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A Heuristic Approach for Big Bucket Multi-Level

Production Planning Problems

Kerem Akartunalı∗ Andrew J. Miller†

6 November 2007

Abstract

Multi-level production planning problems in which multiple items compete for the
same resources frequently occur in practice, yet remain daunting in their difficulty to
solve. In this paper we propose a heuristic framework that can generate high quality
feasible solutions quickly for various kinds of lot-sizing problems. In addition, unlike
many other heuristics, it generates high quality lower bounds using strong formula-
tions, and its simple scheme allows it to be easily implemented in the Xpress-Mosel
modeling language. Extensive computational results from widely used test sets that
include a variety of problems demonstrate the efficiency of the heuristic, particularly
for challenging problems.

Keywords: Integer Programming, Production Planning, Heuristics, Relax-and-Fix,
Strong Formulations

1 Introduction

Production planning problems occur often in manufacturing environments and have therefore
interested researchers and practitioners for decades. The early MRP (Materials Requirement
Planning) approach, while accounting for bill-of-material structures, follows decision rules
that are too simple to achieve feasible plans (let alone high quality plans) consistently, par-
ticularly due to not taking capacity constraints into account. The more advanced systems of
MRP-II (Manufacturing resource planning) and ERP (Enterprise Resource Planning) com-
bine different methodologies such as MRP and aggregate planning, but they fail to account
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accurately for capacity. In this paper, we investigate multi-level capacitated production plan-
ning problems, for which MRP-II and ERP systems aim to find feasible production plans.
Pochet and Wolsey [2006] give extensive details on the production planning, and Hoppe and
Spearman [2000] explain MRP and ERP models in detail.

Since the seminal paper of Wagner and Whitin [1958] in 1958 on the uncapacitated
lot-sizing problem, various forms of production planning problems have been investigated.
Even though some special cases of lot-sizing problems can be solved in polynomial time
(e.g. Florian and Klein [1971], Federgruen and Tzur [1991], Aggarwal and Park [1993] and
van Hoesel and Wagelmans [1996]), real-world problems are much more complicated and
computationally challenging, therefore more efficient methods are needed to tackle these
difficulties. Moreover, the capacitated version of even the single-item lot-sizing problem
is NP-hard (Florian et al. [1980]), so these problems are also theoretically hard to solve.
Given deterministic demand and other parameters such as inventory holding, production,
and setup costs, lot-sizing problems seek a minimum-cost production plan that satisfies all
the constraints of the finite horizon under consideration.

The solution approaches proposed so far for these problems vary from exact approaches
based on mathematical programming to heuristic methods. Mathematical programming
attempts to improve the formulations so that these can be solved faster and more efficiently,
and in principle, these methods provide exact solutions with lower bounds. On the other
hand, heuristics are practical methods to quickly discover good solutions, not necessarily the
best, and these methods usually do not provide lower bounds that would guarantee solution
quality.

1.1 Mathematical Programming Approaches

Mathematical programming provides tools for exact solution approaches for MIP problems,
and we will give an overview of such approaches for production planning models. For produc-
tion planning problems, polyhedral analysis has been useful in attempts to solve challenging
models and to provide strong lower bounds. The first group of these exact methods strength-
ens the original formulation by adding valid inequalities. Barany et al. [1984a] propose valid
inequalities that define the polytope of the single-item uncapacitated lot-sizing problem,
which are also used for the strong formulation obtained in our framework. The capacitated
problem with start-up costs is studied by Constantino [1996]. There are insightful polyhe-
dral studies about some special cases of the single-item problem, see e.g. Pochet and Wolsey
[1988], Pochet and Wolsey [1994] and Loparic et al. [2001]. Atamtürk and Muñoz [2004]
investigate the bottleneck cover structure of single-item capacitated problems in their recent
polyhedral study.

The second group of exact methods use extended reformulations of the model, which
basically adds new variables to the problem to strengthen it. Krarup and Bilde [1977]
provide a facility location reformulation of the problem, Eppen and Martin [1987] propose
the shortest path reformulation which is equivalent to the facility location reformulation but
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is smaller in size. Rardin and Wolsey [1993] define multicommodity reformulations for fixed
charge network flow problems, which give stronger reformulations than the facility location
reformulation for the multi-level lot-sizing problem. See also Belvaux and Wolsey [2001] and
Wolsey [2002] for recent studies considering reformulation and modeling issues.

Although Pochet and Wolsey [1991] and Belvaux and Wolsey [2000] extend some of
the single-item problem results to big-bucket problems, the current literature on strong
formulations for big-bucket problems is limited. An exception is the study of multi-item
problems in Miller et al. [2000] and Miller et al. [2003].

1.2 Production Planning Heuristics

Problem-specific heuristic algorithms have been proposed and used for complex, realistic
lot-sizing problems, such as multi-level, capacitated problems. For a detailed study with
comparisons of earlier lot-sizing heuristics, see Maes and van Wassenhove [1986]. Many
heuristic approaches use decomposition ideas, and can be grouped as follows: 1) Lagrangian-
based decomposition: Trigeiro et al. [1989] and Tempelmeier and Derstroff [1996] are primary
examples for this group of heuristics. 2) Coefficient modification: Katok et al. [1998] propose
a two-stage heuristic, where coefficient modification is used for finding an initial solution,
and restricted LP relaxations of the second stage try to improve the initial solution. Van
Vyve and Pochet [2004] propose a coefficient modification based heuristic algorithm to be
used within branch-and-cut. 3) Forward scheme and Relax-and-fix: Afentakis and Gavish
[1986] work on complicated BOM (Bills of Material) structures and use a forward scheme to
obtain solutions while using Lagrangian relaxation for lower bounds. Belvaux and Wolsey
[2000] solve practical lot-sizing problems using a special branch-and-cut system that employs
relax-and-fix heuristics. Stadtler [2003] and Federgruen et al. [2007] primarily use the idea of
“time windows” in their frameworks. Note that our approach also uses relax-and-fix idea. 4)
Local search: A good example is the neighborhood search heuristic of Simpson and Erenguc
[2005].

1.3 General MIP Heuristics

Real-world MIP problems are often computationally very difficult, hence researchers have
often used heuristic approaches to tackle them. Heuristics can be classified as “Improvement
Heuristics” (i.e. start with a solution and try to improve it) and “Constructive Heuristics”
(i.e. start with no solution and try to find one).

Even though there are many problem-specific heuristics in the MIP literature, there are
comparatively few general MIP heuristics. Recent general MIP heuristics include “Local
Branching” by Fischetti and Lodi [2003], which uses the idea of branching on the neighbor-
hoods of the current MIP solution, and “Relaxation Induced Neighborhood Search” (RINS)
by Danna et al. [2005], which searches the neighborhood between the LP relaxation solution
and the current MIP solution. The “Feasibility Pump” of Fischetti et al. [2005] provides a
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framework designed for finding initial feasible solutions for very hard problems, and Balas
et al. [2001] enumerate facets to find solutions for pure 0-1 problems. For a general review
of MIP heuristics, such as LP-and-fix and relax-and-fix, refer to Pochet and Wolsey [2006],
pp. 107-113.

1.4 Organization of the Paper

The approach we propose in this paper is a decomposition-based framework that incorporates
strengthened formulations and ideas used in general MIP heuristics. Our approach is simple
and flexible enough to apply to a variety of production planning problems.

In Section 2, we give the basic formulation of the problem, and we also discuss some
generalizations of the problem since our goal is to define a heuristic flexible enough to handle
many kinds of problems. In Section 3, we discuss strengthened formulations for big bucket
problems. Section 4 covers the general MIP heuristic methods that we use in our framework.
Section 5 is devoted to the explanation of the framework of the proposed heuristic and any
options that may be used. In Section 6, we present extensive computational results obtained
using a number of published data sets. Finally, we conclude with future directions in Section
7.

2 Problem Formulation

We consider the general multi-level lot-sizing problem, where the objective is to minimize
the total cost. In order to achieve the optimal plan, production and inventory quantities,
as well as setup decisions, have to be determined. While doing so, capacities should not
be exceeded and demand should be satisfied. Before providing the basic formulation of the
problem, we will present the notation.

Indices and Sets:

NT Number of periods
NI Number of items
NK Number of machines
endp Set of all the end-items (items with external demand)
δ(i) Set of immediate successors of item i

Variables:

xi
t Production variable for item i in period t

yi
t Setup variable for item i in period t

si
t Inventory holding variable for item i in period t
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Parameters:

f i Setup cost for item i (per setup)
hi Inventory holding cost for item i (per unit, per period)
di

t Demand for end-product i in period t

di
t,t′ Total demand for end-product i from period t to t′, i.e., di

t,t′ =
∑t′

t̄=t dt̄

rij Number of items required of i to produce one unit of j

ai
k Variable time necessary to produce one unit of i on machine k

ST i
k Setup time for item i on machine k

Ck Capacity of machine k

Then, the formulation of the problem follows:

min

NT∑

t=1

NI∑

i=1

f iyi
t +

NT∑

t=1

NI∑

i=1

hisi
t (1)

s.t. xi
t + si

t−1 − si
t = di

t t ∈ [1, NT ], i ∈ endp (2)

xi
t + si

t−1 − si
t =

∑

j∈δ(i)

rijx
j
t t ∈ [1, NT ], i ∈ [1, NI]\endp (3)

NI∑

i=1

(ai
kx

i
t + ST i

ky
i
t) ≤ Ck t ∈ [1, NT ], k ∈ [1, NK] (4)

xi
t ≤ M i

ty
i
t t ∈ [1, NT ], i ∈ [1, NI] (5)

y ∈ {0, 1}NTxNI (6)

x ≥ 0NTxNI (7)

s ≥ 0NTxNI (8)

Here M i
t is the maximum amount of item i that can be produced in t, and can be defined

formally as follows:

M i
t = min(di

t,NT ,
Ck − ST i

k

ai
k

) i ∈ endp

M i
t = min(

∑

j∈endp

rijd
j
t,NT ,

Ck − ST i
k

ai
k

) i ∈ [1, NI]\endp

Constraints (2) and (3) ensure the production balance and demand satisfaction for end-
items and other items respectively, (4) are the capacity constraints, (5) ensure that the setup
variables are set to be 1 if there is positive production, and finally (6), (7) and (8) provide
the integrality and nonnegativity requirements.
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For an alternative formulation of the problem, we define echelon demand parameters Di
t

and echelon stock variables Ei
t as follows:

Di
t = di

t +
∑

j∈δ(i)

rijD
j
t t ∈ [1, NT ], i ∈ [1, NI] (9)

Ei
t = si

t +
∑

j∈δ(i)

rijE
j
t t ∈ [1, NT ], i ∈ [1, NI] (10)

Note that echelon and original demands and stocks are equal for the end-items. Sub-
stituting (10) into (2) and (3) for si

t, and using the definition (9), we obtain the following
equation, which can replace (2) and (3) in the original formulation:

xi
t + Ei

t−1 − Ei
t = Di

t t ∈ [1, NT ], i ∈ [1, NI] (11)

To satisfy (8), we can define the following constraint:

Ei
t ≥

∑

j∈δ(i)

rijE
j
t t ∈ [1, NT ], i ∈ [1, NI] (12)

Finally, to eliminate the original inventory variables s, we define echelon inventory holding
costs as h∗j = hj −

∑
i:j∈δ(i) rijhi, and replace the objective function (1) with the following

function:

NT∑

t=1

NI∑

i=1

f iyi
t +

NT∑

t=1

NI∑

i=1

h∗i
Ei

t (13)

Hence, we can define the feasible region as X = {(x, y, E)|(4) − (7), (11), (12), E ≥ 0},
which is the echelon stock reformulation of the original formulation and will be used in the
remainder of the paper as the “basic formulation”. The problem can be then defined as:
min{(13)|(x, y, E) ∈ X}.

We could easily include the possibility of overtime in the problem statement by updating
the capacity constraint (4) and adding overtime cost to the objective function. On the
other hand, the possibility of backlogging can be incorporated into the model by defining
backlogging variables bi

t. Aside from the objective function, the only change in the initial
formulation would be the replacement of (2) with

xi
t + si

t−1 − si
t + bi

t − bi
t−1 = di

t t ∈ [1, NT ], i ∈ endp

Similarly, we can include backlogging into the echelon stock reformulation by replacing
(11) with the following set of constraints:

xi
t + Ei

t−1 − Ei
t +

∑

j∈endp

rij(bj
t − b

j
t−1) = di

t t ∈ [1, NT ], i ∈ [1, NI]
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Note also that the first term in the definition of big-M quantity used in (5) should
be updated to Di

1,NT . Other additional characteristics could be incorporated as well, and
the interested reader should refer to Pochet and Wolsey [2006] for more detail on lot-sizing
models. Some of the test problems we consider in Section 6 incorporate some of these factors.

3 Strengthening the Formulation

Next, we consider several ways to strengthen formulations, in order to provide high quality
lower bounds. First, we consider the (ℓ, S) inequalities proposed by Barany et al. [1984a]
and generalized by Pochet and Wolsey [1991] to multi-level problems using echelon stocks,
given as follows:

∑

t∈S

xi
t ≤

∑

t∈S

Di
t,ℓy

i
t + Ei

ℓ ℓ ∈ [1, NT ], i ∈ [1, NI], S ⊆ [1, ℓ] (14)

Note that because of multiple levels, (14) uses echelon demand and echelon stock variables
defined in the last section. For each item, although there are an exponential number of
(ℓ, S) inequalities, a simple polynomial separation algorithm exists (Barany et al. [1984a]).
Note that (ℓ, S) inequalities define the convex hull of the uncapacitated single-item lot-sizing
problem, see Barany et al. [1984b].

Next we discuss the facility location reformulation of Krarup and Bilde [1977] originally
proposed for single-item problems. The reformulation uses new variables ui

t,t′ . Each of these
variables indicates the amount of item i that is produced in period t to satisfy demand in
period t′. This reformulation can be applied to the problem by adding the following three
constraints into the basic formulation:

ui
t,t′ ≤ Di

t′y
i
t t ∈ [1, NT ], t′ ∈ [t, NT ], i ∈ [1, NI] (15)

t′∑

t=1

ui
t,t′ = Di

t′ t′ ∈ [1, NT ], i ∈ [1, NI] (16)

xi
t′ ≥

NT∑

t=t′

ui
t′,t t′ ∈ [1, NT ], i ∈ [1, NI] (17)

Note that the projection of the facility location reformulation onto the space of original
variables gives the convex hull of the uncapacitated single-item lot-sizing problem, see Krarup
and Bilde [1977].

Let XLS = {(x, y, E)|(4), (5), (7), (11), (12), (14), E ≥ 0, 0 ≤ y ≤ 1} and XFL = {(x, y, E,

u)| (4), (5), (7), (11), (12), (15)−(17), E ≥ 0, 0 ≤ y ≤ 1}, i.e., the LP relaxations of the multi-
level problem with all (ℓ, S) inequalities and the echelon stock facility location reformulation,
respectively.

Proposition 1 min{(13)|(x, y, E) ∈ XLS} = min{(13)|(x, y, E, u) ∈ XFL}
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In words, adding (ℓ, S) inequalities to the original formulation and using the echelon stock
facility location reformulation provide the same lower bound for the multi-level lot-sizing
problem. For the proof of the proposition, please refer to Akartunalı [2007]. The corollary
below follows immediately.

Corollary 1 The shortest path reformulation of Eppen and Martin [1987] is equivalent to
the echelon stock facility location formulation, and therefore all three formulations provide
the same lower bounds for the multi-level lot-sizing problem.

Using the fact that both shortest path and facility location reformulations define the
convex hull of the single-item uncapacitated problem (see e.g. Pochet and Wolsey [2006]),
this corollary can be proven with the same technique used for the proposition. Even though
all three methods discussed above provide the same lower bounds, the echelon stock facility
location and shortest path reformulations have the disadvantage of making the problem size
much larger than the (ℓ, S) inequalities, which are dynamically added to the formulation and
deleted if inactive. Our experience, particularly from the companion paper Akartunalı and
Miller [2007], shows that, for this reason, (ℓ, S) inequalities allow for more efficient branch-
and-bound and identifying of feasible solutions. Also note that a slightly modified family of
(ℓ, S) inequalities can be added to problems with backorders, as follows:

∑

t∈S

xi
t ≤

∑

t∈S

(Di
t,ly

i
t +

∑

j∈endp

rijb
j
t−1) + Ei

l l ∈ [1, NT ], i ∈ [1, NI], S ⊆ [1, l]

Here, observe that the separation algorithm for these inequalities has the same logic
as the one described before. Finally, note that in the case of overtime, the original (ℓ, S)
inequalities are valid and will be added using the same separation algorithm.

There exist stronger inequalities and reformulations such as the multicommodity reformu-
lation proposed by Rardin and Wolsey [1993], or multi-item single-period submodels used as
by Miller et al. [2000], Miller et al. [2003]. However, we have found that using (ℓ, S) inequal-
ities alone seems to be the most effective way to strengthen the formulation without making
the problem computationally inefficient, as discussed in a companion paper Akartunalı and
Miller [2007].

4 MIP Heuristics

Here we discuss two techniques that we will use in our proposed framework.

4.1 LP-and-Fix

LP-and-fix is a simple technique, closely related to “diving” (see Pochet and Wolsey [2006])
and works as follows: First, we solve the LP relaxation (LPR) of an MIP . Then, we check
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all the integer variables in LPR and fix those having integral values. Finally, the restricted
MIP with fixed variables is re-solved, with the hope of finding a solution to the original
problem quickly. This scheme is employed in our heuristic framework both to provide an
initial solution to be used as a cutoff value, and also throughout the algorithm to generate
multiple production plans and to improve the best solution and hence the cutoff value.

4.2 Relax-and-Fix

Relax-and-fix is a heuristic method for problems with a special structure, and lot-sizing is
well-suited for such a method since decisions made earlier in the horizon are more important
then later ones. In this section, we discuss two previously developed heuristic methods that
employ the “relax-and-fix” idea.

The first production planning tool that uses relax-and-fix is bc-prod, proposed by Belvaux
and Wolsey [2000], which is a specialized branch-and-cut system for lot-sizing problems. The
system first generates cutting planes, both default Xpress cuts and problem specific cuts, and
then the relax-and-fix idea is applied using “time windows”, horizons under consideration, for
which the length of the window is predefined. The basic description of the “time windows”
idea is as follows: Except for the variables in the periods of the predefined time window,
relax all the binary variables to be continuous, solve the problem, and using the solution
obtained, fix the binary variables in the window. The next window is then processed in the
same manner.

Another heuristic algorithm based on relax-and-fix is proposed by Stadtler [2003], which
we will refer to as “SH” (Stadtler’s Heuristic) from now on. This approach uses time windows
that overlap for better quality results. In such an approach, fixing variables in a window
will occur only for the periods that do not overlap with the next window. Also, SH allows a
period to be relaxed to continuous inside of the window, as well, because of using “bonuses”,
which are calculated for each different problem. In this framework, each subproblem is
formulated and strengthened separately. Figure 1 summarizes the idea of “time windows” in
SH. A recent paper of Federgruen et al. [2007] also uses a relax-and-fix approach with time
windows.

The main advantage of bc-prod is that strong formulations provide good lower bounds for
the problem, hence solution quality can be proven without extra computation. On the other
hand, bc-prod does not have any overlapping windows, therefore it can miss considering the
effect of future periods’ setup decisions. Also, it can require long computational times because
of long windows, large numbers of inequalities added to the formulation and the fact that it
solves the subproblem of each window to optimality. Even though SH provides comparatively
good results for hard test instances, it should be noted that the implementation is not
straightforward because of complex calculations, such as the bonuses. Moreover, as in many
other heuristic frameworks, it does not generate lower bounds. In order to determine solution
quality, lower bounds need to be generated separately.
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Figure 1: The first 2 “time windows” of SH, with window length of 4 periods, 2 periods
overlapping and 1 period relaxed to be continuous

5 A Heuristic Framework

As in the last section, we use “time windows”, or simply “windows”, to refer to time in-
tervals in which binary variables are forced to take binary values. For later periods, binary
variables are relaxed to be continuous. The window has a “window length”, i.e., length of
the time horizon considered in the subproblem. The first part of the window which does not
overlap with the next window is called the “fixing interval”, since this is where the binary
variables will be fixed once the subproblem is solved. Let α and β indicate the window
length and length of fixing interval, respectively. Note that in our approach the formulation
is strengthened for the entire horizon, and not just within the window, as in SH.

We also use LP-and-fix idea to find feasible solutions for the original problem throughout
the framework in order to provide multiple solutions and upper bounds (cutoff values) for
later windows. Our computational experience is that using cutoff values significantly im-
proves the solution process of many windows. Another difference from SH is that we use the
objective function defined in Section 2 in each window. This is simpler to implement, and
also helps us to gauge the effect of future setup decisions.

The structure of the general framework can be seen in the next page. We can describe
the framework in words as follows: After generating violated (ℓ, S) inequalities and deleting
inactive ones, the LP relaxation solution of the original problem is used to start LP-and-fix
to find a first feasible solution for the original problem. Note that it is not guaranteed that
LP-and-fix will find a solution, except backlogging is allowed. If a solution is found, it will
be used to initialize the cutoff value. After initialization, we start with the first window, i.e.,
solve the problem defined in Section 2 where all the binary variables are relaxed to continuous
for any period beyond the scope of the window. If extra time is available, i.e., relax-and-fix
is complete before the pre-set time limit, LP-and-fix is used in order to generate a feasible
solution for the original problem. At the end of LP-and-fix, all the binary variables fixed
beyond the window will be unfixed before processing the next window. The same procedure
will be repeated for future windows.

Here, note that the heuristic provides us a lower bound to the original problem in the
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Input: Lot-sizing problem
Output: Multiple feasible solutions and lower bound for the problem
(ℓ, S) separation
Initialize upper bound and cutoff bound using LP-and-fix
for i=1 to numwin

Relax the y variables after the window to continuous (t > (i − 1)β + α)
Solve the sub-problem
Fix the y variables in the fixing interval (t ∈ [(i − 1)β + 1, iβ])
if extra time

Enforce binary restriction on y variables after the window
Fix all y variables having an integral value
Solve the partially fixed MIP
If solution found, reset cutoff value
Unfix all y variables after the window

if extra time at the end
Improve the solution

first window since we are solving a partial linear relaxation of the problem in which the
formulation is already strengthened. The computational results in the next section show
that this lower bound is often competitive with the best known methods.

In the interest of speed, we seek to avoid running a window for a long time to find the
optimal solution but obtain a reasonable solution in limited time and move on to the next
window. Therefore we set a maximum time for each window. This issue is discussed in more
detail in section 6. Also note that, due to these time limits and due to heuristics’ nature,
neither LP-and-fix nor relax-and-fix is guaranteed to find a solution. However, as the results
in the next section indicate, the framework has worked without facing a problem with the
control parameters used.

One important question to ask for both relax-and-fix and LP-and-fix is “which variables
to fix”. One basic concern for relax-and-fix is that the more we fix in a window, the higher
probability we have for infeasibility in later windows. Hence, in our early tests, we tried to
fix only 0’s and only 1’s, but no significant difference from fixing both 0’s and 1’s has been
observed. On the other hand, for LP-and-fix, fixing all 0’s and 1’s appears to create problems
occasionally, such as infeasibility and poor-quality solutions, hence only 1’s are fixed in that
part of the framework.

The heuristic framework depends on many parameters and options. These include the
length of a window, whether we have to overlap consecutive windows, and how long the
overlap should be. It is obvious that the shorter the length of the window, the easier it is
to solve the related subproblem. However, this can deteriorate the solution quality since
decisions become more myopic and since the number of windows grows and hence time
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allocated to a window decreases as well. It is best to have a window length which neither
takes too much time nor finds too poor solutions. When consecutive windows do not overlap,
we deal with fewer windows, but this does not facilitate the consideration of setup decisions
from later periods and therefore can result in bad solutions. After experimentation, we use
the window length of 3, with an overlap of 1 period between windows. In this case, for
example for a problem with NT = 10, there will be 5 windows to process.

We have found it advisable to allocate more time to earlier windows than to later windows
because the problems are bigger in size and hence harder to solve, and also to employ LP-and-
fix as often as possible in earlier periods in order to generate good solutions. After assigning
a total time for a problem, this allocation process is achieved inside of the algorithm. We
divided windows into four sets of the same size.Thus, if we have a total of 12 windows, the
first three windows are in the first set, the next three windows are in the second set and so
forth. Then we assigne 1.75, 1.25, 0.75 and 0.25 times of the average time per window to
those groups respectively. Thus, if we have a total of 180 seconds to process 12 windows,
we allocate 180

12
∗ 1.75 = 26.25 seconds to each of the first three windows, 180

12
∗ 1.25 = 18.75

seconds to each of the next three windows, and so forth.
We also set a relative gap parameter so that if we obtain a solution with a duality gap

less than this preset amount, the heuristic stops trying to complete the time assigned to
this window and moves on either to the next window or starts LP-and-fix with the extra
time if it is sufficient for that purpose. Our computational experience suggests that choosing
gap values that are too small neither guarantees a better solution at the end nor allows LP-
and-fix sufficient time to generate good solutions. In addition to these major parameters,
there are some minor parameters used in the heuristic framework in order to increase its
efficiency, such as minimum and maximum times to employ LP-and-fix. Also, note that we
start employing LP-and-fix in the windows not after the first window but after the second
window, because computational experience suggests that early LP-and-fix procedures take
much more time to find a solution than later LP-and-fix procedures.

6 Computational Results

In order to provide diversified results and test the generality of our heuristic approach, we
used the following various test sets from the literature for our computations:

• Test instances generated by Tempelmeier and Derstroff [1996] and Stadtler [2003]:
These include overtime variables. Sets A+ and B+ involve problems with 10 items, 24
periods and 3 machines, and sets C and D involve problems with 40 items, 16 periods
and 6 machines. Sets B+ and D include setup times. We chose the hardest instances of
each data set for our computations, i.e., for each data set, we picked 10 assembly and
10 general instances with the highest duality gaps according to the results of Stadtler
[2003].
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• Multi-level LOTSIZELIB [1999] library instances: These include single-machine prob-
lems with big bucket capacities. Backlogging is allowed. The problems vary between 40
item, single end-item problems and 15 item, 3 end-item problems, with both assembly
and general BOM structures. All problems have 12 periods.

• MULTI-LSB instances: We have generated 4 sets of test problems based on the problem
described in the paper of Simpson and Erenguc [2005], each set having 30 instances with
low, medium and high variability of demand. From now on, we will call these sets SET1,
SET2, SET3, and SET4. These instances are different from the previous problems in
that they take component commonality into consideration and hence consider setup
variables for each family so that setup times are defined for each family of items instead
of for each item. While keeping the original data such as BOM structures and holding
costs, we removed the setup costs and added backlogging variables into the problem
to obtain problems with a different nature from the other problems. The backlogging
costs are set to the double of inventory holding costs for the first two sets, and 10 times
the inventory holding costs for the last two sets. Except the problems in SET2, which
considers a horizon of 24 periods, all the instances have 16 periods. The main difference
between these three sets is that they have different resource utilization factors, and the
rest of the data remain the same. All instances consider 78 items and have an assembly
structure, and all instances allow backlogging in the last period. For more details about
the instances, see Multi-LSB [2006] and Simpson and Erenguc [2005].

All the test instances were run on a PC with an Intel Pentium 4 2.53 GB processor and 1
GB of RAM. All the formulations and the heuristic algorithm were implemented using only
Xpress Mosel, which is a high-level algebraic modeling language that is intuitive to use. In
all the computational experiments, the Xpress-MP 2004C package and Mosel version 1.4.1
are used. We have also prepared a website web [2006] for this paper, where all the data sets
and sample Mosel files can be accessed by other researchers for their testing purposes.

Different test sets will be discussed separately since we are using different benchmarks
for each set, and different characteristics of each set make it more interesting to analyze
each separately. We assigned a total time of 180 seconds for each instance of A+, B+,
LOTSIZELIB, SET1 and SET2, and 500 seconds for each C, D, SET3 and SET4 instance
because of the problem complexity. Also, a 0.5% duality gap in a window is successful for
A+, B+, LOTSIZELIB, SET1 and SET2 instances, duality gaps of 2.5% for later windows
and 4% for earlier windows for the C, D and SET4 instances, and finally 10% duality gap for
SET3 instances. These percentages are set intuitively from the problem difficulties, e.g., if
the default problem solved by Xpress augmented with (ℓ, S) inequalities results with a 10%
gap and if there are 10 windows, 1% will be assigned to each window.

For the test sets of Tempelmeier and Derstroff [1996] and Stadtler [2003], we ran an
executable of SH (Stadtler’s Heuristic) on our computer to provide fair comparisons. Another
benchmark used for these instances is default Xpress augmented with the generation of

13



Table 1: Summary of results for Tempelmeier and Derstroff [1996] and Stadtler [2003] in-
stances

Test Best Solution found by Average duality gap
Set SH Xpress Heuristic SH Xpress Heuristic
A+ 4 - 16 29.28% 25.28% 24.47%
B+ 11 1 7 29.27% 34.21% 29.86%
C 11 - 9 30.69% 35.40% 28.33%
D 7 - 3 215.96% 364.57% 198.54%

(ℓ, S) inequalities. Inactive inequalities are deleted at the root node. The main results are
summarized in Table 1: The first three columns show for how many instances of a particular
test set any of these three methods found the best solution, and the last three columns show
the average duality gaps of each method at each set. Note that since SH does not generate
lower bounds, the (ℓ, S) lower bound obtained at the root node is used for that purpose.

Table 2: Pairwise comparisons of the heuristics with benchmarks for Tempelmeier and Der-
stroff [1996] and Stadtler [2003] instances

Test SH vs. Heuristic Xpress vs. Heuristic
Set # S # H UB # X # H UB LB
A+ 4 16 2.26% - 20 5.77% 5.15%
B+ 12 7 -1.63% 4 15 5.73% 4.08%
C 11 9 -0.22% - 20 6.91% 1.26%
D 7 3 2.45% - 10 74.94% 1.12%

Table 2 summarizes pairwise comparisons between our heuristic and the two benchmarks.
The first two columns show how many times SH and our heuristic provide a better solution,
respectively, and the next column shows the average difference between our heuristic’s and
SH’s upper bounds, respectively, calculated as (SH Bound - Heuristic Bound)/ Heuristic
Bound. The last four columns are prepared in the same fashion, for the comparison between
our heuristic and the default Xpress, and the last two columns are calculated as (Xpress
Bound - Heuristic Bound)/ Heuristic Bound. It is easy to observe that our heuristic generates
good solutions compared to SH, with a good lower bound guarantee. On the other hand,
as expected, default Xpress generates better lower bounds than our heuristic, but it is also
notable that the harder the problem is, the better the lower bounds the heuristic generates
compared to those generated by Xpress. Also note that the proposed heuristic method
improves the lower bounds obtained at the root node with (ℓ, S) inequalities on average by
1.11%. For detailed results for all the instances of these test sets, please refer to Appendix
A.
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Table 3: Computational Results on LOTSIZELIB [1999] Instances with time limit of 180
seconds

Instance Optimal Xpress Heuristic
Solution UB LB Time UB LB Time

LLIB B 3,965 3,965 3,957 180 3,973 3,915 23
LLIB C* 2,083 2,125 2,046 180 2,113 2,067 73
LLIB D* 6,482 6,852 4,723 180 7,002 4,714 180
LLIB E* 2,801 3,099 2,537 180 2,952 2,416 152
LLIB F* 2,429 2,458 2,180 180 2,429 2,099 99

* indicates an instance that could not be solved to optimality by default Xpress in 900 seconds.

For the LOTSIZELIB instances, on the other hand, default Xpress with (ℓ, S) inequalities
has been the primary benchmark. The reason that we did not test SH on these problems is
that it is not designed for problems with backlogging and significant modification would be
necessary. Also note that these instances already have known optimal solutions, hence the
solution quality is more transparent. Table 3 shows results of the LOTSIZELIB instances:
The first column indicates the optimal solution, then the next three columns show respec-
tively upper and lower bounds obtained by default Xpress and in how many seconds, and
finally the last three columns present results of our heuristic. As expected, default Xpress
generates better lower bounds generally, however, the heuristic provides comparably good
solutions, better solutions in 3 out of 5 instances, and in less time.

Finally, we analyze the 4 sets of MULTI-LSB. These instances vary from easy to very
hard problems, as can be seen in detailed results in Appendix A. Here, we summarize the
results in Table 4 separately for each different set and also separately for different problem
difficulties, as follows: Problems with a duality gap less than 10% after the default time
with Xpress augmented with (ℓ, S) inequalities are called “easy”, problems with a duality
gap more than 50% are called “hard”, and the rest are called “moderate”.

Table 4 is organized as follows: For “Upper Bounds” and “Lower Bounds”, “#X” and
“#H” indicate how many times in that set Xpress and the proposed heuristic found a better
bound, respectively. Note that cases in which both methods generate exactly the same
upper bound are not included in these numbers. Finally, the last two columns indicate
the average difference between the bounds in percentage, and these are calculated by the
expression (Xpress Bound - Heuristic Bound)/ Heuristic Bound. As the summary indicates,
the heuristic finds generally better solutions for the problem than Xpress does. Similar
to previous results, Xpress default lower bounds are often better than the heuristic lower
bounds, although it is interesting to observe that in SET3, i.e., the hardest test instances
of all our computations, and in the hard instances of SET4, the heuristic generates lower
bounds that are competitive with those of Xpress. This seems to be due to the fact that,
for the hardest problems, the problems’ difficulty prevents Xpress from making more than
minuscule improvements to the lower bound during the branch-and-bound process.
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Table 4: Summary of results for MULTI-LSB instances
Test Class Upper Bounds Lower Bounds Ave. Difference
Set # X # H # X # H UB LB
SET1 Easy 1 10 11 1 0.67% 2.24%

Moderate 0 18 5 13 7.22% -0.11%
SET2 Easy 0 17 13 3 1.24% 0.49%

Moderate 0 13 2 10 4.66% -0.50%
SET3 Hard 0 30 15 15 28.48% -0.10%
SET4 Easy 2 1 3 0 -1.02% 6.34%

Moderate 1 9 9 1 2.78% 5.84%
Hard 0 17 4 13 9.35% -3.88%

*“Easy” class of SET1 and “hard” class of SET3 has each one instance where both methods
found the exactly same solution, and one easy and one moderate instance of SET2 had equal

lower bounds for both methods, which are not included in the numbers above.

To summarize this section, the proposed heuristic generates good solutions for different
kinds of lot-sizing problems when compared to the default Xpress solver augmented with
(ℓ, S) inequalities; Xpress generated a better solution than the heuristic only in 10 of 194
instances, and these were close to the heuristic’s solutions. The comparative efficiency of
the heuristic is especially noticeable for harder problems, such as set D, SET3 and SET4,
where the heuristic improves default Xpress solutions significantly. On the other hand, the
proposed heuristic generates results competitive with those generated by SH for the test
sets A+, B+, C and D. The advantages of the proposed heuristic over SH are its flexibility
in being applicable to problems with different characteristics, its ability to generate lower
bounds, its ease of implementation, and the fact that it generates multiple solutions.

7 Conclusion

We have presented a heuristic framework that is designed for easy implementation and is
flexible enough to handle a variety of production planning problems. The heuristic finds both
good solutions and competitive lower bounds. Moreover, computational results indicate that
the heuristic is particularly effective on the most difficult problems, where effectiveness is
measured by comparison with our benchmarks.

We have also provided further evidence that using (ℓ, S) inequalities is a good method to
strengthen the formulation of big-bucket problems. Computational experience suggests that
they should be used within any default solver. Moreover, when combined with an effective
heuristic framework, they can help to find good solutions as well.

Even though mathematical programming provides tools for exact solutions, extended
reformulations generally result in big problems that cannot be solved efficiently. A recent
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study of Van Vyve and Wolsey [2005] suggests that partial reformulations can be applied in
order to have high quality lower bounds while preventing the problem size from growing too
much. Similar approaches may be effective for hard lot-sizing problems as well, and this is
left for future research.

While the proposed framework for finding good solutions to lot-sizing problems is compa-
rably efficient, many of the instances discussed in the computational results remain challeng-
ing. As we discuss in detail in our companion paper Akartunalı and Miller [2007], big bucket
lot-sizing problems still need a deeper analysis and better understanding of the polyhedral
structure to improve lower bounds and provide better solutions; polyhedral analysis focused
on their particular structure is an important future research area.

Another interesting question to be answered is whether this simple approach can be ap-
plied to other challenging MIP problems or not. We know that production planning problems
have a special structure in which early decisions affect later decisions, but similar structures
may be applicable to other problems as well, e.g. scheduling and facility location problems.
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Appendix A: Detailed Results

Instance SH LB from Xpress Xpress Heuristic Heuristic
UB l, S UB LB UB LB

AG501130 153,418 116,183 157,433 133,715 154,515 119,146
AG501131 146,500 107,829 157,450 116,004 145,225 109,714
AG501132 156,822 118,677 160,678 127,827 154,191 121,740
AG501141 175,619 133,424 186,362 140,206 171,895 134,421
AG501142 195,110 145,508 197,582 154,895 192,582 148,911
AG502130 168,707 122,353 170,059 146,383 167,927 128,101
AG502131 145,322 109,085 157,623 115,833 146,361 111,001
AG502141 179,371 134,971 188,933 141,121 173,640 136,353
AG502232 124,015 97,032 123,304 103,715 121,108 97,632
AG502531 129,080 102,340 140,294 108,749 129,640 103,506
AK501131 128,095 96,968 132,020 102,978 123,366 99,020
AK501132 124,499 101,699 126,919 106,109 123,473 103,077
AK501141 180,695 134,805 186,662 139,754 170,897 136,428
AK501142 174,701 134,880 176,504 138,587 161,262 135,875
AK501432 110,851 92,533 114,088 99,194 109,249 93,546
AK502130 129,307 102,222 133,429 110,583 127,889 103,949
AK502131 126,394 93,369 122,273 98,627 115,819 94,969
AK502132 119,175 96,312 121,712 100,679 118,319 97,233
AK502142 146,616 127,792 164,357 131,234 147,729 129,034
AK502432 110,094 88,980 110,896 94,459 105,415 89,609
BG511132 140,155 108,772 166,747 115,116 137,637 110,466
BG511142 159,769 133,158 183,318 138,130 167,262 133,880
BG512131 139,839 104,054 151,552 112,311 138,752 105,804
BG512142 199,051* 142,917 219,790 150,058 227,996 143,848
BG521132 138,133 108,324 145,975 115,055 146,709 110,024
BG521142 156,694 131,363 179,427 136,920 157,802 132,604
BG522130 154,581 113,540 164,913 131,120 156,075 121,578
BG522132 147,894 113,382 185,786 120,032 162,389 115,158
BG522142 186,268 137,126 201,118 142,692 202,851 138,077
BK511131 123,699 92,602 128,861 97,923 120,303 94,411
BK511132 125,658 95,323 120,227 99,889 115,416 95,938
BK511141 162,629* 125,307 183,541 129,896 172,762 126,769

Note: * indicates instances that could not be run on our computer with SH’s executable,
in which case their published results are used.
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Instance SH LB from Xpress Xpress Heuristic Heuristic
UB l, S UB LB UB LB

BK512131 113,996 90,733 121,357 94,459 113,536 92,058
BK512132 115,697 90,814 118,918 95,929 112,809 91,346
BK521131 118,217 92,350 127,362 97,784 121,292 94,164
BK521132 117,423 94,257 119,690 99,359 118,464 94,957
BK521142 153,805* 124,988 157,186 128,203 154,258 125,480
BK522131 116,340 90,532 119,591 95,153 111,339 91,742
BK522142 154,286 119,559 148,471 122,836 156,557 119,625
CG501120 1,252,308 1,011,260 1,383,799 1,037,547 1,296,913 1,027,177
CG501131 614,303 472,421 652,793 480,446 614,971 478,437
CG501141 777,831 627,035 854,196 631,554 803,432 628,114
CG501121 1,261,525 945,696 1,376,403 964,910 1,247,493 959,756
CG502221 889,548 724,648 1,005,102 730,536 911,616 728,105
CG501132 842,734 561,827 851,427 619,623 849,500 606,568
CG501222 858,289 697,129 983,752 702,660 877,364 699,021
CG501142 1,146,638 754,238 1,169,704 847,853 1,150,718 824,887
CG501122 1,814,877 1,161,383 1,832,565 1,274,366 1,787,833 1,281,687
CG502222 873,858 704,096 1,024,136 709,326 899,970 708,597
CK501120 176,187 141,900 187,551 145,740 179,099 143,260
CK501221 123,206 101,028 133,710 101,409 123,066 101,105
CK501121 173,083 131,993 185,519 134,662 169,804 132,840
CK502221 123,657 101,478 133,305 102,193 122,596 101,899
CK501222 122,485 97,937 132,502 98,522 123,298 98,096
CK501422 128,558 101,864 134,032 104,802 124,315 102,150
CK502222 119,965 98,052 134,820 98,625 122,302 98,282
CK501122 210,824* 153,861 212,018 162,312 206,646 155,485
CK501132 98,363* 75,257 101,602 78,690 98,248 75,782
CK501142 120,722* 90,218 122,122 92,471 115,918 90,673
DG512141 736,181 609,464 1,841,593 613,816 759,136 615,992
DG512131 581,932 465,272 2,052,160 496,633 596,395 469,460
DG012132 3,625,599* 554,595 3,661,662 559,893 3,160,347 555,689
DG012142 3,815,898* 756,588 3,730,720 761,229 3,121,762 756,588
DG012532 1,194,003* 554,167 1,558,743 558,186 1,228,463 555,032
DG012542 1,413,475* 756,062 1,652,806 759,010 1,420,613 756,062
DG512132 2,909,628* 512,330 5,570,581 518,927 3,010,696 514,682
DG512142 3,779,026* 678,733 5,655,268 688,424 3,583,354 682,205
DG512532 584,491 509,567 1,031,986 516,101 597,404 512,147
DG512542 767,428 674,241 1,342,964 683,455 796,831 677,189

Note: * indicates instances that could not be run on our computer with Stadtler’s executable, in
which case their published results are used.
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Instance LB from Xpress Xpress Heuristic Heuristic Improvement
l, S UB LB UB LB in UB

SET1 01 17,888 25,873 18,355 22,781 18,889 13.57%
SET1 02 23,534 30,317 23,934 28,624 24,134 5.91%
SET1 03 21,227 26,943 21,638 26,349 21,676 2.25%
SET1 04 22,232 30,236 22,698 26,337 23,175 14.80%
SET1 05 21,446 27,064 21,782 25,621 21,994 5.63%
SET1 06 22,974 29,548 23,187 26,741 23,636 10.50%
SET1 07 20,360 27,316 20,772 24,693 21,125 10.62%
SET1 08 25,582 32,361 25,893 29,810 26,249 8.56%
SET1 09 16,321 24,015 16,780 21,146 17,013 13.57%
SET1 10 17,998 23,985 18,243 22,863 18,945 4.91%
SET1 11 11,080 13,010 12,374 12,956 11,407 0.42%
SET1 12 24,721 27,377 25,211 26,985 25,238 1.45%
SET1 13 20,782 24,003 21,581 23,129 21,195 3.78%
SET1 14 22,264 25,931 22,388 25,720 22,745 0.82%
SET1 15 12,401 15,023 13,070 14,121 12,575 6.39%
SET1 16 15,122 17,542 16,030 17,559 15,387 -0.10%
SET1 17 20,468 24,284 20,576 23,404 20,864 3.76%
SET1 18 11,075 13,272 11,858 12,300 11,456 7.90%
SET1 19 13,276 18,091 14,044 17,448 13,342 3.69%
SET1 20 14,101 19,433 14,236 17,167 14,612 13.20%
SET1 21 10,159 12,428 11,003 12,421 10,392 0.06%
SET1 22 38,040 40,419 38,556 40,158 38,040 0.65%
SET1 23 29,331 30,687 29,622 30,606 29,355 0.26%
SET1 24 28,858 32,282 30,272 32,174 29,250 0.34%
SET1 25 51,371 53,650 51,720 53,009 51,371 1.21%
SET1 26 39,379 42,236 39,979 41,442 39,488 1.92%
SET1 27 40,838 43,929 41,424 43,320 40,918 1.41%
SET1 28 39,846 40,993 40,993 40,993 40,144 0.00%
SET1 29 23,155 25,633 23,698 25,606 23,232 0.11%
SET1 30 68,989 71,095 69,899 70,868 68,989 0.32%

Note: Only one of these 30 SET1 instances resulted in optimal solution in that allowed
time. “Improvement in UB” column indicates (Xpress Upper Bound - Heuristic Upper
Bound)/Heuristic Upper Bound.
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Instance LB from Xpress Xpress Heuristic Heuristic Improvement
l, S UB LB UB LB in UB

SET2 01 46,116 57,604 46,341 55,039 46,591 4.66%
SET2 02 47,780 59,307 47,780 57,825 48,159 2.56%
SET2 03 40,551 52,438 40,551 49,147 40,814 6.70%
SET2 04 36,347 47,828 36,347 44,656 36,808 7.10%
SET2 05 45,395 57,950 45,395 55,650 45,784 4.13%
SET2 06 45,902 57,791 45,902 54,361 45,902 6.31%
SET2 07 52,825 63,216 52,825 61,140 53,108 3.40%
SET2 08 48,033 60,193 48,198 56,444 48,632 6.64%
SET2 09 37,553 46,376 37,651 44,523 37,943 4.16%
SET2 10 38,751 50,334 38,751 49,481 39,181 1.72%
SET2 11 65,210 70,623 65,382 69,177 65,648 2.09%
SET2 12 62,792 68,277 62,918 66,914 62,792 2.04%
SET2 13 34,778 41,254 34,978 40,114 34,987 2.84%
SET2 14 62,907 68,070 63,545 67,201 62,907 1.29%
SET2 15 59,079 62,046 59,432 61,616 59,079 0.70%
SET2 16 75,682 81,490 75,695 79,576 75,682 2.41%
SET2 17 36,809 43,455 37,095 41,484 36,925 4.75%
SET2 18 77,873 84,288 77,873 83,200 78,087 1.31%
SET2 19 54,981 59,724 55,055 59,010 55,484 1.21%
SET2 20 119,568 124,272 119,568 122,974 119,568 1.06%
SET2 21 22,281 24,517 22,520 24,459 22,281 0.24%
SET2 22 51,279 54,090 51,687 53,690 51,279 0.74%
SET2 23 29,793 35,851 29,921 33,969 29,793 5.54%
SET2 24 65,891 69,365 66,277 68,727 65,891 0.93%
SET2 25 75,627 79,274 76,035 78,266 75,627 1.29%
SET2 26 60,952 63,998 61,564 63,558 60,977 0.69%
SET2 27 53,016 56,100 53,983 54,797 53,016 2.38%
SET2 28 44,545 46,884 45,293 46,733 44,549 0.32%
SET2 29 93,631 97,474 93,735 96,281 93,631 1.24%
SET2 30 68,324 72,783 68,860 71,919 68,573 1.20%

Note: None of these 30 SET2 instances resulted in optimal solution in that allowed time.
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Instance LB from Xpress Xpress Heuristic Heuristic Improvement
l, S UB LB UB LB in UB

SET3 01 65,668 274,297 74,333 209,129 70,207 31.16%
SET3 02 82,342 337,279 88,125 243,511 88,681 38.51%
SET3 03 74,209 329,113 79,993 235,198 81,830 39.93%
SET3 04 78,282 340,701 86,922 240,339 85,499 41.76%
SET3 05 76,607 331,850 84,114 227,758 83,975 45.70%
SET3 06 79,093 295,468 82,420 235,642 87,790 25.39%
SET3 07 72,979 313,851 78,187 237,218 78,976 32.30%
SET3 08 88,610 332,507 93,913 251,628 96,111 32.14%
SET3 09 64,180 274,953 70,971 216,025 70,301 27.28%
SET3 10 66,878 285,525 73,164 229,242 75,040 24.55%
SET3 11 42,946 184,964 48,991 152,962 48,565 20.92%
SET3 12 86,047 279,693 97,536 217,497 94,746 28.60%
SET3 13 74,643 270,744 84,968 224,670 83,763 20.51%
SET3 14 85,209 296,748 93,522 225,657 95,835 31.50%
SET3 15 40,715 222,557 44,794 167,494 46,252 32.87%
SET3 16 46,548 216,952 53,472 162,616 50,979 33.41%
SET3 17 71,555 241,420 81,449 212,399 79,287 13.66%
SET3 18 39,533 206,693 45,876 112,468 46,879 83.78%
SET3 19 47,495 204,225 54,267 154,981 55,749 31.77%
SET3 20 58,189 257,030 64,603 191,639 64,141 34.12%
SET3 21 44,182 209,485 54,340 150,758 53,149 38.95%
SET3 22 130,235 367,229 138,697 292,199 134,729 25.68%
SET3 23 96,810 282,565 106,346 240,643 108,870 17.42%
SET3 24 105,300 330,999 114,461 292,996 113,949 12.97%
SET3 25 203,044 387,648 209,797 349,975 210,315 10.76%
SET3 26 145,184 349,324 156,009 323,870 162,088 7.86%
SET3 27 145,420 389,594 158,120 343,486 156,422 13.42%
SET3 28 145,227 280,123 154,258 254,008 155,123 10.28%
SET3 29 79,813 276,899 88,871 207,127 90,600 33.69%
SET3 30 274,018 489,154 284,240 431,136 278,826 13.46%

Note: These 30 SET3 instances have an average duality gap of 236% in the allowed time.
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Instance LB from Xpress Xpress Heuristic Heuristic Improvement
l, S UB LB UB LB in UB

SET4 01 16,353 66,394 22,119 58,720 24,809 13.07%
SET4 02 31,541 83,818 39,072 82,496 41,655 1.60%
SET4 03 24,864 76,954 31,191 73,740 33,577 4.36%
SET4 04 27,786 78,073 33,786 73,651 36,553 6.00%
SET4 05 25,450 75,596 33,836 67,874 34,995 11.38%
SET4 06 30,632 80,132 38,733 79,781 40,893 0.44%
SET4 07 22,650 77,171 29,248 65,736 30,514 17.40%
SET4 08 40,532 100,638 46,045 88,388 49,106 13.86%
SET4 09 13,490 58,504 19,061 57,070 22,860 2.51%
SET4 10 15,542 62,611 22,729 59,319 25,077 5.55%
SET4 11 12,802 35,384 17,589 28,989 17,446 22.06%
SET4 12 43,341 84,540 49,504 78,062 50,961 8.30%
SET4 13 28,152 61,670 34,355 53,833 36,046 14.56%
SET4 14 56,174 85,443 64,907 82,406 64,257 3.69%
SET4 15 14,628 27,634 18,706 26,980 15,797 2.42%
SET4 16 17,171 36,115 23,792 35,280 22,606 2.37%
SET4 17 29,001 55,101 34,116 54,515 36,832 1.07%
SET4 18 19,184 26,279 24,679 26,596 22,950 -1.19%
SET4 19 10,724 40,237 16,512 31,974 15,037 25.84%
SET4 20 18,718 43,396 26,400 39,983 24,035 8.54%
SET4 21 15,812 26,322 22,061 25,899 18,149 1.63%
SET4 22 91,715 123,711 96,535 120,166 93,603 2.95%
SET4 23 55,058 79,912 60,799 76,857 57,446 3.97%
SET4 24 58,919 86,332 64,856 85,119 64,305 1.43%
SET4 25 171,987 201,717 176,087 202,501 173,205 -0.39%
SET4 26 110,570 145,290 117,138 142,090 117,379 2.25%
SET4 27 101,114 146,827 105,713 139,874 103,814 4.97%
SET4 28 112,892 126,027 125,250 129,789 115,176 -2.90%
SET4 29 51,149 71,618 59,369 68,320 56,930 4.83%
SET4 30 241,678 270,746 248,344 267,976 241,712 1.03%

Note: These 30 SET4 instances have an average duality gap of 79% in the allowed time.
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