18,043 research outputs found

    Game-theoretic, market and meta-heuristics approaches for modelling scheduling and resource allocation in grid systems

    Get PDF
    Task scheduling and resource allocation are the crucial issues in any large scale distributed system, such as Computational Grids (CGs). However, traditional computational models and resolution methods cannot effectively tackle the complex nature of Grid, where the resources and users belong to many administrative domains with their own access policies, users' privileges, etc. Recently, researchers are investigating the use of game theoretic approaches for modelling task and resource allocation problems in CGs. In this paper, we present a compact survey of the most relevant research proposals in the literature to use game-based models for the resource allocation problems and their resolution using metaheuristic methods. We emphasize the need of the translation of the traditional economical models into the game scenarios and the use of metaheuristic schedulers for solving such games in order to address the new complex scheduling and allocation criterions. We study the case of asymmetric Stackelberg game used for modelling the Grid users' behavior, where the security and reliability criterions are aggregated and defined as the users' costs functions. The obtained results show the efficiency of the hybridization of heuristic-based approaches with game models, which enables to include additional requirements and features into the computational models and tackle more effectively the resolution of the applied schedulers.Peer ReviewedPostprint (published version

    A hyper-heuristic for adaptive scheduling in computational grids

    Get PDF
    In this paper we present the design and implementation of an hyper-heuristic for efficiently scheduling independent jobs in computational grids. An efficient scheduling of jobs to grid resources depends on many parameters, among others, the characteristics of the resources and jobs (such as computing capacity, consistency of computing, workload, etc.). Moreover, these characteristics change over time due to the dynamic nature of grid environment, therefore the planning of jobs to resources should be adaptively done. Existing ad hoc scheduling methods (batch and immediate mode) have shown their efficacy for certain types of resource and job characteristics. However, as stand alone methods, they are not able to produce the best planning of jobs to resources for different types of Grid resources and job characteristics. In this work we have designed and implemented a hyper-heuristic that uses a set of ad hoc (immediate and batch mode) scheduling methods to provide the scheduling of jobs to Grid resources according to the Grid and job characteristics. The hyper-heuristic is a high level algorithm, which examines the state and characteristics of the Grid system (jobs and resources), and selects and applies the ad hoc method that yields the best planning of jobs. The resulting hyper-heuristic based scheduler can be thus used to develop network-aware applications that need efficient planning of jobs to resources. The hyper-heuristic has been tested and evaluated in a dynamic setting through a prototype of a Grid simulator. The experimental evaluation showed the usefulness of the hyper-heuristic for planning of jobs to resources as compared to planning without knowledge of the resource and job characteristics.Peer ReviewedPostprint (author's final draft

    Scalable dimensioning of resilient Lambda Grids

    Get PDF
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit

    A Simulated Annealing Method to Cover Dynamic Load Balancing in Grid Environment

    Get PDF
    High-performance scheduling is critical to the achievement of application performance on the computational grid. New scheduling algorithms are in demand for addressing new concerns arising in the grid environment. One of the main phases of scheduling on a grid is related to the load balancing problem therefore having a high-performance method to deal with the load balancing problem is essential to obtain a satisfactory high-performance scheduling. This paper presents SAGE, a new high-performance method to cover the dynamic load balancing problem by means of a simulated annealing algorithm. Even though this problem has been addressed with several different approaches only one of these methods is related with simulated annealing algorithm. Preliminary results show that SAGE not only makes it possible to find a good solution to the problem (effectiveness) but also in a reasonable amount of time (efficiency)

    Managing Uncertainty: A Case for Probabilistic Grid Scheduling

    Get PDF
    The Grid technology is evolving into a global, service-orientated architecture, a universal platform for delivering future high demand computational services. Strong adoption of the Grid and the utility computing concept is leading to an increasing number of Grid installations running a wide range of applications of different size and complexity. In this paper we address the problem of elivering deadline/economy based scheduling in a heterogeneous application environment using statistical properties of job historical executions and its associated meta-data. This approach is motivated by a study of six-month computational load generated by Grid applications in a multi-purpose Grid cluster serving a community of twenty e-Science projects. The observed job statistics, resource utilisation and user behaviour is discussed in the context of management approaches and models most suitable for supporting a probabilistic and autonomous scheduling architecture

    Learning scalable and transferable multi-robot/machine sequential assignment planning via graph embedding

    Full text link
    Can the success of reinforcement learning methods for simple combinatorial optimization problems be extended to multi-robot sequential assignment planning? In addition to the challenge of achieving near-optimal performance in large problems, transferability to an unseen number of robots and tasks is another key challenge for real-world applications. In this paper, we suggest a method that achieves the first success in both challenges for robot/machine scheduling problems. Our method comprises of three components. First, we show a robot scheduling problem can be expressed as a random probabilistic graphical model (PGM). We develop a mean-field inference method for random PGM and use it for Q-function inference. Second, we show that transferability can be achieved by carefully designing two-step sequential encoding of problem state. Third, we resolve the computational scalability issue of fitted Q-iteration by suggesting a heuristic auction-based Q-iteration fitting method enabled by transferability we achieved. We apply our method to discrete-time, discrete space problems (Multi-Robot Reward Collection (MRRC)) and scalably achieve 97% optimality with transferability. This optimality is maintained under stochastic contexts. By extending our method to continuous time, continuous space formulation, we claim to be the first learning-based method with scalable performance among multi-machine scheduling problems; our method scalability achieves comparable performance to popular metaheuristics in Identical parallel machine scheduling (IPMS) problems

    A fast, effective local search for scheduling independent jobs in heterogeneous computing environments

    Get PDF
    The efficient scheduling of independent computational jobs in a heterogeneous computing (HC) environment is an important problem in domains such as grid computing. Finding optimal schedules for such an environment is (in general) an NP-hard problem, and so heuristic approaches must be used. Work with other NP-hard problems has shown that solutions found by heuristic algorithms can often be improved by applying local search procedures to the solution found. This paper describes a simple but effective local search procedure for scheduling independent jobs in HC environments which, when combined with fast construction heuristics, can find shorter schedules on benchmark problems than other solution techniques found in the literature, and in significantly less time
    • …
    corecore