G. Sin. “Dynamic Modeling,

Advanced Control, Diagnosis and Optimization of Large-Scale Lignocellulosic

Biorefineries”. Proceedings of the AIChE 2015 Annual Meeting. Salt Lake City,

UT, USA, 2015.

[33] R. M. Prunescu, M. Blanke, J. G. Jakobsen, and G. Sin. “Plantwide Model-

Based Optimization of a Large Scale Second Generation Biorefinery”. Pro-
ceedings of the AIChE 2015 Annual Meeting. Salt Lake City, UT, USA, 2015.

http://dx.doi.org/10.1016/S1351-4180(13)70461-6
http://dx.doi.org/10.1016/j.proeng.2015.05.068
http://dx.doi.org/10.1016/j.proeng.2015.05.068
http://dx.doi.org/10.1016/j.biombioe.2015.02.030
http://dx.doi.org/10.1002/bbb.1582
http://dx.doi.org/10.1002/bbb.1582
http://dx.doi.org/10.1126/science.1246843
http://dx.doi.org/10.1007/3540312854


214 Bibliography

[34] R. M. Prunescu, M. Blanke, J. G. Jakobsen, and G. Sin. “Model-Based Filtering

of Large-Scale Datasets - A Biorefinery Application”. Proceedings of the AIChE
2014 Annual Meeting. Atlanta, GA, USA, 2014.

[35] R. M. Prunescu and G. Sin. “Dynamic Simulation, Sensitivity and Uncertainty

Analysis of a Demonstration Scale Lignocellulosic Enzymatic Hydrolysis

Process”. Proceedings of the AIChE 2014 Annual Meeting. Atlanta, GA, USA,

2014.

[36] R. M. Prunescu, M. Blanke, and G. Sin. “Advances in Monitoring, Diagno-

sis and Control of Biorefineries”. Proceedings of the 9th World Congress of
Chemical Engineering. Seoul, South Korea, 2013.

[37] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D.

Crocker. “Determination of structural carbohydrates and lignin in biomass”.

Technical Report NREL/TP-510-42618 (2008). DOI: NREL/TP-510-42618.

[38] C. Carrasco, D. Cuno, K. Carlqvist, M. Galbe, and G. Lidén. “SO2-catalysed

steam pretreatment of quinoa stalks”. Journal of Chemical Technology &
Biotechnology 90.1 (2015), pp. 64–71. DOI: 10.1002/jctb.4286.

[39] S. Collins, N. Wellner, I. Martinez Bordonado, A. L. Harper, C. N. Miller,

I. Bancroft, and K. W. Waldron. “Variation in the chemical composition of

wheat straw: the role of tissue ratio and composition”. Biotechnology for
Biofuels 7.1 (2014), p. 121. DOI: 10.1186/PREACCEPT-4657379161257175.

[40] J. B. Kristensen, L. G. Thygesen, C. Felby, H. Jørgensen, and T. Elder. “Cell-

wall structural changes in wheat straw pretreated for bioethanol production.”

Biotechnology for biofuels 1 (Jan. 2008), pp. 1–9. DOI: 10.1186/1754-6834-

1-5.

[41] M. A. T. Hansen and J. B. Kristensen. “Pretreatment and enzymatic hydrolysis

of wheat straw (Triticum aestivum L.)–The impact of lignin relocation and

plant tissues on enzymatic accessibility”. Bioresource technology 102 (Feb.

2011), pp. 2804–2811. DOI: 10.1016/j.biortech.2010.10.030.

[42] N. D. Weiss, J. D. Farmer, and D. J. Schell. “Impact of corn stover composition

on hemicellulose conversion during dilute acid pretreatment and enzymatic

cellulose digestibility of the pretreated solids.” Bioresource technology 101

(Jan. 2010), pp. 674–678. DOI: 10.1016/j.biortech.2009.08.082.

[43] D. W. Templeton, C. J. Scarlata, J. B. Sluiter, and E. J. Wolfrum. “Com-

positional analysis of lignocellulosic feedstocks. 2. Method uncertainties.”

Journal of agricultural and food chemistry 58 (Aug. 2010), pp. 9054–9062.

DOI: 10.1021/jf100807b.

http://dx.doi.org/NREL/TP-510-42618
http://dx.doi.org/10.1002/jctb.4286
http://dx.doi.org/10.1186/PREACCEPT-4657379161257175
http://dx.doi.org/10.1186/1754-6834-1-5
http://dx.doi.org/10.1186/1754-6834-1-5
http://dx.doi.org/10.1016/j.biortech.2010.10.030
http://dx.doi.org/10.1016/j.biortech.2009.08.082
http://dx.doi.org/10.1021/jf100807b


Bibliography 215

[44] D. Chiaramonti, M. Prussi, S. Ferrero, L. Oriani, P. Ottonello, P. Torre, and

F. Cherchi. “Review of pretreatment processes for lignocellulosic ethanol pro-

duction, and development of an innovative method”. Biomass and Bioenergy
46 (Nov. 2012), pp. 25–35. DOI: 10.1016/j.biombioe.2012.04.020.

[45] J. Larsen and N. Henriksen. Status for the Inbicon technology by end of 2014.

Tech. rep. 2014, pp. 1–8.

[46] B. Yang and C. E. Wyman. “Pretreatment: The key to unlocking low-cost

cellulosic ethanol”. Biofuels, Bioproducts and Biorefining 2.1 (2008), pp. 26–

40. DOI: 10.1002/bbb.49.

[47] C. Carrasco, H. Baudel, M. Peñarrieta, C. Solano, L. Tejeda, C. Roslander, M.

Galbe, and G. Lidén. “Steam pretreatment and fermentation of the straw ma-

terial "Paja Brava" using simultaneous saccharification and co-fermentation”.

Journal of Bioscience and Bioengineering 111.2 (2011), pp. 167–174. DOI:

10.1016/j.jbiosc.2010.10.009.

[48] I. Cybulska, G. Brudecki, J. E. Schmidt, and M. H. Tomsen. “Organosolv

Fractionation of Palm Tree Residues”. Energy Procedia 75 (2015), pp. 742–

747. DOI: 10.1016/j.egypro.2015.07.503.

[49] I. Cybulska, G. Brudecki, and H. Lei. “Hydrothermal Pretreatment of Lig-

nocellulosic Biomass”. Green Biomass Pretreatment for Biofuels Production.

Springer Netherlands, 2013. Chap. 4, pp. 87–106. DOI: 10.1007/978-94-

007-6052-3\_4.

[50] M. Ø. Petersen, J. Larsen, and M. H. Thomsen. “Optimization of hydrother-

mal pretreatment of wheat straw for production of bioethanol at low water

consumption without addition of chemicals”. Biomass and Bioenergy 33 (May

2009), pp. 834–840. DOI: 10.1016/j.biombioe.2009.01.004.

[51] Q. Qing, B. Yang, and C. E. Wyman. “Xylooligomers are strong inhibitors of

cellulose hydrolysis by enzymes.” Bioresource technology 101 (Dec. 2010),

pp. 9624–9630. DOI: 10.1016/j.biortech.2010.06.137.

[52] M. Cantarella, L. Cantarella, A. Gallifuoco, A. Spera, and F. Alfani. “Effect

of inhibitors released during steam-explosion treatment of poplar wood on

subsequent enzymatic hydrolysis and SSF”. Biotechnology progress 20 (2004),

pp. 200–206. DOI: 10.1021/bp0257978.

[53] P. Sannigrahi, D. H. Kim, S. Jung, and A. Ragauskas. “Pseudo-lignin and

pretreatment chemistry”. Energy & Environmental Science 4 (2011), pp. 1306–

1310. DOI: 10.1039/c0ee00378f.

http://dx.doi.org/10.1016/j.biombioe.2012.04.020
http://dx.doi.org/10.1002/bbb.49
http://dx.doi.org/10.1016/j.jbiosc.2010.10.009
http://dx.doi.org/10.1016/j.egypro.2015.07.503
http://dx.doi.org/10.1007/978-94-007-6052-3\_4
http://dx.doi.org/10.1007/978-94-007-6052-3\_4
http://dx.doi.org/10.1016/j.biombioe.2009.01.004
http://dx.doi.org/10.1016/j.biortech.2010.06.137
http://dx.doi.org/10.1021/bp0257978
http://dx.doi.org/10.1039/c0ee00378f


216 Bibliography

[54] C. Felby, J. Larsen, H. Jørgensen, and J. Vibe-Pedersen. Enzymatic Hydrolysis
of Biomasses Having High Dry Matter (DM) Content. 2006.

[55] H. Jørgensen, J. Vibe-Pedersen, J. Larsen, and C. Felby. “Liquefaction of lig-

nocellulose at high solids concentrations”. Biotechnology and Bioengineering
96 (2007), pp. 862–870. DOI: 10.1002/bit.

[56] B. Palmqvist and G. Lidén. “Torque measurements reveal large process

differences between materials during high solid enzymatic hydrolysis of

pretreated lignocellulose”. Biotechnology for Biofuels 5.1 (2012), p. 57. DOI:

10.1186/1754-6834-5-57.

[57] Novozymes A/S. “Cellic R© CTec2 and HTec2 - Enzymes for hydrolysis of

lignocellulosic materials” (2010), pp. 1–9.

[58] Novozymes A/S. Cellulosic ethanol Novozymes Cellic CTec3 - Secure your
plant’s lowest total cost. Tech. rep. 2012, pp. 1–6.

[59] Novozymes A/S. Cellulosic ethanol - Novozymes Cellic HTec3. Tech. rep. 2012,

pp. 1–3.

[60] K. L. Kadam, E. C. Rydholm, and J. D. McMillan. “Development and vali-

dation of a kinetic model for enzymatic saccharification of lignocellulosic

biomass.” Biotechnology progress 20 (2004), pp. 698–705. DOI: 10.1021/

bp034316x.

[61] Y. Zhang, J. L. Xu, H. J. Xu, Z. H. Yuan, and Y. Guo. “Cellulase deactivation

based kinetic modeling of enzymatic hydrolysis of steam-exploded wheat

straw”. Bioresource Technology 101.21 (2010), pp. 8261–8266. DOI: 10.

1016/j.biortech.2010.06.015.

[62] L. Ljung. System Identification: Theory for the User. 2nd Editio. Prentice Hall,

1999.

[63] E. Walter and L. Pronzato. Identification of parametric models from experi-
mental data. Springer, 1997.

[64] R. Brun, P. Reichert, and H. H. R. Künsch. “Practical identifiability analysis

of large environmental simulation models”. Water Resources Research 37

(2001), pp. 1015–1030. DOI: 10.1029/2000WR900350.

[65] J. Helton and F. Davis. “Latin hypercube sampling and the propagation of

uncertainty in analyses of complex systems”. Reliability Engineering & System
Safety 81 (July 2003), pp. 23–69. DOI: 10.1016/S0951-8320(03)00058-9.

http://dx.doi.org/10.1002/bit
http://dx.doi.org/10.1186/1754-6834-5-57
http://dx.doi.org/10.1021/bp034316x
http://dx.doi.org/10.1021/bp034316x
http://dx.doi.org/10.1016/j.biortech.2010.06.015
http://dx.doi.org/10.1016/j.biortech.2010.06.015
http://dx.doi.org/10.1029/2000WR900350
http://dx.doi.org/10.1016/S0951-8320(03)00058-9


Bibliography 217

[66] G. Sin, K. V. Gernaey, M. B. Neumann, M. C. M. van Loosdrecht, and W.

Gujer. “Global sensitivity analysis in wastewater treatment plant model

applications: Prioritizing sources of uncertainty”. Water Research 45 (Jan.

2011), pp. 639–651. DOI: 10.1016/j.watres.2010.08.025.

[67] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M.

Saisana, and S. Tarantola. Global Sensitivity Analysis. The Primer. Chichester,

UK: John Wiley & Sons, Ltd, 2007. DOI: 10.1002/9780470725184.

[68] J. Price, M. Nordblad, J. M. Woodley, and J. K. Huusom. “Application

of Uncertainty and Sensitivity Analysis to a Kinetic Model for Enzymatic

Biodiesel Production”. 12th IFAC Symposium on Computer Applications in
Biotechnology. Mumbai, 2013, pp. 149–156. DOI: 10.3182/20131216-3-IN-

2044.00060.

[69] J. R. Cooper and R. B. Dooley. Revised release on the IAPWS industrial
formulation 1997 for the thermodynamic properties of water and steam. The

International Association for the Properties of Water and Steam, 2007.

[70] R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport phenomena. John

Wiley & Sons, 2007.

[71] R. M. Prunescu, M. Blanke, J. M. Jensen, and G. Sin. “Temperature Modelling

of the Biomass Pretreatment Process”. Proceedings of the 17th Nordic Process
Control Workshop. Copenhagen, Denmark, 2012, pp. 8–17. DOI: 10.13140/

2.1.1512.1287.

[72] O. Egeland and J. T. Gravdahl. Modeling and simulation for automatic control.
Marine Cybernetics, 2002.

[73] B. Lavarack, G. Griffin, and D. Rodman. “The acid hydrolysis of sugarcane

bagasse hemicellulose to produce xylose, arabinose, glucose and other prod-

ucts”. Biomass and Bioenergy 23 (2002), pp. 367–380.

[74] M. Mauricio-Iglesias, J. K. Huusom, and K. Gernaey. “State Estimation in

Fermentation of Lignocellulosic Ethanol. Focus on the Use of pH Measure-

ments”. Proceedings of the 25th European Symposium on Computer Aided
Process Engineering. 2015, pp. 1769–1774.

[75] R. Luff, M. Haeckel, and K. Wallmann. “Robust and fast FORTRAN and

MATLAB libraries to calculate pH distributions in marine systems”. Computers
and Geosciences 27 (2001), pp. 157–169. DOI: 10.1016/S0098-3004(00)

00097-2.

http://dx.doi.org/10.1016/j.watres.2010.08.025
http://dx.doi.org/10.1002/9780470725184
http://dx.doi.org/10.3182/20131216-3-IN-2044.00060
http://dx.doi.org/10.3182/20131216-3-IN-2044.00060
http://dx.doi.org/10.13140/2.1.1512.1287
http://dx.doi.org/10.13140/2.1.1512.1287
http://dx.doi.org/10.1016/S0098-3004(00)00097-2
http://dx.doi.org/10.1016/S0098-3004(00)00097-2


218 Bibliography

[76] J. Price, M. Nordblad, J. M. Woodley, and J. K. Huusom. “Real-time model

based process monitoring of enzymatic biodiesel production”. Biotechnology
Progress 31.2 (2015), pp. 585–595. DOI: 10.1002/btpr.2030.

[77] M. Michelin, E. Ximenes, M. de Lourdes Teixeira de Moraes Polizeli, and M. R.

Ladisch. “Effect of phenolic compounds from pretreated sugarcane bagasse

on cellulolytic and hemicellulolytic activities”. Bioresource Technology (2015),

pp. 8–11. DOI: 10.1016/j.biortech.2015.08.120.

[78] K. K. Podkaminer, X. Shao, D. a. Hogsett, and L. R. Lynd. “Enzyme inac-

tivation by ethanol and development of a kinetic model for thermophilic

simultaneous saccharification and fermentation at 50C with Thermoanaer-

obacterium saccharolyticum ALK2”. Biotechnology and Bioengineering 108.6

(2011), pp. 1268–1278. DOI: 10.1002/bit.23050.

[79] S. Mutturi and G. Lidén. “Model-based estimation of optimal temperature

profile during simultaneous saccharification and fermentation of Arundo

donax”. Biotechnology and Bioengineering 111.5 (2014), pp. 866–875. DOI:

10.1002/bit.25165.

[80] K. Olofsson, A. Rudolf, and G. Lidén. “Designing simultaneous saccharifi-

cation and fermentation for improved xylose conversion by a recombinant

strain of Saccharomyces cerevisiae”. Journal of Biotechnology 134.1-2 (2008),

pp. 112–120. DOI: 10.1016/j.jbiotec.2008.01.004.

[81] J. J. Downs and S. Skogestad. “An industrial and academic perspective on

plantwide control”. Annual Reviews in Control 35 (2011), pp. 99–110. DOI:

10.1016/j.arcontrol.2011.03.006.

[82] D. E. Seborg, D. A. Mellichamp, T. F. Edgar, and F. J. Doyle. “Process

Dynamics and Control”. Process Dynamics and Control (2010), p. 2010.

[83] M. Ø. Haven, J. Lindedam, M. D. Jeppesen, M. Elleskov, A. C. Rodrigues, M.

Gama, H. Jørgensen, and C. Felby. “Continuous recycling of enzymes during

production of lignocellulosic bioethanol in demonstration scale”. Applied
Energy 159 (2015), pp. 188–195. DOI: 10.1016/j.apenergy.2015.08.062.

[84] V. Gera, M. Panahi, S. Skogestad, and N. Kaistha. “Economic Plantwide

Control of the Cumene Process”. Industrial & Engineering Chemistry Research
52.2 (2013), pp. 830–846. DOI: 10.1021/ie301386h.

[85] S. Mutturi and G. Lidén. “Effect of Temperature on Simultaneous Sacchari

fi cation and Fermentation of Pretreated Spruce and Arundo”. Industrial &
Engineering Chemistry Research 52 (2013), pp. 1244–1251. DOI: dx.doi.

org/10.1021/ie302851w.

http://dx.doi.org/10.1002/btpr.2030
http://dx.doi.org/10.1016/j.biortech.2015.08.120
http://dx.doi.org/10.1002/bit.23050
http://dx.doi.org/10.1002/bit.25165
http://dx.doi.org/10.1016/j.jbiotec.2008.01.004
http://dx.doi.org/10.1016/j.arcontrol.2011.03.006
http://dx.doi.org/10.1016/j.apenergy.2015.08.062
http://dx.doi.org/10.1021/ie301386h
http://dx.doi.org/dx.doi.org/10.1021/ie302851w
http://dx.doi.org/dx.doi.org/10.1021/ie302851w


Bibliography 219

[86] O. Johnsson, J. Andersson, G. Lidén, C. Johnsson, and T. Hägglund. “Feed

rate control in fed-batch fermentations based on frequency content analysis”.

Biotechnology Progress 29.3 (2013), pp. 817–824. DOI: 10.1002/btpr.1727.

[87] J. K. Huusom. “Challenges and opportunities in integration of design and

control”. Computers & Chemical Engineering 81 (2015), pp. 138–146. DOI:

10.1016/j.compchemeng.2015.03.019.

[88] C. Cao and N. Hovakimyan. “Design and Analysis of a Novel Adaptive Control

Architecture With Guaranteed Transient Performance”. Automatic Control
IEEE Transactions on 53.2 (2008), pp. 586–591. DOI: 10.1109/TAC.2007.

914282.

[89] M. Mauricio-Iglesias, J. Gottschalck-Andersen, and K. Gernaey. “Modelling

and optimization of C5 and C6 fermentation: focus on pH impact and

inhibitors effect”. 10th European Symposium on Biochemical Engineering
Sciences and 6th International Forum on Industrial Bioprocesses. Lille, France,

2014.

[90] S. Skogestad. “Simple analytic rules for model reduction and PID controller

tuning”. Modeling, Identification and Control 25.2 (2004), pp. 85–120.

[91] B. C. Chachuat. Nonlinear and Dynamic Optimization: From Theory to Practice.

2009.

[92] F. Logist, M. Vallerio, B. Houska, M. Diehl, and J. Van Impe. “Multi-objective

optimal control of chemical processes using ACADO toolkit”. Computers &
Chemical Engineering 37 (2012), pp. 191–199. DOI: 10.1016/j.compchemeng.

2011.11.002.

[93] F. Logist, D. Telen, B. Houska, M. Diehl, and J. Van Impe. “Multi-objective op-

timal control of dynamic bioprocesses using ACADO Toolkit”. Bioprocess and
Biosystems Engineering 36.2 (2013), pp. 151–164. DOI: 10.1007/s00449-

012-0770-9.

[94] D. Bonvin and B. Srinivasan. “On the role of the necessary conditions of

optimality in structuring dynamic real-time optimization schemes”. Com-
puters & Chemical Engineering 51 (2013), pp. 172–180. DOI: 10.1016/j.

compchemeng.2012.07.012.

[95] G. François, B. Srinivasan, and D. Bonvin. “Comparison of six implicit real-

time optimization schemes”. Journal Europeen des Systemes Automatises
46.2-3 (2012), pp. 291–305. DOI: 10.3166/JESA.46.291-305.

http://dx.doi.org/10.1002/btpr.1727
http://dx.doi.org/10.1016/j.compchemeng.2015.03.019
http://dx.doi.org/10.1109/TAC.2007.914282
http://dx.doi.org/10.1109/TAC.2007.914282
http://dx.doi.org/10.1016/j.compchemeng.2011.11.002
http://dx.doi.org/10.1016/j.compchemeng.2011.11.002
http://dx.doi.org/10.1007/s00449-012-0770-9
http://dx.doi.org/10.1007/s00449-012-0770-9
http://dx.doi.org/10.1016/j.compchemeng.2012.07.012
http://dx.doi.org/10.1016/j.compchemeng.2012.07.012
http://dx.doi.org/10.3166/JESA.46.291-305


220 Bibliography

[96] R. Morales-Rodriguez, A. S. Meyer, K. V. Gernaey, and G. Sin. “Dynamic

model-based evaluation of process configurations for integrated operation

of hydrolysis and co-fermentation for bioethanol production from ligno-

cellulose.” Bioresource technology 102 (Jan. 2011), pp. 1174–1184. DOI:

10.1016/j.biortech.2010.09.045.

[97] R. P. Overend, E. Chornet, and J. A. Gascoigne. “Fractionation of lignocel-

lulosics by steam-aqueous pretreatments”. Philosophical Transactions of the
Royal Society of London. Series A, Mathematical and Physical Sciences 321

(1987), pp. 523–536.

[98] A. Holmberg. “On the practical identifiability of microbial growth models in-

corporating Michaelis-Menten type nonlinearities”. Mathematical Biosciences
62 (Nov. 1982), pp. 23–43. DOI: 10.1016/0025-5564(82)90061-X.

[99] M. Power. “The predictive validation of ecological and environmental mod-

els”. Ecological Modelling 68 (July 1993), pp. 33–50. DOI: 10.1016/0304-

3800(93)90106-3.

[100] L. Ljung. “Asymptotic behavior of the extended Kalman filter as a parameter

estimator for linear systems”. IEEE Transactions on Automatic Control 24

(1979), pp. 36–50. DOI: 10.1109/TAC.1979.1101943.

[101] W. W. Zhou and M. Blanke. “Identification of a class of non-linear state space

models using rpe techniques”. IEEE Transactions on Automatic Control 34

(1989), pp. 312–316.

[102] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman Filter: Particle
Filters for Tracking Applications. Artech House, 2004.

[103] R. G. Brown and P. Y. C. Hwang. Introduction to Random Signals and Applied
Kalman Filtering. 3rd ed. John Wiley & Sons, 1996.

[104] Y.-H. P. Zhang and L. R. Lynd. “Toward an aggregated understanding of enzy-

matic hydrolysis of cellulose: Noncomplexed cellulase systems”. Biotechnol-
ogy and Bioengineering 88.7 (2004), pp. 797–824. DOI: 10.1002/bit.20282.

[105] D. B. Hodge, M. N. Karim, D. J. Schell, and J. D. McMillan. “Model-based fed-

batch for high-solids enzymatic cellulose hydrolysis”. Applied Biochemistry
and Biotechnology 152.1 (2009), pp. 88–107. DOI: 10.1007/s12010-008-

8217-0.

[106] S. A. Hosseini and N. Shah. “Enzymatic hydrolysis of cellulose part II: Pop-

ulation balance modelling of hydrolysis by exoglucanase and universal

kinetic model”. Biomass and Bioenergy 35.9 (2011), pp. 3830–3840. DOI:

10.1016/j.biombioe.2011.04.029.

http://dx.doi.org/10.1016/j.biortech.2010.09.045
http://dx.doi.org/10.1016/0025-5564(82)90061-X
http://dx.doi.org/10.1016/0304-3800(93)90106-3
http://dx.doi.org/10.1016/0304-3800(93)90106-3
http://dx.doi.org/10.1109/TAC.1979.1101943
http://dx.doi.org/10.1002/bit.20282
http://dx.doi.org/10.1007/s12010-008-8217-0
http://dx.doi.org/10.1007/s12010-008-8217-0
http://dx.doi.org/10.1016/j.biombioe.2011.04.029


Bibliography 221

[107] S. A. Hosseini and N. Shah. “Enzymatic hydrolysis of cellulose part II: Pop-

ulation balance modelling of hydrolysis by exoglucanase and universal

kinetic model”. Biomass and Bioenergy 35.9 (2011), pp. 3830–3840. DOI:

10.1016/j.biombioe.2011.04.029.

[108] S. Naik, V. V. Goud, P. K. Rout, and A. K. Dalai. “Production of first and second

generation biofuels: A comprehensive review”. Renewable and Sustainable
Energy Reviews 14.2 (2010), pp. 578–597. DOI: 10.1016/j.rser.2009.10.

003.

[109] D. G. Thomas. “Transport characteristics of suspension: VIII. A note on the

viscosity of Newtonian suspensions of uniform spherical particles”. Journal
of Colloid Science 20 (1965), pp. 267–277.

[110] A. Converti, M. Zilli, and S. Arni. “Estimation of viscosity of highly viscous

fermentation media containing one or more solutes”. Biochemical engineering
Journal 4 (1999), pp. 18–22.

[111] S. Glasstone, K. Laidler, and H. Eyring. The Theory of Rate Processes: The
Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phe-
nomena. McGraw Hill, 1941.

[112] T. McAvoy, E. Hsu, and S. Lowenthal. “Dynamics of pH in controlled stirred

tank reactor”. Industrial and Engineering Chemistry Process Design and Devel-
opment 11.1 (1972), pp. 68–70. DOI: 10.1021/i260041a013.

[113] G. Sin and P. a. Vanrolleghem. “Extensions to modeling aerobic carbon

degradation using combined respirometric-titrimetric measurements in view

of activated sludge model calibration”. Water Research 41 (Aug. 2007),

pp. 3345–3358. DOI: 10.1016/j.watres.2007.03.029.

[114] A. Albert and E. Serjeant. Ionization constants of acids and bases. A laboratory
manual. Methuen, 1962.

[115] M. Khan. “Hydrolysis of hemicellulose by commercial enzyme mixtures”

(2010), pp. 1–28. DOI: 1402-1552-ISRN:LTU-DUPP--10/040--SE.

[116] I. Ballesteros, M. J. Negro, J. M. Oliva, A. Cabañas, P. Manzanares, and

M. Ballesteros. “Ethanol production from steam-explosion pretreated wheat

straw.” Applied biochemistry and biotechnology 129-132 (2006), pp. 496–508.

DOI: 10.1385/ABAB:130:1:496.

[117] C. K. Nitsos, K. A. Matis, and K. S. Triantafyllidis. “Optimization of hydrother-

mal pretreatment of lignocellulosic biomass in the bioethanol production

process”. ChemSusChem 6 (Jan. 2013), pp. 110–122. DOI: 10.1002/cssc.

201200546.

http://dx.doi.org/10.1016/j.biombioe.2011.04.029
http://dx.doi.org/10.1016/j.rser.2009.10.003
http://dx.doi.org/10.1016/j.rser.2009.10.003
http://dx.doi.org/10.1021/i260041a013
http://dx.doi.org/10.1016/j.watres.2007.03.029
http://dx.doi.org/1402-1552 - ISRN: LTU-DUPP--10/040--SE
http://dx.doi.org/10.1385/ABAB:130:1:496
http://dx.doi.org/10.1002/cssc.201200546
http://dx.doi.org/10.1002/cssc.201200546


222 Bibliography

[118] E. Castro, I. U. Nieves, M. T. Mullinnix, W. J. Sagues, R. W. Hoffman, M. T.

Fernández-Sandoval, Z. Tian, D. L. Rockwood, B. Tamang, and L. O. Ingram.

“Optimization of dilute-phosphoric-acid steam pretreatment of Eucalyptus

benthamii for biofuel production”. Applied Energy 125 (2014), pp. 76–83.

DOI: 10.1016/j.apenergy.2014.03.047.

[119] J. Nielsen, J. Villadsen, and G. Lidén. Bioreaction Engineering Principles.
Second Edi. Springer, 2003.

[120] M. S. Krishnan, N. W. Ho, and G. T. Tsao. “Fermentation kinetics of ethanol

production from glucose and xylose by recombinant Saccharomyces 1400

(pLNH33)”. Applied Biochemistry and Biotechnology 77-79 (1999), pp. 373–

388. DOI: 10.1385/ABAB:78:1-3:373.

[121] R. Alinia, S. Zabihi, F. Esmaeilzadeh, and J. F. Kalajahi. “Pretreatment of

wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar

production”. Biosystems Engineering 107.1 (2010), pp. 61–66. DOI: 10.1016/

j.biosystemseng.2010.07.002.

[122] N. Mosier, R. Hendrickson, N. Ho, M. Sedlak, and M. R. Ladisch. “Opti-

mization of pH controlled liquid hot water pretreatment of corn stover”.

Bioresource Technology 96.18 SPEC. ISS. (2005), pp. 1986–1993. DOI: 10.

1016/j.biortech.2005.01.013.

[123] P. D. Fullbrook. “Practical limits and prospects (kinetics)”. Industrial Enzy-
mology 2nd Edition. 1996, pp. 505–540.

[124] C. Cao and N. Hovakimyan. “L1 Adaptive Output Feedback Controller for

Systems of Unknown Dimension”. Automatic Control, IEEE Transactions 53.3

(2008), pp. 815–821. DOI: 10.1109/TAC.2008.919550.

[125] R. Hindman, C. Cao, and N. Hovakimyan. “Designing a high performance,

stable L1 adaptive output feedback controller”. Proceedings of the AIAA
Guidance, Navigation and Control Conference and Exhibit. 2007, p. 6644.

[126] A. Limayem and S. C. Ricke. “Lignocellulosic biomass for bioethanol produc-

tion: Current perspectives, potential issues and future prospects”. Progress
in Energy and Combustion Science 38.4 (2012), pp. 449–467. DOI: 10.1016/

j.pecs.2012.03.002.

[127] J.-P. Ylén. “Measuring, Modeling and Controling the pH Value and the

Dynamic Chemical State”. PhD thesis. Helsinki University of Technology,

2001.

http://dx.doi.org/10.1016/j.apenergy.2014.03.047
http://dx.doi.org/10.1385/ABAB:78:1-3:373
http://dx.doi.org/10.1016/j.biosystemseng.2010.07.002
http://dx.doi.org/10.1016/j.biosystemseng.2010.07.002
http://dx.doi.org/10.1016/j.biortech.2005.01.013
http://dx.doi.org/10.1016/j.biortech.2005.01.013
http://dx.doi.org/10.1109/TAC.2008.919550
http://dx.doi.org/10.1016/j.pecs.2012.03.002
http://dx.doi.org/10.1016/j.pecs.2012.03.002


Bibliography 223

[128] F. Wan, H. Shang, and L. X. Wang. “Adaptive Fuzzy Control of a pH Process”.

2006 IEEE International Conference on Fuzzy Systems. 2006, pp. 2377–2384.

DOI: 10.1109/FUZZY.2006.1682031.

[129] T. K. Gustafsson and K. V. Waller. “Nonlinear and Adaptive Control of

pH”. Ind. Eng. Chem. Res. 31.12 (1992), pp. 2681–2693. DOI: 10.1021/

ie00012a009.

[130] S.-S. Yoon, T.-W. Yoon, D. R. Yang, and T.-S. Kang. “Indirect adaptive nonlin-

ear control of a pH process”. Computers & Chemical Engineering 26.9 (2002),

pp. 1223–1230. DOI: 10.1016/S0098-1354(02)00088-1.

[131] J. C. Gomez, A. Jutan, and E. Baeyens. “Wiener model identification and

predictive control of a pH neutralisation process”. Control Theory and Appli-
cations, IEE Proceedings 151.3 (2004), pp. 329–338. DOI: 10.1049/ip-cta:

20040438(410)151.

[132] A. Altınten. “Generalized predictive control applied to a pH neutralization

process”. Computers & Chemical Engineering 31.10 (2007), pp. 1199–1204.

DOI: 10.1016/j.compchemeng.2006.10.005.

[133] Z. Fan, C. South, K. Lyford, J. Munsie, P. Van Walsum, and L. R. Lynd.

“Conversion of paper sludge to ethanol in a semicontinuous solids-fed reac-

tor”. Bioprocess and Biosystems Engineering 26.2 (2003), pp. 93–101. DOI:

10.1007/s00449-003-0337-x.

http://dx.doi.org/10.1109/FUZZY.2006.1682031
http://dx.doi.org/10.1021/ie00012a009
http://dx.doi.org/10.1021/ie00012a009
http://dx.doi.org/10.1016/S0098-1354(02)00088-1
http://dx.doi.org/10.1049/ip-cta:20040438(410) 151
http://dx.doi.org/10.1049/ip-cta:20040438(410) 151
http://dx.doi.org/10.1016/j.compchemeng.2006.10.005
http://dx.doi.org/10.1007/s00449-003-0337-x






Technical University of Denmark
Automation and Control (AUT)
Elektrovej Building 326
DK-2800, Kgs. Lyngby
Denmark
Phone: (+45) 45 25 35 76
Email: info@elektro.dtu.dk
www.elektro.dtu.dk

ISBN: N/A

mailto:info@elektro.dtu.dk
www.elektro.dtu.dk

	Summary
	Resumé
	Preface
	Acknowledgments
	List of Abbreviations
	Introduction
	Background
	Motivation and Project Goals
	Thesis Outline

	Summary of Main Contributions
	Dynamic Modeling and Analysis
	Introduction
	Process Description
	Model Analysis Framework
	Mathematical Model Development
	Model Analysis
	Real-Time State Estimation of Biomass Pretreatment
	Conclusions

	Process Optimization
	Introduction
	Plantwide Optimization Methodology
	Sensitivity and Uncertainty Analysis
	Conclusions

	Advanced Process Control
	Introduction
	Pretreatment Temperature Control
	Enzymatic pH Control
	Optimal Feed Rate Profile for Glucose Fermentation
	Conclusions

	Conclusions and Future Research
	Summary of Conclusions
	Future Research

	Pretreatment Modeling
	Introduction
	Methods
	Model Development
	Results and Discussion
	Conclusions

	Enzymatic Hydrolysis Modeling
	Introduction
	Materials and Methods
	Model Development
	Results and Discussion
	Conclusions

	Model-based Plantwide Optimization
	Introduction
	Methods
	Results and Discussion
	Conclusions

	Modeling and L1 Adaptive Control of Pretreatment Temperature
	Introduction
	Process Description
	Mathematical Model
	Control Design
	Benchmark Tests
	Results
	Conclusions

	Modeling and L1 Adaptive Control of pH
	Introduction
	Process Description
	Control Challenge
	Process Model
	Control Design
	Benchmark Tests
	Results
	Conclusions

	Bibliography

