

J.M. Corchado et al. (Eds.): DCAI 2008, ASC 50, pp. 1–10, 2009.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

A Simulated Annealing Method to Cover Dynamic
Load Balancing in Grid Environment

Mauricio Paletta1 and Pilar Herrero2

1 Departamento de Ciencia y Tecnología, Universidad Nacional Experimental de Guayana, Av.
 Atlántico, Ciudad Guayana, Venezuela
 mpaletta@uneg.edu.ve
2 Facultad de Informática. Universidad Politécnica de Madrid, Campus de Montegancedo S/N,
 28.660 Boadilla del Monte, Madrid, Spain
 pherrero@fi.upm.es

Abstract. High-performance scheduling is critical to the achievement of application performance
on the computational grid. New scheduling algorithms are in demand for addressing new concerns
arising in the grid environment. One of the main phases of scheduling on a grid is related to the
load balancing problem therefore having a high-performance method to deal with the load balanc-
ing problem is essential to obtain a satisfactory high-performance scheduling. This paper presents
SAGE, a new high-performance method to cover the dynamic load balancing problem by means
of a simulated annealing algorithm. Even though this problem has been addressed with several
different approaches only one of these methods is related with simulated annealing algorithm.
Preliminary results show that SAGE not only makes it possible to find a good solution to the
problem (effectiveness) but also in a reasonable amount of time (efficiency).

Keywords: Grid Computing, load-balancing, Simulated Annealing.

1 Introduction

Grid Computing (GC) [5, 11] emerged in the mid 1990s as an alternative to design
distributed computing infrastructure for sharing resources. With the evolution of the
computational grid, new scheduling algorithms are in demand for addressing new
concerns arising in the grid environment. In this environment the scheduling problem
is to schedule a stream of applications from different users to a set of computing re-
sources to maximize system utilization [10].

But, the complexity of scheduling problem increases with the size of the grid and
becomes highly difficult to solve effectively, so that the developed of techniques that
provide an optimal or near optimal solution for large grids has been required [9]. In
this sense, high-performance schedulers become a critical part of the programming
environment for the computational grid, and therefore an area of very active research
and development is evolving [3]

In the same order of ideas, there are three main phases of scheduling on a grid [8]: 1)
resource discovery, which generates a list of potential resources; 2) gathering information
about those resources and choosing the best set to match the application requirements
(load-balancing problem); 3) task execution, which includes file staging and cleanup.

A load-balancing strategy, which relates with the second phase of scheduling on a
grid, deals with partitioning a program into smaller tasks that can be executed concur-
rently and mapping each of these tasks to a computational resource (this problem is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad...

https://core.ac.uk/display/148654979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 M. Paletta and P. Herrero

also known as task allocation or mapping problem). An efficient load balancing strat-
egy avoids the situation where some resources are idle while others have multiple jobs
queued up. Therefore, by developing strategies that can map these tasks to resources
in a way that balances out the load, the total processing time will be reduced with
improving the utilization of these resources.

In this sense, having a high-performance method to deal with the load-balancing
problem related with the scheduling on a grid is an important part the programming
environment for the computational grid should take into consideration.

On the other hand, and due to the fact that load-balancing is a combinatorial optimi-
zation problem the use of heuristics is useful to cope in practice with its difficulty [9].
Most of the research on load-balancing strategy in particular, and scheduling in general,
focused on static scenarios that, in most of the cases, employ heuristic methods (see next
section for details). Although static techniques have proved effectiveness, the dynamic
nature of the grid requires effective and efficient dynamic allocation of available re-
sources techniques, even though there is often a trade-off between solution quality and
speed in achieving a solution [18].

This paper presents a new heuristic method designed to solve the dynamic load-
balancing problem in grid environments. This method, called SAGE (Simulated
Annealing to cover dynamic load balancing in Grid Environment), is a dynamic load-
balancing method based on Simulated Annealing (SA) algorithm that is properly
configured and developed whereby optimal or near-optimal task allocations can
“evolve” during the operation of the grid system.

As part of the SA configuration, a valid representation of the current state of the grid
environment must be defined. In this case the specifications given by Herrero et al in
[13, 14] are used to do this. Thus, the results of preliminary experiments obtained using
a test application and presented in this paper may be associated with possible results to
achieve in real or simulated grid environments. These results show that SAGE not only
makes it possible to find a good solution to the problem but also in a reasonable amount
of time, obtaining the high-performance feature it is looking for.

SAGE could be integrated in any grid model as CAM [14] (Collabora-
tive/Cooperative Awareness Management), specifically in the scheduling management
component, with the aim to give an alternative way to deal with the load-balancing
problem in grid environments. So that, users from existing grid models, in general, may
benefit with another way to deal the load-balancing problem and decide which algo-
rithm to use according to the results obtained.

The paper is organized as follow. Section 2 presents the existing related work in
the area, a briefly description of the SA algorithm is presented in section 3, section 4
presents SAGE, results of some experimental tests are presented in section 5. Finally,
section 6 exposes the paper conclusions as well as the future work related with this
research.

2 Related Work

Intensive research has been done in the area of scheduling algorithms for grid com-
puting and many results have been widely accepted. An interesting reading on the
state of the art about this area is given by Fangpeng et al in [7].

 A Simulated Annealing Method to Cover Dynamic Load Balancing 3

Some heuristic approaches for this problem include local search [20], Tabu Search
[1], genetic algorithms [1, 12, 22, 24], Ant Colony Optimization (ACO) algorithm
[10, 17], intelligent agents [6, 13], particle swarm optimization [2], fuzzy based
scheduling [16], economic-based approaches [5], Multi-Objective Evolutionary Algo-
rithm (MOEA), and Great Deluge (GD) algorithm [18]. Regard to SA who is the
subject in which the proposal presented in this paper was designed, some approaches
can be reviewed in [1, 4, 21, 23]. The main difference between these previous SA-
based works and SAGE is that they are offline methods (tasks are collected in a set
and after that they are scheduled) and SAGE is designed to be an online method
(every time a new task has to be executed it is scheduled based on current conditions).

Next section presents a briefly description of the SA method including the ele-
ments that are needed to define for solving combinatorial optimization problems using
this method.

3 SA Method

SA [15, 19] is a random-search technique (a generalization of a Monte Carlo method)
which exploits an analogy between the way in which a metal cools and freezes into a
minimum energy crystalline structure (the annealing process) and the search for a
minimum in a more general system; it forms the basis of an optimization technique
for combinatorial and other problems. The concept originates from the way in which
crystalline structures are brought to more ordered states by an “annealing process” of
repeated heating and slowly cooling the structures.

In SA, a system is initialized at a temperature T with some configuration whose
energy is evaluated to be E. A new configuration is constructed by applying a random
change, and the change in energy dE is computed. The new configuration is uncondi-
tionally accepted if it lowers the energy of the system. If the energy of the system is
increased by the change, the new configuration is accepted depending on the probabil-
ity distribution of Boltzmann [19]; this process is repeated sufficient times at the cur-
rent temperature to sample the search space; then the temperature is decreased; the
process is repeated at the successively lower temperatures until a frozen state is
achieved.

This procedure allows the system to move to lower energy states, while still jump-
ing out of local minima (especially at higher temperatures) due to the probabilistic
acceptance of some upward moves. SA theory states that if temperature is lowered
sufficiently slowly (by carefully controlling the rate of cooling), the solid will reach
thermal equilibrium, which is an optimal state (global optimum).

To solve a problem through this strategy it is necessary to define the following
elements:

1) The representation of a valid solution to the problem.
2) The cost function (energy) that measures the quality of each solution.
3) The mechanism of transition of the space of solutions from t to t+1 (dynamic

of the model).
4) The parameters that control the rate of cooling.

4 M. Paletta and P. Herrero

Next section presents the way in which these four elements are defined according
to the load-balancing problem in grid environments to have a high-performance
method to cover this problem.

4 SAGE: A SA Based Method to Cover Load Balancing in Grid
Environments

4.1 The Grid Model

The grid specifications considered in this study can be reviewed in detail in [13, 14].
The distributed environment DE is composed of n hosts hi (1 ≤ i ≤ n) each composed
of several computational resources rj each of a specific type (CPU power, memory,
disk space, knowledge, etc.). If the following statements are considered:

1) There is a maximum of m types or classes of resources (1 ≤ j ≤ m).
2) A particular host hi may have more than one resource of the same type.
3) A particular host hi may not have a resource for a specific type.

nmnn

m

m

ffh

ffh

rr

DE

L

MOMM

L

L

1

1111

1

:

:
=

(1)

⎪⎩

⎪
⎨

⎧
=

availablenot isor saturated is resource the,

 available is resource theofpart ,

 available is resource entire ,

Null

Medium

Maximum

fij

(2)

Then and as can be seen in (1), DE can be represented using a matrix with n rows
and m columns; each row represents a host with the corresponding vector of re-
sources; each column is associated with a specific type of resource. In this sense a
particular item fij of the matrix corresponds to the degree in which the resource type rj
of the host hi is being used at a given time. As can be seen in (2) there are three possi-
ble values for setting each fij: Maximum when hi has at the disposal all the resource
associated to the type rj; Medium when hi has at the disposal only a part of the re-
source associated to the type rj, and Null when hi has not resources rj at the disposal
either because it is saturated or because it is not available in hi.

A task T who needs resources from this grid-based system is composed by a collec-
tion of processes pk each associated with the resource type necessary to complete the
specific process. So that, T can be seen as a vector of p elements each associated to a
valid value that represents a resource type:

mppkkppT kp ≤≤≤≤∀= 1 ,1 , ;),,(1 K (3)

In this sense, the load-balancing problem related to this system is as follows: for
any task T, looks a valid relationship (given by the resource type) between all the
processes pk of T according to the current state of DE, and considering the following
statements:

 A Simulated Annealing Method to Cover Dynamic Load Balancing 5

1) It must be done dynamically, so in a reasonable time.
2) It must be done considering the load-balancing of each host.
3) It must be done considering the load-balancing of each resource type.

In other words, it is necessary to find, in a efficient, effective and dynamical way,
what fij(t) must be changed for each pk in order to obtain the new state of DE or
DE(t+1).

4.2 Representing a Valid Solution

A solution S for this problem is represented with a vector of size p; each element sl (1
≤ l ≤ p) has the host in which the process pl of T has been assigned. So that, the value
of sl is the row index i and the value of pl is the column index j for the element fij of
DE in which the process l has been assigned.

This way, having the task T = (p1,…,pp) and the solution S = (s1,…,sp) it is possible
to know all the fij involved in the distribution of the p processes of T among the n
hosts of DE.

4.3 Measuring a Solution

As was previously read in Section 3, one of the elements to define for using the SA
strategy is the cost function or energy that measures the quality of a specific solution.
In this sense the following statements are considered:

1) While lower energy (system temperature) is better quality in the solution.
2) Energy is directly proportional to the current state of the resources.
3) There should be a restriction to balance the type of resources of each host.
4) There should be a restriction to balance the hosts of each type of resource.

First, it is necessary to define values for measuring the current state of the re-
sources. Due to the fact that energy or solution quality is directly proportional to the
current state of the resources, these values are defined according to the following
guidelines:

1) Reward (low or no energy) to those resources that are full available.
2) Punish (high energy) those that are saturated.
3) Severely punish (very high energy) invalid situations (a solution which assigns

a process to a saturated or not available resource).

If “τ(x)” is the function that transforms the current state fij of a resource then:

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
=
=

=

 caseother ,5

 ,2

 ,1

 ,0

)(τ
Nullf

Mediumf

Maximumf

f
ij

ij

ij

ij

(4)

Therefore, minimum energy εm (top quality) from the current state of DE depends
on the accumulated resource use:

∑=
mn

ji
ijm fDE

,

,

)(τ)(ε (5)

6 M. Paletta and P. Herrero

To define restrictions for balancing the type of resources of each host and the hosts
of each type of resource, Thi is the current resource accumulated for the host hi (sum
of the elements of the row i in DE) and Trj is the current host accumulated for the
resource type rj (sum of the elements of the column j in DE):

∑
=

=
m

j
iji fTh

1

)(τ (6)

)(τ
1

ij

n

i
j fTr ∑

=

=

(7)

Therefore, for balancing the resources from the same host hi their values are in the
order of Thi / n, and for balancing the hosts from the same resource type rj their values
are in the order of Trj / m. Any difference to these values must be considered in the
calculation of the restrictions. Using: 1) squares to handle the negative differences, 2)
adjustment factors μ and δ to determine the degree of importance which we want to
consider each restriction, and 3) divided between 2 to facilitate the derivation of the
term, the restrictions Ψ1 and Ψ2 are defined as follow:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −=Ψ ∑ ∑
= =

m

j

n

i
ijj fnTr

1 1

2
1))(τ(

2

μ (8)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Ψ ∑ ∑

= =

n

i

m

j
iji fmTh

1 1

2
2))(τ(

2

δ

(9)

Finally, for a current situation of DE at time t and a specific solution S the energy
of the system with these conditions is calculated as follow:

21 ΨΨ)(ε
2
1

)),((ε ++= DEStDE m
 (10)

4.4 The Mechanism of Transition and Cooling Control Parameters

The rules governing change of DE between time t to t+1 in the dynamic of the system
affect only those resources fij that have been assigned with any process in the optimal
solution S obtained once a SA iteration was executed. In this sense, the new values are
calculated according to the following statements:

1) fij(t) = Maximum ⇒ fij(t+1) = Medium.
2) fij(t) = Medium ⇒ fij(t+1) = Null.
3) fij(t) = other case ⇒ fij(t+1) = other case.

The first mapping or tentative solution S is generated from a uniform random dis-
tribution. The mapping is mutated randomly changing the host of a specific process,
and the new solution is evaluated. If the new solution is better (less energy), it re-
places the old one. If the new solution is worse, it is accepted depending on the prob-
ability distribution of Boltzmann. After each mutation, the system temperature is
reduced to 95% of its current value. The heuristic stops when there is no change in the
solution for 5 iterations or the system temperature approaches a value closes to zero

 A Simulated Annealing Method to Cover Dynamic Load Balancing 7

or the total of iterations reaches the value of n x m x p. The initial value of the tem-
perature is equal to n x m.

Next section presents some experimental results based on the efficiency and effec-
tiveness of the method previously defined.

5 Experimental Results

The results presented in this section are taken from a testing experimental application
which is possible to indicate the number of hosts n, the number of resources types m,
the maximum number of processes p for a task T, the initial state (null or random) of
DE, and the values for the adjustment factors μ and δ for both restrictions. The hard-
ware where the tests were done is 2.16GHz and 2 GB RAM.

Fig. 1 shows a screen shot of the testing application. At the bottom left is the ma-
trix DE in the current state (6 hosts and 10 resource types in the example); at the
bottom right are the current results of balancing including run time in the process
execution (1 sec.). As it can be seen in the results all processes were assigned to
resources that were in a state equal to Maximum (value of 0) which is the optimal
situation for this problem.

Fig. 1. A screen shot of the application for testing the method

Fig. 2. Execution times with m = 10, p = 5 and n ∈ {5,10,15,20,25,30}

8 M. Paletta and P. Herrero

It is important to mention that all parameters can be changed dynamically previous
to execute the balancing algorithm, as for example to increment the number of hosts
in the system. Fig. 2 shows the execution times (in seconds) to obtain an optimal
solution or close to the optimum of a grid with 10 different types of resources, tasks
composed by 5 processes and varying the number of hosts from 5 to 30 (5 in 5).

6 Conclusions and Future Work

In this paper we present SAGE, a SA based method to cover dynamic load-balancing
problem in Grid Environments. The results show that the heuristic strategy proposed
finds good solutions (closer to the optimum) in a reasonable time (a few seconds).
Therefore, this algorithms guarantees efficient and effective load-balancing of any
task requires resources from a grid-based system and it also can be applied in dy-
namic way.

Even though this method has not yet been tested neither in a real grid environment
nor a grid environment simulation, the manner in which the current state of a grid
environment is represented is suitable for real grid environments. Therefore it is ex-
pected that the results of preliminary experiments are also achieved in real scenarios.

We are working on the term for calculating the energy that can be adapted to meet
other needs in the scheduling problem of a grid. As a future work we will handle a
large scale of possibilities for the degree in which the resource types are being used at
a given time, as for example using fuzzy logic techniques. We are also working on
integrating this algorithm in simulated applications schedulers by using grid modeling
and simulating toolkit to obtain more accurate results in experiments and compare
them with other similar work.

References

1. Abraham, A., Buyya, R., Nath, B.: Nature’s Heuristics for Scheduling Jobs in Computa-
tional Grids. In: Sinha, P.S., Gupta, R. (eds.) Proc. 8th IEEE International Conference on
Advanced Computing and Communications (ADCOM2000), pp. 45–52. Tata McGraw-
Hill Publishing Co. Ltd, New Delhi (2000)

2. Abraham, A., Liu, H., Zhang, W., Chang, T.G.: Scheduling Jobs on Computational Grids
Using Fuzzy Particle Swarm Algorithm. In: Proc. of 10th International Conference on
Knowledge-Based & Intelligent Information & Engineering Systems, England, pp. 500–
507 (2006)

3. Berman, F.: High-performance schedulers. In: The Grid: Blueprint for a New Computing
Infrastructure, pp. 279–309. Morgan Kaufmann, San Francisco (1999)

4. Braun, R., Siegel, H., Beck, N., Boloni, L., Maheswaran, M., Reuther, A., Robertson, J.,
Theys, M., Yao, B., Hensgen, D., Freund, R.: A Comparison of Eleven Static Heuristics
for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing
Systems. Journal of Parallel and Distributed Computing 61(6), 810–837 (2001)

5. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic Models for Resource Man-
agement and Scheduling in Grid Computing. Journal of Concurrency and Computation:
Practice and Experience 14(13-15), 1507–1542 (2002)

 A Simulated Annealing Method to Cover Dynamic Load Balancing 9

6. Cao, J., Spooner, D.P., Jarvis, S.A., Nudd, G.R.: Grid load balancing using intelligent
agents. Future Generation Computer Systems 21(1), 135–149 (2005)

7. Fangpeng, D., Selim, G.A.: Scheduling Algorithms for Grid Computing: State of the Art
and Open Problems Technical Report No. 2006-504, Queen’s University, Canada, 55
pages (2006),
http://www.cs.queensu.ca/TechReports/Reports/2006-504.pdf

8. Fernandez-Baca, D.: Allocating Modules to Processors in a Distributed System. IEEE
Transactions on Software Engineering 15(11), 1427–1436 (1989)

9. Fidanova, S.: Simulated Annealing for Grid Scheduling Problem. In: Proc. IEEE John
Vincent Atanasoff International Symposium on Modern Computing (JVA 06),
10.1109/JVA.2006.44, pp. 41–44 (2006)

10. Fidanova, S., Durchova, M.: Ant Algorithm for Grid Scheduling Problem. In: Lirkov, I.,
Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 405–412. Springer,
Heidelberg (2006)

11. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer applications and High Performance
Computing 15(3), 200–222 (2001)

12. Grosan, C., Abraham, A., Helvik, B.: Multiobjective Evolutionary Algorithms for Sched-
uling Jobs on Computational Grids. In: Guimares, N., Isaias, P. (eds.) IADIS International
Conference, Applied Computing 2007, Salamanca, Spain, pp. 459–463 (2007) ISBN: 978-
972-8924-30-0

13. Herrero, P., Bosque, J.L., Pérez, M.S.: An Agents-Based Cooperative Awareness Model to
Cover Load Balancing Delivery in Grid Environments. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM-WS 2007, Part I. LNCS, vol. 4805, pp. 64–74. Springer, Heidel-
berg (2007)

14. Herrero, P., Bosque, J.L., Pérez, M.S.: Managing Dynamic Virtual Organizations to get
Effective Cooperation in Collaborative Grid Environments. In: Meersman, R., Tari, Z.
(eds.) OTM 2007, Part II. LNCS, vol. 4804, pp. 1435–1452. Springer, Heidelberg (2007)

15. Kirkpatrick, S.: Optimization by Simulated Annealing: Quantitative Studies. Journal of
Statistical Physics 34(5-6), 975–986 (1984)

16. Kumar, K.P., Agarwal, A., Krishnan, R.: Fuzzy based resource management framework
for high throughput computing. In: Proc. of the 2004 IEEE International Symposium on
Cluster Computing and the Grid, pp. 555–562 (2004)

17. Lorpunmanee, S., Sap, M.N., Abdullah, A.H., Chompoo-inwai, C.: An Ant Colony Opti-
mization for Dynamic Job Scheduling in Grid Environment. International Journal of Com-
puter and Information Science and Engineering 1(4), 207–214 (2007)

18. McMullan, P., McCollum, B.: Dynamic Job Scheduling on the Grid Environment Using
the Great Deluge Algorithm. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp.
283–292. Springer, Heidelberg (2007)

19. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of
state calculations by fast computing machines. Journal of Chemical Physics 21(6), 1087–
1091 (1953)

20. Ritchie, G., Levine, J.: A fast, effective local search for scheduling independent jobs in
heterogeneous computing environments, Technical report, Centre for Intelligent Systems
and their Applications, School of Informatics, University of Edinburgh (2003)

21. Yarkhan, A., Dongarra, J.: Experiments with Scheduling Using Simulated Annealing in a
Grid Environment. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536, pp. 232–242.
Springer, Heidelberg (2002)

10 M. Paletta and P. Herrero

22. Ye, G., Rao, R., Li, M.: A Multiobjective Resources Scheduling Approach Based on Ge-
netic Algorithms in Grid Environment. In: Fifth International Conference on Grid and Co-
operative Computing Workshops, pp. 504–509 (2006)

23. Young, L., McGough, S., Newhouse, S., Darlington, J.: Scheduling Architecture and Al-
gorithms within the ICENI Grid Middleware. In: Proc. of UK e-Science All Hands Meet-
ing, Nottingham, pp. 5–12 (2003)

24. Zomaya, A.Y.: The YH (2001) Observations on using genetic algorithms for dynamic
load-balancing. IEEE Transactions On Parallel and Distributed Systems 12(9), 899–911
(2001)

	A Simulated Annealing Method to Cover Dynamic Load Balancing in Grid Environment
	Introduction
	Related Work
	SA Method
	SAGE: A SA Based Method to Cover Load Balancing in Grid Environments
	The Grid Model
	Representing a Valid Solution
	Measuring a Solution
	The Mechanism of Transition and Cooling Control Parameters

	Experimental Results
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

