2,743 research outputs found

    A Dual-Route Approach to Orthographic Processing

    Get PDF
    In the present theoretical note we examine how different learning constraints, thought to be involved in optimizing the mapping of print to meaning during reading acquisition, might shape the nature of the orthographic code involved in skilled reading. On the one hand, optimization is hypothesized to involve selecting combinations of letters that are the most informative with respect to word identity (diagnosticity constraint), and on the other hand to involve the detection of letter combinations that correspond to pre-existing sublexical phonological and morphological representations (chunking constraint). These two constraints give rise to two different kinds of prelexical orthographic code, a coarse-grained and a fine-grained code, associated with the two routes of a dual-route architecture. Processing along the coarse-grained route optimizes fast access to semantics by using minimal subsets of letters that maximize information with respect to word identity, while coding for approximate within-word letter position independently of letter contiguity. Processing along the fined-grained route, on the other hand, is sensitive to the precise ordering of letters, as well as to position with respect to word beginnings and endings. This enables the chunking of frequently co-occurring contiguous letter combinations that form relevant units for morpho-orthographic processing (prefixes and suffixes) and for the sublexical translation of print to sound (multi-letter graphemes)

    Modelling multimodal language processing

    Get PDF

    Mapping visual symbols onto spoken language along the ventral visual stream.

    Get PDF
    Reading involves transforming arbitrary visual symbols into sounds and meanings. This study interrogated the neural representations in ventral occipitotemporal cortex (vOT) that support this transformation process. Twenty-four adults learned to read 2 sets of 24 novel words that shared phonemes and semantic categories but were written in different artificial orthographies. Following 2 wk of training, participants read the trained words while neural activity was measured with functional MRI. Representational similarity analysis on item pairs from the same orthography revealed that right vOT and posterior regions of left vOT were sensitive to basic visual similarity. Left vOT encoded letter identity and representations became more invariant to position along a posterior-to-anterior hierarchy. Item pairs that shared sounds or meanings, but were written in different orthographies with no letters in common, evoked similar neural patterns in anterior left vOT. These results reveal a hierarchical, posterior-to-anterior gradient in vOT, in which representations of letters become increasingly invariant to position and are transformed to convey spoken language information

    Robustness to Capitalization Errors in Named Entity Recognition

    Full text link
    Robustness to capitalization errors is a highly desirable characteristic of named entity recognizers, yet we find standard models for the task are surprisingly brittle to such noise. Existing methods to improve robustness to the noise completely discard given orthographic information, mwhich significantly degrades their performance on well-formed text. We propose a simple alternative approach based on data augmentation, which allows the model to \emph{learn} to utilize or ignore orthographic information depending on its usefulness in the context. It achieves competitive robustness to capitalization errors while making negligible compromise to its performance on well-formed text and significantly improving generalization power on noisy user-generated text. Our experiments clearly and consistently validate our claim across different types of machine learning models, languages, and dataset sizes.Comment: Accepted to EMNLP 2019 Workshop : W-NUT 2019 5th Workshop on Noisy User Generated Tex

    Anatomy and physiology of word‑selective visual cortex: from visual features to lexical processing

    Get PDF
    Published: 12 October 2021Over the past 2 decades, researchers have tried to uncover how the human brain can extract linguistic information from a sequence of visual symbols. The description of how the brain’s visual system processes words and enables reading has improved with the progressive refinement of experimental methodologies and neuroimaging techniques. This review provides a brief overview of this research journey. We start by describing classical models of object recognition in non-human primates, which represent the foundation for many of the early models of visual word recognition in humans. We then review functional neuroimaging studies investigating the word-selective regions in visual cortex. This research led to the differentiation of highly specialized areas, which are involved in the analysis of different aspects of written language. We then consider the corresponding anatomical measurements and provide a description of the main white matter pathways carrying neural signals crucial to word recognition. Finally, in an attempt to integrate structural, functional, and electrophysiological findings, we propose a view of visual word recognition, accounting for spatial and temporal facets of word-selective neural processes. This multi-modal perspective on the neural circuitry of literacy highlights the relevance of a posterior–anterior differentiation in ventral occipitotemporal cortex for visual processing of written language and lexical features. It also highlights unanswered questions that can guide us towards future research directions. Bridging measures of brain structure and function will help us reach a more precise understanding of the transformation from vision to language.This work was supported by European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 837228 and Rita Levi Montalcini fellowship to SC, NICHD R01-HD095861 and Jacobs Foundation Research Fellowship to JDY, Stanford Maternal and Child Health Research Institute award to IK, and the Zuckerman-CHE STEM Leadership Program to MY
    • …
    corecore