4,813 research outputs found

    Assessment of RANS turbulence models and Zwart cavitation model empirical coefficients for the simulation of unsteady cloud cavitation

    Get PDF
    The numerical simulation of unsteady cavitation flows is sensitive to the selected models and associated parameters. Consequently, three Reynolds Average Navier-Stokes (RANS) turbulence models and the Zwart cavitation model were selected to assess their performance for the simulation of cloud cavitation on 2D hydrofoils. The experimental cavitation tests from a NACA65012 hydrofoil at different hydrodynamic conditions were used as a reference to tune the modeling parameters and the experimental tests from a NACA0015 were finally used to validate them. The effects of near wall grid refinement, time step, iterations and mesh elements were also investigated. The results indicate that the Shear Stress Transport (SST) model is sensitive to near wall grid resolution which should be fine enough. Moreover, the cavitation morphology and dynamic behavior are sensitive to the selection of the Zwart empirical vaporization, Fv, and condensation, Fc, coefficients. Therefore, a multiple linear regression approach with the single objective of predicting the shedding frequency was carried out that permitted to find the range of coefficient values giving the most accurate results. In addition, it was observed that they provided a better prediction of the vapor volume fraction and of the instantaneous pressure pulse generated by the main cloud cavity collapse.Postprint (published version

    Municipal wastewater treatment with pond technology : historical review and future outlook

    No full text
    Facing an unprecedented population growth, it is difficult to overstress the assets for wastewater treatment of waste stabilization ponds (WSPs), i.e. high removal efficiency, simplicity, and low cost, which have been recognized by numerous scientists and operators. However, stricter discharge standards, changes in wastewater compounds, high emissions of greenhouse gases, and elevated land prices have led to their replacements in many places. This review aims at delivering a comprehensive overview of the historical development and current state of WSPs, and providing further insights to deal with their limitations in the future. The 21st century is witnessing changes in the way of approaching conventional problems in pond technology, in which WSPs should no longer be considered as a low treatment technology. Advanced models and technologies have been integrated for better design, control, and management. The roles of algae, which have been crucial as solar-powered aeration, will continue being a key solution. Yet, the separation of suspended algae to avoid deterioration of the effluent remains a major challenge in WSPs while in the case of high algal rate pond, further research is needed to maximize algal growth yield, select proper strains, and optimize harvesting methods to put algal biomass production in practice. Significant gaps need to be filled in understanding mechanisms of greenhouse gas emission, climate change mitigation, pond ecosystem services, and the fate and toxicity of emerging contaminants. From these insights, adaptation strategies are developed to deal with new opportunities and future challenges

    Hydrolink 2016/2. Hydraulics Wastewater Treatment

    Get PDF
    Topic: Hydraulics Wastewater Treatmen

    Short CFD simulation activities in the context of fluid-mechanical learning in a multidisciplinary student body

    Get PDF
    17 p.Simulation activities are a useful tool to improve competence in industrial engineering bachelors. Specifically, fluid simulation allows students to acquire important skills to strengthen their theoretical knowledge and improve their future professional career. However, these tools usually require long training times and they are usually not available in the subjects of B.Sc. degrees. In this article, a new methodology based on short lessons is raised and evaluated in the fluid-mechanical subject for students enrolled in three different bachelor degree groups: B.Sc. in Mechanical Engineering, B.Sc. in Electrical Engineering and B.Sc. in Electronic and Automatic Engineering. Statistical results show a good acceptance in terms of usability, learning, motivation, thinking over, satisfaction and scalability. Additionally, a machine-learning based approach was applied to find group peculiarities and differences among them in order to identify the need for further personalization of the learning activity.S
    corecore