674 research outputs found

    Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory

    Get PDF
    BACKGROUND: Gene expression microarray and other multiplex data hold promise for addressing the challenges of cellular complexity, refined diagnoses and the discovery of well-targeted treatments. A new approach to the construction and quantification of transcriptional regulatory networks (TRNs) is presented that integrates gene expression microarray data and cell modeling through information theory. Given a partial TRN and time series data, a probability density is constructed that is a functional of the time course of transcription factor (TF) thermodynamic activities at the site of gene control, and is a function of mRNA degradation and transcription rate coefficients, and equilibrium constants for TF/gene binding. RESULTS: Our approach yields more physicochemical information that compliments the results of network structure delineation methods, and thereby can serve as an element of a comprehensive TRN discovery/quantification system. The most probable TF time courses and values of the aforementioned parameters are obtained by maximizing the probability obtained through entropy maximization. Observed time delays between mRNA expression and activity are accounted for implicitly since the time course of the activity of a TF is coupled by probability functional maximization, and is not assumed to be proportional to expression level of the mRNA type that translates into the TF. This allows one to investigate post-translational and TF activation mechanisms of gene regulation. Accuracy and robustness of the method are evaluated. A kinetic formulation is used to facilitate the analysis of phenomena with a strongly dynamical character while a physically-motivated regularization of the TF time course is found to overcome difficulties due to omnipresent noise and data sparsity that plague other methods of gene expression data analysis. An application to Escherichia coli is presented. CONCLUSION: Multiplex time series data can be used for the construction of the network of cellular processes and the calibration of the associated physicochemical parameters. We have demonstrated these concepts in the context of gene regulation understood through the analysis of gene expression microarray time series data. Casting the approach in a probabilistic framework has allowed us to address the uncertainties in gene expression microarray data. Our approach was found to be robust to error in the gene expression microarray data and mistakes in a proposed TRN

    Multilayer Networks

    Full text link
    In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications. Such systems include multiple subsystems and layers of connectivity, and it is important to take such "multilayer" features into account to try to improve our understanding of complex systems. Consequently, it is necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer networks has become one of the most important directions in network science. In this paper, we discuss the history of multilayer networks (and related concepts) and review the exploding body of work on such networks. To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multilayer networks, multiplex networks, interdependent networks, networks of networks, and many others. We also survey and discuss existing data sets that can be represented as multilayer networks. We review attempts to generalize single-layer-network diagnostics to multilayer networks. We also discuss the rapidly expanding research on multilayer-network models and notions like community structure, connected components, tensor decompositions, and various types of dynamical processes on multilayer networks. We conclude with a summary and an outlook.Comment: Working paper; 59 pages, 8 figure

    Eric Davidson: Steps to A Gene Regulatory Network for Development

    Get PDF
    Eric Harris Davidson was a unique and creative intellectual force who grappled with the diversity of developmental processes used by animal embryos and wrestled them into an intelligible set of principles, then spent his life translating these process elements into molecularly definable terms through the architecture of gene regulatory networks. He took speculative risks in his theoretical writing but ran a highly organized, rigorous experimental program that yielded an unprecedentedly full characterization of a developing organism. His writings created logical order and a framework for mechanism from the complex phenomena at the heart of advanced multicellular organism development. This is a reminiscence of intellectual currents in his work as observed by the author through the last 30-35 years of Davidson's life

    Gene Regulatory Network Reconstruction Using Dynamic Bayesian Networks

    Get PDF
    High-content technologies such as DNA microarrays can provide a system-scale overview of how genes interact with each other in a network context. Various mathematical methods and computational approaches have been proposed to reconstruct GRNs, including Boolean networks, information theory, differential equations and Bayesian networks. GRN reconstruction faces huge intrinsic challenges on both experimental and theoretical fronts, because the inputs and outputs of the molecular processes are unclear and the underlying principles are unknown or too complex. In this work, we focused on improving the accuracy and speed of GRN reconstruction with Dynamic Bayesian based method. A commonly used structure-learning algorithm is based on REVEAL (Reverse Engineering Algorithm). However, this method has some limitations when it is used for reconstructing GRNs. For instance, the two-stage temporal Bayes network (2TBN) cannot be well recovered by application of REVEAL; it has low accuracy and speed for high dimensionality networks that has above a hundred nodes; and it even cannot accomplish the task of reconstructing a network with 400 nodes. We implemented an algorithm for DBN structure learning with Friedman\u27s score function to replace REVEAL, and tested it on reconstruction of both synthetic networks and real yeast networks and compared it with REVEAL in the absence or presence of preprocessed network generated by Zou and Conzen\u27s algorithm. The new score metric improved the precision and recall of GRN reconstruction. Networks of gene interactions were reconstructed using a Dynamic Bayesian Network (DBN) approach and were analyzed to identify the mechanism of chemical-induced reversible neurotoxicity through reconstruction of gene regulatory networks in earthworms with tools curating relevant genes from non-model organism\u27s pathway to model organism pathway

    Prediction of combination therapies based on topological modeling of the immune signaling network in multiple sclerosis

    Get PDF
    Signal transduction deregulation is a hallmark of many complex diseases, including Multiple Sclerosis (MS). Here, we performed ex vivo multiplexed phosphoproteomic assays upon perturbations with multiple drugs and ligands in primary immune cells from 169 MS patients and matched healthy controls. Patients were either untreated or treated with fingolimod, natalizumab, interferon-β, glatiramer acetate or the experimental therapy epigallocatechin gallate (EGCG). We generated for each donor a dynamic logic model by fitting a bespoke literature-derived network of MS-related pathways to the perturbation data. Analysis of the models uncovered features of healthy-, disease- and drug-specific signaling networks. We developed an approach based on network topology to identify deregulated interactions whose activity could be reverted to a “healthy-like” status by combination therapy. We predicted several combinations with approved MS drugs. Specifically, TAK1 kinase, involved in TGF-β, Toll-like receptor, B-cell receptor and response to inflammation pathways were found to be highly deregulated and co-druggable with all MS drugs studied. One of these predicted combinations, fingolimod with a TAK1 inhibitor, was validated in an animal model of MS. Our approach based on donor-specific signaling networks enables prediction of targets for combination therapy for MS and other complex diseases. Significance statement: Multiple Sclerosis (MS) is a major health problem, leading to significant disability and patient suffering. Although chronic activation of the immune system is a hallmark of the disease, its pathogenesis is poorly understood. Further, current treatments only ameliorate the disease and may produce severe side effects. Here, we applied a network-based modeling approach based on phosphoproteomic data upon perturbation with ligands and drugs of healthy donors and MS patients to create donor-specific models. The models uncover the differential activation in signaling wiring between healthy donors, untreated patients and those under different treatments. Further, based in the patient-specific networks, a new approach identifies drug combinations to revert signaling to a healthy-like state. One sentence summary: A new approach to predict combination therapies based on modeling signaling networks using phosphoproteomics from Multiple Sclerosis patients identifies deregulated pathways and new drug combinations

    Engineering biocomputers in mammalian cells

    Full text link
    Endowing cells with enhanced decision-making capacities is essential for creating smarter therapeutics and for dissecting phenotypes. Implementation of synthetic gene circuits affords a means for enhanced cellular control and genetic processing; however, genetic circuits for mammalian cells often require extensive fine-tuning to perform as intended. Here, a robust, general, and scalable system, called 'Boolean logic and arithmetic through DNA excision' (BLADE) is presented that is used to engineer genetic circuits with multiple inputs and outputs in mammalian cells with minimal optimization. The reliability of BLADE arises from its reliance on site-specific recombinases that regulate genes under the control of a single promoter that integrates circuit signals on a single transcriptional layer. Using BLADE, >100 circuits were tested in human embryonic kidney and Jurkat T cells and a quantitative metric was used to evaluate their performance. The circuits include a 3-input, two-output full adder; a 6-input, one-output Boolean logic look-up table; and circuits that incorporate CRISPR–Cas9 to regulate endogenous genes. Moreover, a large library of over 15 small-molecule, light and temperature-inducible recombinases has been established for fine-tuned control. BLADE enables execution of sophisticated cellular computation in mammalian cells, with applications in cell and tissue engineering

    Boolean Networks as Predictive Models of Emergent Biological Behaviors

    Full text link
    Interacting biological systems at all organizational levels display emergent behavior. Modeling these systems is made challenging by the number and variety of biological components and interactions (from molecules in gene regulatory networks to species in ecological networks) and the often-incomplete state of system knowledge (e.g., the unknown values of kinetic parameters for biochemical reactions). Boolean networks have emerged as a powerful tool for modeling these systems. We provide a methodological overview of Boolean network models of biological systems. After a brief introduction, we describe the process of building, analyzing, and validating a Boolean model. We then present the use of the model to make predictions about the system's response to perturbations and about how to control (or at least influence) its behavior. We emphasize the interplay between structural and dynamical properties of Boolean networks and illustrate them in three case studies from disparate levels of biological organization.Comment: Review, to appear in the Cambridge Elements serie
    corecore