13,245 research outputs found

    Facets for Art Gallery Problems

    Full text link
    The Art Gallery Problem (AGP) asks for placing a minimum number of stationary guards in a polygonal region P, such that all points in P are guarded. The problem is known to be NP-hard, and its inherent continuous structure (with both the set of points that need to be guarded and the set of points that can be used for guarding being uncountably infinite) makes it difficult to apply a straightforward formulation as an Integer Linear Program. We use an iterative primal-dual relaxation approach for solving AGP instances to optimality. At each stage, a pair of LP relaxations for a finite candidate subset of primal covering and dual packing constraints and variables is considered; these correspond to possible guard positions and points that are to be guarded. Particularly useful are cutting planes for eliminating fractional solutions. We identify two classes of facets, based on Edge Cover and Set Cover (SC) inequalities. Solving the separation problem for the latter is NP-complete, but exploiting the underlying geometric structure, we show that large subclasses of fractional SC solutions cannot occur for the AGP. This allows us to separate the relevant subset of facets in polynomial time. We also characterize all facets for finite AGP relaxations with coefficients in {0, 1, 2}. Finally, we demonstrate the practical usefulness of our approach. Our cutting plane technique yields a significant improvement in terms of speed and solution quality due to considerably reduced integrality gaps as compared to the approach by Kr\"oller et al.Comment: 29 pages, 18 figures, 1 tabl

    Phase Transitions of the Typical Algorithmic Complexity of the Random Satisfiability Problem Studied with Linear Programming

    Full text link
    Here we study the NP-complete KK-SAT problem. Although the worst-case complexity of NP-complete problems is conjectured to be exponential, there exist parametrized random ensembles of problems where solutions can typically be found in polynomial time for suitable ranges of the parameter. In fact, random KK-SAT, with α=M/N\alpha=M/N as control parameter, can be solved quickly for small enough values of α\alpha. It shows a phase transition between a satisfiable phase and an unsatisfiable phase. For branch and bound algorithms, which operate in the space of feasible Boolean configurations, the empirically hardest problems are located only close to this phase transition. Here we study KK-SAT (K=3,4K=3,4) and the related optimization problem MAX-SAT by a linear programming approach, which is widely used for practical problems and allows for polynomial run time. In contrast to branch and bound it operates outside the space of feasible configurations. On the other hand, finding a solution within polynomial time is not guaranteed. We investigated several variants like including artificial objective functions, so called cutting-plane approaches, and a mapping to the NP-complete vertex-cover problem. We observed several easy-hard transitions, from where the problems are typically solvable (in polynomial time) using the given algorithms, respectively, to where they are not solvable in polynomial time. For the related vertex-cover problem on random graphs these easy-hard transitions can be identified with structural properties of the graphs, like percolation transitions. For the present random KK-SAT problem we have investigated numerous structural properties also exhibiting clear transitions, but they appear not be correlated to the here observed easy-hard transitions. This renders the behaviour of random KK-SAT more complex than, e.g., the vertex-cover problem.Comment: 11 pages, 5 figure

    Engineering Art Galleries

    Full text link
    The Art Gallery Problem is one of the most well-known problems in Computational Geometry, with a rich history in the study of algorithms, complexity, and variants. Recently there has been a surge in experimental work on the problem. In this survey, we describe this work, show the chronology of developments, and compare current algorithms, including two unpublished versions, in an exhaustive experiment. Furthermore, we show what core algorithmic ingredients have led to recent successes

    New computer-based search strategies for extreme functions of the Gomory--Johnson infinite group problem

    Full text link
    We describe new computer-based search strategies for extreme functions for the Gomory--Johnson infinite group problem. They lead to the discovery of new extreme functions, whose existence settles several open questions.Comment: 54 pages, many figure

    A heuristic approach for big bucket multi-level production planning problems

    Get PDF
    Multi-level production planning problems in which multiple items compete for the same resources frequently occur in practice, yet remain daunting in their difficulty to solve. In this paper, we propose a heuristic framework that can generate high quality feasible solutions quickly for various kinds of lot-sizing problems. In addition, unlike many other heuristics, it generates high quality lower bounds using strong formulations, and its simple scheme allows it to be easily implemented in the Xpress-Mosel modeling language. Extensive computational results from widely used test sets that include a variety of problems demonstrate the efficiency of the heuristic, particularly for challenging problems

    New results about multi-band uncertainty in Robust Optimization

    Full text link
    "The Price of Robustness" by Bertsimas and Sim represented a breakthrough in the development of a tractable robust counterpart of Linear Programming Problems. However, the central modeling assumption that the deviation band of each uncertain parameter is single may be too limitative in practice: experience indeed suggests that the deviations distribute also internally to the single band, so that getting a higher resolution by partitioning the band into multiple sub-bands seems advisable. The critical aim of our work is to close the knowledge gap about the adoption of a multi-band uncertainty set in Robust Optimization: a general definition and intensive theoretical study of a multi-band model are actually still missing. Our new developments have been also strongly inspired and encouraged by our industrial partners, which have been interested in getting a better modeling of arbitrary distributions, built on historical data of the uncertainty affecting the considered real-world problems. In this paper, we study the robust counterpart of a Linear Programming Problem with uncertain coefficient matrix, when a multi-band uncertainty set is considered. We first show that the robust counterpart corresponds to a compact LP formulation. Then we investigate the problem of separating cuts imposing robustness and we show that the separation can be efficiently operated by solving a min-cost flow problem. Finally, we test the performance of our new approach to Robust Optimization on realistic instances of a Wireless Network Design Problem subject to uncertainty.Comment: 15 pages. The present paper is a revised version of the one appeared in the Proceedings of SEA 201

    Airline crew scheduling

    Get PDF
    An airline must cover each flight leg with a full complement of cabin crew in a manner consistent with safety regulations and award requirements. Methods are investigated for solving the set partitioning and covering problem. A test example illustrates the problem and the use of heuristics. The Study Group achieved an understanding of the problem and a plan for further work
    corecore