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Abstract

Machine learning methods for detecting structure in
metabolic flow networks

Maxwell Jay Conway

Metabolic flow networks are large scale, mechanistic biological models with good predic-

tive power. However, even when they provide good predictions, interpreting the meaning

of their structure can be very difficult, especially for large networks which model entire or-

ganisms. This is an underaddressed problem in general, and the analytic techniques that

exist currently are difficult to combine with experimental data. The central hypothesis of

this thesis is that statistical analysis of large datasets of simulated metabolic fluxes is an

effective way to gain insight into the structure of metabolic networks. These datasets can

be either simulated or experimental, allowing insight on real world data while retaining

the large sample sizes only easily possible via simulation. This work demonstrates that

this approach can yield results in detecting structure in both a population of solutions

and in the network itself.

This work begins with a taxonomy of sampling methods over metabolic networks,

before introducing three case studies, of different sampling strategies. Two of these case

studies represent, to my knowledge, the largest datasets of their kind, at around half a

million points each. This required the creation of custom software to achieve this in a

reasonable time frame, and is necessary due to the high dimensionality of the sample

space.

Next, a number of techniques are described which operate on smaller datasets. These

techniques, focused on pairwise comparison, show what can be achieved with these smaller

datasets, and how in these cases, visualisation techniques are applicable which do not have

simple analogues with larger datasets.

In the next chapter, Similarity Network Fusion is used for the first time to cluster

organisms across several levels of biological organisation, resulting in the detection of

discrete, quantised biological states in the underlying datasets. This quantisation effect

was maintained across both real biological data and Monte-Carlo simulated data, with



related underlying biological correlates, implying that this behaviour stems from the net-

work structure itself, rather than from the genetic or regulatory mechanisms that would

normally be assumed.

Finally, Hierarchical Block Matrices are used as a model of multi-level network struc-

ture, by clustering reactions using a variety of distance metrics: first standard network

distance measures, then by Local Network Learning, a novel approach of measuring con-

nection strength via the gain in predictive power of each node on its neighbourhood. The

clusters uncovered using this approach are validated against pre-existing subsystem labels

and found to outperform alternative techniques.

Overall this thesis represents a significant new approach to metabolic network structure

detection, as both a theoretical framework and as technological tools, which can readily be

expanded to cover other classes of multilayer network, an under explored datatype across a

wide variety of contexts. In addition to the new techniques for metabolic network structure

detection introduced, this research has proved fruitful both in its use in applied biological

research and in terms of the software developed, which is experiencing substantial usage.



Acknowledgements
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CHAPTER 1

Introduction

1.1 Overview

Metabolic networks are one of the most successful approaches to modelling how living

cells work. They are capable of making verifiably correct predictions [1] from mecha-

nistic simulations of whole cell biochemistry, and are used extensively in academic and

industrial biotechnology [2]. However, with hundreds [3–5] of these models available, each

with hundreds or thousands of reactions, approaches to generating real understanding are

lagging behind black box predictive power.

This work introduces and demonstrates a number of statistical and machine learning

approaches to network structure detection. The central hypothesis is that inference from

large datasets of feasible metabolic flow configurations is an effective way to derive infor-

mation about the structure of a metabolic network. Specifically, the simulated datasets

used here are of optimal networks, which have been optimised by linear programming

under some set of conditions, based on small perturbations around a high biomass value.

This is slower than uniform sampling, but I argue in Chapter 3 that it is more biologi-

cally justifiable, and it is more directly comparable with techniques used on experimental

data. As well as being relatively under explored in the context of metabolic flow net-

works, these techniques have the distinct advantage that they can be applied to both real

data and Monte Carlo simulations even where the properties of the input data are poorly

understood or characterised.

Chapter 2, Background, describes biological background, such as the shape, properties,

and reasonable assumptions about metabolic networks, and why these properties make

them amenable to computational simulation and analysis. It also describes technological

background: network representations, relevant mathematical theory, and related works.

Chapter 3, Characterising state spaces of flow networks: sampling metabolic models,

describes a taxonomy of methods for Monte Carlo sampling on metabolic networks, or-
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ganised by frameworks for methods of modifying models and sources for distributions to

bias the modifications selected. It then finishes with a selection of example case studies of

sampling strategies, which are used as demonstration data in Chapter 5 and Chapter 6.

Chapter 4, Small sample approaches, describes three different approaches to creation

and interpretation of small sample sizes of metabolic networks in concrete biological set-

tings. A central thread of this chapter is that all three methods attempt different ways

of understanding metabolic networks visually, and while these have their strengths, they

also demonstrate the need for statistical techniques that can detect network structures.

This forms something of a counterpoint to the methods in chapters 5 and 6, which deal

with much larger sample sizes.

Chapter 5, Network interpretation by Similarity Network Fusion, describes the ap-

plication of the Similarity Network Fusion [6] technique to metabolic datasets. This is

applied to both a real world gene expression dataset and to simulated data, in order to

show patterns in the samples in both datasets. The results are clustered, resulting in the

types of phenotype groupings which would typically be attributed to genetic variation.

However, the results are similar across both experimental and simulated datasets, and

have related underlying causes, implying that these clusters in fact stem from network

structure itself.

Chapter 6, Hierarchical Block Matrices and Local Network Learning describes a project

to detect and uncover latent structure in flow networks by combining biased Monte Carlo

sampling with a local network approach to unsupervised detection of important network

links. This is applied to detect network structure in both real and simulated datasets, and

is validated by comparison with pre-existing manual subsystem labels. The results are

shown to be significantly better predictors of subsystem labelling than would be expected

by chance, and to outperform off the shelf clustering techniques.

Figure 1.1 shows some of the links between chapters in terms of data or techniques.

This emphasises the overall structure of the thesis: Chapter 3 focusses on techniques and

examples of data generation, while chapters 4, 5 and 6 introduce techniques and examples

of data interpretation.
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3: Characterising state spaces of flow networks:
 sampling metabolic models

Inducing variation to create sample spaces

Sources for prior distributions

Removing reactions

Adding reactions

Modifying objective values

Modifying reaction rates

Using model slack

Gene expression sampling

Case studies

0: Placeholder sampling

1: Batch based proportional adjustment

2: Evolutionary sampling with environment 
variation

4: Small model sets

Comparison across 11 samples from 4 gene 
expression conditions

Pairwise statistical and visual comparison via 
evolutionary optimisation

A platform for examining small number of models: 
FBAonline

5: Network interpretation by Similarity Network Fusion

Application

Similarity Network Fusion on simulated data

6: Hierarchical Block Matrices and Local Network 
Learning

Applying network local predictive power based 
similarity measures

Environment modification

Evolutionary sampling

Figure 1.1: Diagram of links between chapters. Arrows represent links of either data usage or
technique usage: where the data and techniques introduced in Chapter 3 are used in the other
chapters. Green boxes represent chapters, blue boxes represent sections, red boxes represent
subsections and so on. Sections on theory or implementation which are not shared between
chapters are omitted for brevity.
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1.2 Papers

The following is a list of publications that I have been involved with throughout my PhD.

Of these, [7, 8] are particularly relevant to Chapter 2, [9–11] are particularly relevant to

Chapter 4, and Chapter 5 is based on work in [12]. All work covered in this thesis is

wholly my own, along with the associated portions of these papers, though other parts of

the papers were done in collaboration.

• [13]: Bioinformatics challenges and potentialities in studying extreme environments.

Claudio Angione, Pietro Li, Sandra Pucciarelli, Basarbatu Can, Maxwell Conway,

Marina Lotti, Habib Bokhari, Alessio Mancini, Ugur Sezerman, Andrea Telatin.

International Meeting on Computational Intelligence Methods for Bioinformatics

and Biostatistics, pages 205–219, 2015. In this paper I advised on the metabolic

networking content.

• [12]: Multiplex methods provide effective integration of multi-omic data in genome-

scale models. Claudio Angione, Maxwell Conway, Pietro Lió. BMC Bioinformat-

ics, 2016. In this paper I contributed all of the work on Similarity Network Fu-

sion, while the simulation component was done in collaboration. Since then I have

reimplemented the simulation component myself for convenience, as is described in

Chapter 5.

• [10]: Iterative Multi Level Calibration of Metabolic Networks. Maxwell Conway,

Claudio Angione, Pietro Lió. Current Bioinformatics, 2016. In this I created the

multi-objective optimization procedure (though starting from an existing code base

described in [14]), and did all other work: creating the visualisation framework

described and all scratch.

• [7]: Seeing the wood for the trees: a forest of methods for optimization and omic-

network integration in metabolic modelling. Supreeta Vijayakumar, Maxwell Con-

way, Pietro Lió, Claudio Angione. Briefings in bioinformatics, 2017. To this review

I contributed the tutorial section, and some of the body text, and two of the three

figures.

• [9]: Transcriptome and proteome analysis of Salmonella enterica serovar Typhimurium

systemic infection of wild type and immune-deficient mice. Olusegun Oshota, Maxwell

Conway, Maria Fookes, Fernanda Schreiber, Roy R Chaudhuri, Lu Yu, Fiona JE

Morgan, Simon Clare, Jyoti Choudhuri, Nicholas R Thomson and others. PloS one,

2017. In this paper I contributed all work involving metabolic modelling: 5 of the

written sections and figures 4 to 6.
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• [8]: Optimization of Multi-Omic Genome-Scale Models: Methodologies, Hands-on

Tutorial, and Perspectives. Supreeta Vijayakumar, Maxwell Conway, Pietro Lió,

Claudio Angione. Metabolic Network Reconstruction and Modeling, pages 389–

408, 2018. I contributed the perspective in section 4 to this background piece.

• [11]: CiliateGEM: an open-project and a tool for predictions of ciliate metabolic

variations and experimental condition design. Alessio Mancini, Filmon Eyassu,

Maxwell Conway, Annalisa Occhipinti, Pietro Liò, Claudio Angione, Sandra Puc-

ciarelli. BMC bioinformatics, 2018. In this project I created tools that were used

for sections 3 and 5 of the CiliateGEM pipeline in figure 1.

• [15]: STAble: a novel approach to de novo assembly of RNA-seq data and its

application in a metabolic model network based metatranscriptomic workflow. Igor

Saggese, Elisa Bona, Maxwell Conway, Francesco Favero, Marco Ladetto, Pietro

Liò, Giovanni Manzini and Flavio Mignone. BMC bioinformatics, 2018. For this

paper I provided advice and discussion.
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CHAPTER 2

Background

2.1 Introduction

This chapter describes biological background, such as the shape, properties, and reason-

able assumptions about metabolic networks, and why they are amenable to computational

simulation and analysis. It also describes technological background: network representa-

tions, relevant mathematical theory and related work.

This chapter begins with biological background covering the motivation and justifi-

cation for the techniques used here (sections 2.2, 2.3 and 2.4), before moving on to an

overview of comparable techniques in section 2.5. Technological background is discussed

in sections 2.6 and 2.7, before concluding with a detailed review of related techniques

in 2.8. Background which is exclusively relevant to particular analytic techniques is left

to the appropriate chapters. Particular emphasis is placed on areas that are relevant to

simulation based, rather than analytic, techniques for network structure detection, since

this is the focus of this thesis.

2.2 A simplified view on how cells work

Humans, like most animals, solve many of our problems by mechanics. If we do not like

something, we move away from it. If we are hungry, we go to a place that has food, find

it, and eat it. However, this gives us something of a skewed view on what life is: for

instance, children often do not immediately think of plants as alive.

Life is primarily about chemistry. Living organisms are cells (occasionally more or less

cooperating colonies of more than one cell, like us), and a cell is a bag of chemicals. These

chemicals pull outside chemicals into the bag, convert them into useful materials, and

expel unwanted by-products. They then use the acquired building materials to construct

more biomass (the materials that make them up) until they get large enough to split, and

14



continue growing.

Most of the molecules in a cell are broadly described as metabolites. These are all the

small molecules which form the feedstocks, intermediaries and by-products, for growth

within the cell. A good way of thinking of this is that this includes almost everything

that one would learn about in high school chemistry, rather than in biology. For instance,

water, oxygen, hydrogen ions, salts, sugars, and alcohols.

The heavy lifting of these chemical processes is done by proteins. These are built from

long chains of amino acids, connected end to end, which fold and coil into useful shapes

that allow them to perform useful functions. Of particular interest are enzymes, which are

proteins which facilitate chemical reactions between metabolites, and transporter proteins,

which form tunnels and pumps to move metabolites into and out of the cell. Proteins

often perform these functions in surprisingly mechanical manners: enzymes are typically

shaped to bind loosely to their substrates in such a way as they are forced together to

react before being released, whilst active transporters typically operate via a ratcheting

principal.

Proteins are large molecules composed from a small set of unique amino acids (20

in humans), chained together. The information on what sequences of amino acids make

up each protein is stored in DNA. Once again, this is a chain of subunits from a small

alphabet, though in this case there are only four symbols, known as nucleotides, which

are interpreted with groups of three encoding each protein.

The process of constructing proteins from the DNA template is known as ‘gene ex-

pression’. (Potentially confusingly, ‘gene expression’ also refers to the quantitative rate

of this process.) It works as follows:

1. A protein complex called RNA polymerase attaches itself to the DNA strand, split-

ting open the double helix to read one side.

2. The RNA polymerase protein moves along the strand. At each DNA nucleotide,

it attaches a complementary nucleotide of mRNA (mRNA is much like DNA, but

more reactive and less stable). It then binds the mRNA nucleotide to the previous

mRNA nucleotide.

3. When the RNA polymerase finishes its work, the result is an mRNA negative of the

gene that is required.

4. A large protein called a ribosome attaches to the mRNA negative to read it into a

protein.

5. Once again, the ribosome moves along the mRNA, this time attaching matching

tRNA bases. The tRNA is present in groups of three bases, with each group attached

15



to one amino acid. The ribosome moves along the mRNA, using the tRNA to attach

the correct chain of amino acids together, to create the required protein.

6. The amino acids in the chain curl up to bind to each other to form the correct three

dimensional shape.

This process appears quite simple when described in such general terms, however it in-

volves a very large amount of detail and incidental complexity, as described in section 2.3.

2.3 How to model living cells

The mechanisms of gene expression described in the previous section are conceptually

fairly simple. In many ways, the manufacturing of proteins is simpler than the manufac-

turing of many consumer goods—although proteins are far more complex and intricate

end results, the process of instantiating them from their ‘blueprint’ has quite uniform

steps.

However, if we want to model how living things behave, we need to know how their

metabolism acts, since this is the primary way that most of them interact with the outside

world. We also need to know this in a quantitative manner, and this is where we run into

serious complexity.

Because the individual mechanisms are generally well understood and relatively simple,

it is possible to construct differential equations that accurately describe each part of the

process in isolation. However, once these equations are connected together the system

explodes in complexity due to the many, many feedback loops. These feedback loops

make characterising the system very difficult because it is difficult to experiment on parts

in isolation, and because attempts to isolate subsystems in vitro inevitably alter the

environment. Furthermore, for in vivo experiments, measurement and perturbation are

difficult. Cells are small, so normally measurements can only be taken on large numbers

simultaneously, meaning that only an aggregate result can be found. Because the result is

aggregated across many different cells, any effect must be large in order to be detectable,

and so the perturbation must be large to generate a detectable result, and to overcome

the cell’s attempts to counteract it.

Furthermore, because life is evolved rather than designed, much of the regulation and

control occurs via what could be described as inelegant methods, which represent local

fitness maxima. As an example, if there is too much of a metabolite X, the amount could

be reduced by any combination of a vast number of more or less direct methods. For

instance, the amount of the enzyme that creates X could be reduced by interfering at

any point in its transcription process, or by blocking it from acting, or the opposite could

be done to an enzyme that breaks it down, or alternatively any of these actions could
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be conducted on an indirectly connected enzyme which acts on a different metabolite to

create a knock on effect on the production or degradation of X, or its uptake or removal.

Or, indeed, nothing could be done at all, and the cell could perform some other action to

just cope with the excess of X. In a designed system, one would hope that there would

be a deliberate choice of the most simple and direct method to achieve an end. However

in an evolved system the pattern seems to be that the first mutation that helps with a

problem is selected for, and any resulting side effects are dealt with later.

2.3.1 Approaches to modelling cells: which black box to choose

When faced with a complicated system, it is common to start by choosing some compo-

nents to model mechanistically, and some to model as a black box, finding the easiest

model that fits the data under the relevant circumstances.

Taking this approach, systems biology has tended towards an overall view that consid-

ers the cell as a set of conceptual layers, termed ‘omes’. This naming is from the genome,

the set of all genes in the cell.

Unlike the other ’omes, the genome is generally static, and when changes do happen

these are normally random mutations during copying, rather than any kind of directed

change, or short term feedback. This means that most or all of the information about

how an organism works must be included in the genome. Fortunately, the stability,

structural uniformity and random mutations of the genome also make it easy to study.

If you observe a property of an organism and later sequence its genome, then you know

that the genome you find was the same as the genome at the time of observation, and

that it is extremely unlikely that a genetic feature is a result of some other property of

the organism. In the past, particularly prior to the human genome project, there was a

hope that if we sequenced enough genomes and compared them with enough phenotypes

(the external properties of an organism), then we would be able to infer the genotype-

phenotype relationship black box, and that this would give us a predictive model of how

life worked.

It should come as no surprise to those from a computer science background that this

did not work. The genotype-phenotype relationship is stochastic and stateful. It has as

an input tens of thousands of genes (ignoring the vast number of variations that they can

take), and has as an output another incredibly complex relationship: a mapping from

a vast number of poorly defined aspects of the environment to an equally vast set of

potential phenotypic effects. Attempting to understand this kind of relationship without

looking at the underlying mechanisms is therefore intractable in the general case.
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2.3.2 Approaches to modelling cells: the metabolome is rela-

tively tractable

In the previous section, the problems associated with trying to model the genotype pheno-

type relationship as a black box were discussed. Of course, the alternative to this approach

is to take a more reductionist and mechanistic approach, starting our understanding with

simple, well understood subsystems and slowly expanding our understanding outwards.

The metabolome has a number of properties that make it a good area to begin:

• Small molecules are generally completely identical to each other. This contrasts

with larger structures like proteins where small variations cannot be individually

tracked, since this would lead to a combinatorial explosion.

• The molecules in the metabolome are generally present in large enough quantities

that quantisation effects can be ignored.

• Because the molecules of the metabolism are small, they diffuse quickly and their

orientation can be ignored.

• The interactions between many groups of small molecules have already been well

studied by organic chemists in vitro, so that there is already theory with good

predictive power, at least until enzymes get involved.

• As discussed previously, chemical exchange is one of the main ways that small

organisms interact with the outside world, so metabolic models accurately capture

much of their phenotype.

The gold standard in describing metabolic subsystems are systems of partial differ-

ential equations. Unfortunately, it is complex and difficult to accurately measure the

reaction rate coefficients required, and these models explode in complexity as more and

more elements are added and subsystems are joined. This means that if we want to model

the complete metabolism of even a very simple organism, we need to use models with less

parameters.

2.4 Metabolic modelling

Rate coefficients to chemical reactions can be difficult to measure, especially when they

are enzyme mediated, since many, many factors can influence the abundance and activity

of enzymes. However, the stoichiometry (the participants and their ratios) of chemical

reactions is fixed, since this is determined by conservation of matter and of charge.

Lists have been constructed that detail the stoichiometry of biological reactions, with

coverage of most of the reactions that occur in most organisms. Reactions that are
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Figure 2.1: A simplified sketch of a metabolic network. In this sketch, we can see that
if glucose is conserved and in steady state, the rates of photosynthesis and respiration must
be equal. Glucose, water, and CO2 are examples of metabolites, whilst photosynthesis and
respiration are examples of reactions.

missing tend to be unique to particular groups and only used under specific circumstances,

such as breaking down unusual foodstuffs or providing protection from toxins, so a large

proportion of the reactions occurring in common organisms in benign environments can

be covered.

These sets of reactions can be considered as flow networks. As discussed in sec-

tion 2.7.3, there are a few different ways in which these can be represented, but the

simplest model (aside from those that discard information) is to consider the relationship

between reactions and metabolites as a bipartite graph: both reactions and metabolites

are nodes, with reaction nodes only having edges to metabolite nodes, and vice versa.

Edges are directed to represent either consumption or production of a metabolite, and

numbered with the stoichiometry of the link. Reactions have a rate, and the rate at

which they produce a particular product is their own intrinsic rate, multiplied by the

stoichiometry of the link to the product.

From this position, we can start adding assumptions. The first of these is a steady

state assumption. This says that there is no net surplus or deficit of any metabolite, so

the total rate of production of a metabolite is equal to the total rate of consumption.
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This is equivalent to Kirchoff’s current law in electronics [16], and means that the rates

of the reactions producing the metabolite are tied to the rates of the reactions consuming

it. Obviously to allow uptake and excretion this assumption must be relaxed in some

areas, which is normally achieved by one sided placeholder reactions. We also add some

constraints on rates of reactions. Typically these are quite liberal except for the uptake

and excretion placeholders, which we generally assume to be the among the limiting points

in the system.

At this stage, we have what is known as a flux space. This is a space with a number of

dimensions equal to the number of reactions, and a polytope within this space enclosing

the feasible region—the set of reaction rate assignments that are consistent with the

assumptions, consistent with the constraints, and consistent with all of the other reaction

rates. Figure 2.1 shows a simple example of a metabolic network, showing the different

node types and resultant constraints.

If we stop here and directly explore the still under-constrained flux space, we have

what are known as unbiased methods. These are decomposition methods that project the

full set of dimensions of the flux space down onto a somewhat smaller set of dimensions

that cover only the feasible flux space. Unbiased analytic methods such as elementary

flux modes are the state of the art in analytic understanding of flow networks, but they

have a number of disadvantages in the analysis of large metabolic networks:

1. in typical applications, whilst the dimension reductions are significant, they are still

not enough to enable human interpretation,

2. the assumption of a uniform and unbiased flux space is not necessarily reasonable,

3. these approaches are difficult to apply to multi-level models or to real data, and

4. despite being analytic rather than simulation based, they are highly computationally

demanding.

Of course, there are various approaches to address each of the weaknesses of unbiased

analytic methods, but this thesis eschews these methods in favour of statistical and ma-

chine learning post-processing of flux data sets, since this affords increased flexibility and

the ability to apply techniques uniformly to a variety of types of models, simulations, and

real world data.

If we attempt to find individual solutions within the flux space that are particularly

biologically likely, or important, then we have biased methods.

Biased and unbiased methods are both described in more detail in section 2.5 on the

next page.

There are many biased methods, but the prototypical method, on which most others

are based, is Flux Balance Analysis (FBA). This adds one extra assumption to the model
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previously outlined: that evolution has already optimised the organism to grow as fast

as possible. To use this assumption we add another placeholder reaction to the existing

uptake and excretion nodes—a sink for biomass. This reaction simulates the sequestra-

tion of materials that is required for growth, and is generally a reaction with a very

large number of input reactants. Unusually the biomass reaction typically has fractional

stoichiometries, since we can find the ratios of materials required for growth by simply

analysing the constituents of a whole cell.

Once we have a biomass equation, we have a direction for optimisation. We find the

assignment of fluxes that will achieve the highest biomass production. This is normally

achieved by Linear Programming, which is a fast, specialised optimisation method that

is applicable to this type of problem. In small models, this optimisation process can find

a single flux assignment, finding a single value for all reactions, but in larger models this

is not always the case, as discussed in section 3.2.6 on page 45.

2.5 Overview of existing metabolic network analysis

techniques

The most common and in many ways best model for a system of chemical reactions is

a system of differential equations. The problem is that building such a system requires

knowledge of rate coefficients for every reaction, which are difficult to measure, especially

for enzyme catalysed reactions in vivo. This makes that approach intractable for full

organism models.

Therefore, techniques to analyse large metabolic models must get by with just stoi-

chiometry and various other constraints on reaction rates, such as constant bounds. These

methods can be divided into two groups [17]: biased methods make the assumption that

evolution has evolved to optimise for certain properties of the reaction system, such as

maximising biomass production, and simulate this maximisation to find rates; unbiased

methods make no such assumptions.

Unbiased methods are typically analytic decompositions of the flux space such as

Elementary Flux Modes [18], although some uniform Monte-Carlo approaches exist, while

biased methods are typically variants on Flux Balance Analysis.

Section 2.8 describes in detail the field of available techniques for both biased and

unbiased optimisation, in conjunction with figure 2.2, which organises the taxonomy of

different techniques visually.

However, the central dichotomy of purpose, as well as methodology, between biased

and unbiased methods is extremely important to understanding the purpose of this the-

sis: biased methods are primarily predictive, since they focus on specific model states,

while unbiased methods aim to produce descriptive results. On a high level, these two ap-
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Figure 2.2: A tree diagram providing an overview of the field of metabolic modelling. Red
nodes represent techniques and software introduced in this thesis: Biased structure detection
techniques by combining Monte-Carlo simulations, visualisations and unsupervised clustering.
A zoomable version is available online at www.cl.cam.ac.uk/~mjc233/metabolic_modelling.
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proaches exist because whole cell metabolic models are very complex systems. Unbiased

approaches such as Elementary Flux Modes are effective as descriptive tools, in that they

capture uniformly all possible states of the model, but this is not necessarily possible with

large models, nor is it always desirable, since some model states are more important than

others. By contrast, biased models capture individual states of the system, one by one.

This makes them very good at specific predictive tasks, but because they only capture one

state at a time, they provide little descriptive power—they are very good at answering

questions like ‘what happens if this reaction stops?’, but they are very poor at answering

questions like ‘which pathway is this reaction in?’. One purpose of this thesis is to com-

bine these two approaches by using large scale biased simulations to describe metabolic

networks. The aim is to provide descriptive tools over multiple states of models, but with

the advantages of biased tools, by focusing on flux distributions that are optimal under

some conditions.

2.6 Optimisation

Mathematical optimisation refers to searching the domain of a function in order to find

an argument or set of arguments such that the result of the function, or some property of

the result of the function, is as large or as small as possible. The most common objective

is simply to minimise the function result, where this result is often a measure of error or

cost.

In metabolic modelling it is common to see two different types of optimisation which

serve quite different purposes, but are easily confused, so it is worth distinguishing between

them.

The first is optimising the network fluxes to maximise the biomass objective function.

Because of the assumptions made about the metabolic network, this optimisation problem

can be expressed as a set of linear inequalities in what is termed canonical form. This

structure can be exploited by techniques such as the Simplex algorithm to find the global

optimum very quickly. We can term this part the inner optimisation problem. It is

concerned with choosing flux assignments to simulate a plausible biological result.

Secondly, it is common to also use an outer optimisation algorithm, which alters

the parameters to the inner optimisation problem. This outer optimisation is typically

concerned with the constraints to reaction rates (rather than reaction rates themselves),

and at each iteration will test a set of reaction constraints by using the inner optimisation

algorithm to find the fluxes implied by those constraints.

Whilst the inner algorithm can typically be evaluated very quickly (typically less than

1 s in the applications described here), the outer optimisation algorithm cannot easily

exploit any structure of the function that it is optimising over (which involves evaluation
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of the inner algorithm), and so must run the inner algorithm at every iteration, meaning

that a much more generic optimisation algorithm must be used, with much longer running

times.

A discussion of linear programming (the typical technique for solving the inner opti-

misation problem), and evolutionary optimisation (a common technique for solving outer

optimisation problems) follows.

2.6.1 Linear programming

Linear programming (‘programming’ is here used in the pre-computational sense of de-

signing a schedule) is a technique for optimising a certain restricted class of systems which

include metabolic networks. By virtue of their restricted problem class, linear program-

ming solvers can be made much, much faster than more general optimisation techniques

like gradient descent, whilst also providing much stronger guarantees about the result

optimality.

Linear programming addresses optimisation problems that can be expressed in the

form ‘maximise cT ·x, subject to linear constraints x ≥ 0 and A·x ≥ b’. These constraints

can be interpreted as a polyhedron in which any valid solution must fall. The solution

is the point on the polyhedron that is furthest in the objective direction. The simplex

algorithm exploits the fact that a global optimum must be found at one of the vertices of

this polyhedron, and works around the vertices to find this solution. Where an edge or

face of the polyhedron is perpendicular to the objective direction, an infinite number of

globally optimal solutions may exist, but there will still be one at each vertex adjacent to

this edge or face.

Linear programming is used in a wide variety of contexts, but economically important

resource allocation problems are often particularly amenable to this approach. Fortu-

nately, this creates a relatively lucrative market that has produced a number of fast and

highly optimised solvers, both open source and commercial. The three solvers used most

in this research are Gurobi, one of the fastest commercial solvers, with an academic li-

cence, GNU Linear Programming Toolkit (GLPK) [19–21], a relatively fast and reliable

open source solver, and Embedded Conic Solver (ECOS) [22, 23] for some testing and

simple problems, since it is self-contained and easy to install.

2.6.2 Evolutionary optimisation

Evolutionary optimisation is a description for a wide range of optimisation algorithms that

generally maintain a population of independent solutions, generate new solutions from the

old solutions via a random mutation process, and discard low quality solutions in favour

of higher quality ones. Many evolutionary optimisation algorithms take inspiration from
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features of biological evolution, such as generating new solutions by a pairwise sexual

recombination process.

Evolutionary optimisation algorithms do not generally keep track of population level

aggregate statistics, do not generally require a concept of landscape gradient, and are

afforded some robustness against local minima by keeping a wide population. These

properties make them suitable for use in optimising systems that are difficult to char-

acterise. Furthermore, their wide population of solutions means that they can be used

as part of a process of characterising a complex fitness landscape, since they can give

information on a variety of local minima.

Both of these properties make them suitable for use on the outer optimisation step

of metabolic networks, since they are able to address these complex problems whilst also

providing information on the shape of the entire solution space.

2.7 Networks

The word ‘network’ generally denotes a set of nodes and edges, where each edge connects

two nodes (or sometimes a node to itself), and each node has zero or more edges connected

to it. This description is applicable to a vast number of areas, with different explicit

assumptions about network structure and the properties of nodes and edges, and often

implicit assumptions about what different features mean.

2.7.1 Metabolic networks

This thesis primarily discusses chemical reaction networks, which are a type of flow net-

work. Comparing to other flow networks might lead us to jump to a description where

metabolites (chemicals) are nodes, and reactions are edges, a bit like a logistics network

where we could think about metabolites as stores of matter with conversions between

them. Alternatively, we might think about reactions as nodes, with metabolites being

edges between them, much like in a traffic network where junctions allow flow to change

directions.

However, metabolites can take part in multiple reactions, and reactions can have more

than one substrate and one product, so in fact both must be considered as nodes, edges

between them purely indicating stoichiometric coefficients. A missing edge is a coefficient

of 0. Since reactions can only be connected to metabolites and vice versa, this graph is

bipartite. The alternative to this would be to use the hypergraph generalisation, where

edges can connect multiple nodes.
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2.7.2 Similarity and distance networks

When discussing machine learning it is also important to touch on the concepts of similar-

ity and distance networks, which are networks where edge weights represent the similarity

or dissimilarity between nodes, under some measure. When discussing the representation

of these quantities as networks, as opposed to distance or similarity matrices, it is also

necessary to consider the implications of unconnected nodes. When nodes are not con-

nected many algorithms take this to be equivalent to an edge weight of 0. This means

that for machine learning applications, similarity networks are often more convenient

than distance networks, since it makes sense for unrelated nodes to have a similarity of

0, whereas in a distance network setting, unrelated nodes would have an undefined or

infinite distance.

2.7.3 Network representations

There are a number of different ways to represent networks in a tabular or matrix format,

with different relative merits in terms of their convenience for certain computational

operations, and the mental model that they encourage. For metabolic modelling, there

are a few representations that are particularly useful. Adjacency matrices are matrices

where both rows and columns represent nodes, whilst non-zero entries in the matrix

represent edges. These are convenient because, if we use the bipartite nature of the graph

to only list metabolite nodes in rows, and reaction nodes in columns, then the adjacency

matrix of the network is the stoichiometric matrix of the reaction system. If we take a

sparse representation of the adjacency matrix, we get an edge list, which in the context

of metabolic modelling is a list of metabolite, reaction pairs. Finally, a convenient format

is a reaction list, which can be interpreted as a kind of adjacency list, where for each

reaction node we have the name and stoichiometry of each metabolite that is involved.

Representing networks in a manner that is amenable to machine learning is an open

area of research, with a number of approaches introduced recently [24–26]. Chapter 6

discusses an approach to breaking down a large network learning problem into a series of

smaller ones that are more similar to traditional tabular datasets.

2.8 Review of state of the art in genome-scale metabolic

modelling techniques

2.8.1 Constructing, obtaining and improving metabolic models

Whole genome metabolic models are available online in repositories such as the Kyoto

Encyclopaedia of Gene and Genomes, also known as KEGG [4], the Biochemical Genetic

26



and Genomic knowledge-base (aka BiGG) [27], the BioCyc collection of pathway/genome

databases [28] MetaNetX [29] and ModelSeed[30], among many others. In addition, many

of the newest are available first only as supplementary information to papers. The prepa-

ration of a genome-scale metabolic model involves the reconstruction of all metabolic

reactions taking place in the organism, annotated and extended with supplementary in-

formation on the genes, metabolites and pathways. Reconstructions vary significantly

in quality, both in terms of their format and ease of parsing and the completeness of

their underlying information, and as such, manual curation and gap filling is sometimes

required [31]. One technique for this is to reconcile predictions from models with in-vivo

findings in order to identify gaps in our knowledge of metabolism [32].

Inconsistencies often exist between models and experimental data. This can be false

positives or false negatives for boolean model properties, or poor correlations in numeric

model properties. Algorithms exist to support the identification and correction of some

classes of inconsistencies, such as Grow Match [33], SMILEY [34] and Optimal Metabolic

Network Identification (OMNI) [35]. Finding inconsistencies can not only lead to im-

provements in model quality, but can sometimes also guide basic biological research [36].

GapFind and GapFill are examples of optimisation procedures which identify problematic

metabolites which are known to exist in a cell but for which no known reaction either

produces or consumes them, and propose mechanisms to restore pathway connectivity

for these metabolites [37]. FastGapFill [38] is an extension of FASTCORE which incor-

porates flux and stoichiometric consistency to guide the gap filling process. Metabolic

Reconstruction via Functional Genomics (MIRAGE) [39] conducts gap-filling by inte-

grating with functional genomics data to estimate the probability of including any given

reaction from a universal database of putative gap-filling reactions in the reconstructed

network. This enables selection of the set of reactions, the addition of which is most

likely to result in a fully functional model when flux analysis is done again. Many models

also integrate signalling and regulatory pathways with metabolic networks in order to add

information regarding underlying mechanisms.

2.8.2 Unbiased methods

As described earlier, unbiased methods search the whole solution space of a metabolic

model to find sets of statistically analysable states without requiring the definition of a

specific objective function. These techniques are therefore similar in principle to other

unsupervised techniques in machine learning, although they aim to explore the statistical

properties of a network model, rather than the tabular datasets that are pervasive in

general purpose unsupervised methods.

Network-based pathway analysis is a large family of unbiased methods which assess

the main properties of biochemical pathways [40]. Gene Association Network-based Path-
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way Analysis (GANPA) improves upon this process by adding gene weights to determine

gene non-equivalence within pathways [41]. A similar approach to this was recently pro-

posed to compare pathway significance by constructing weighted gene-gene interaction

networks in healthy and cancerous tissue samples [42], which could then be used to ex-

pand pathways for each set of samples and to compare their topologies. Network-based

pathways enrichment analysis is another technique to identify a greater number of gene

interactions. An example of this is NetPEA, which utilizes a protein-protein interaction

network in combination with a random walk to include information from high throughput

networks and known pathways [43]. The NetGSA framework is another example of where

condition-specific data has been used in combination with network estimation in order to

improve the detection of differential activity in pathways [44].

A variety of different methods can be used for network-based pathway analysis, to

calculate the set of routes through the reaction network and the corresponding matrices

which represent their stoichiometry. Elementary flux modes (EFMs) describe the minimal,

non-decomposable set of pathways that operate within a steady state system. These are

found by the repeated removal of single reactions until a valid steady state flux distribution

cannot be calculated [18]. This process tends to yield a vast number of common functional

motifs - this is one of the problems common to unbiased methods which the techniques

in this thesis avoid. However, other techniques exist to attempt to address these large

numbers of motifs. Agglomeration of Common Motifs (ACoM) can be used to cluster

these motifs, with overlap between classes allowed [45]. Another approach is to determine

a single elementary flux mode by solving an optimisation problem using EFMevolver [46];

this can draw attention to significant elementary flux modes. Finally, K-shortest EFMs

enumerates elementary flux modes in order of their number of reactions, since the shortest

pathways are often of most biological interest due to their high flux and experimental

tractability [47].

A further approach to network based pathway analysis is Generating Flux Modes [48].

The set of Generating Flux Modes is the smallest set required to define the geometry

of the flux space using a null-space algorithm. The number of GFMs is often extremely

large, but it is possible to identify specific subsets with more reasonable computational re-

quirements [49]. In addition, there exist methods for dimensional reduction of flux cones,

such as minimal metabolic behaviours [50] and minimal generators [51]. One method is to

search for the shortest path between a given pair of end nodes [52], but the assumptions

made in this approach are often criticised as overly simplistic, since they ignore actual re-

action stoichiometry, throwing away a large amount of information [53]. Thermodynamic

constraints can be used to add additional network information, such as in tEFMA [54],

which removes thermodynamically infeasible EFMS using network-embedded thermody-

namic (NET) analysis [55]. This use of thermodynamic information can be extended to
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identify for physiologically significant EFMS, since the largest thermodynamically consis-

tent sets (LTCSs) of EFMs often represent condition-specific metabolic capabilities [56].

Extreme pathways are an important subset of EFMs [40]. They consist of the minimal,

independent set of reactions required to exist as a functional unit, and are characterised

by a set of convex basis vectors which represent the edges of the steady-state solution

space [57]. Most of the methods described here are intended to reduce dimensionality,

however EFMs increase dimensionality, since they require that each reversible reaction is

converted to forward and backward irreversible reactions [58]. Minimal cut sets (MCSs)

are the set of EFMs which are required for a nonzero value of the objective function [59].

This is useful when identifying the set of single changes that would be required to induce

some effect on the network. Elementary flux patterns (EFPs) define all potential ele-

mentary routes for steady state fluxes as set of indices; they can be mapped to EFMs in

order to include pathway interdependencies [60]. A number of frameworks have appeared

that provide the capability of combining some of these approaches to synthesis pathway

prediction and scoring the best candidates [61], such as GEM-Path [62] and BINCE [63].

Monte-Carlo sampling, message passing [64], and symbolic flux analysis [65] are often

incorporated into unbiased methods. This thesis includes an example of a Monte-Carlo

approach which combines biased and unbiased aspects: biased towards a particular area

of the flux space, but characterising the shape of the surrounding area in a way similar

to many unbiased techniques. However, Monte-Carlo sampling is often also used in a

fully unbiased manner, such as in [66], where Markov chain Monte-Carlo is used to gen-

erate uniform samples from genotype space. Various approaches to speeding up uniform

sampling have also been suggested, such as sampling from an ellipsoid surrounding the

solution space [67].

Of the various intracellular data types, metabolic data is among the most closely cor-

related with observed phenotype [68], which means that integrating data from observed

phenotype data into a constraint based model can improve predictions of metabolic ac-

tivity [69, 70]. The MetaboTools package is an example of a toolbox designed to support

this kind of approach [68].

2.8.3 Biased methods

Biased methods are those which are biased towards a particular objective function, such as

maximizing biomass output, with the metabolic network serving as a system of constraints

on this objective function.
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2.8.3.1 Flux Balance Analysis (FBA)

As described previously, the most popular and well characterised biased method is Flux

Balance Analysis (FBA), and many other biased methods are variants of it.

A Flux Balance Analysis problem has three basic components:

• a set of reactions, expressed as their stoichiometric equations between metabolites,

• a set of lower and upper rate bounds on these reactions, and

• an objective function: a linear combination of reaction rates that must be maximized

or minimized.

Flux Balance Analysis then consists of finding an assignment of reaction rates which

maximizes the objective function while remaining consistent with the reaction equations

and rate bounds. For a system with r reactions and m metabolites, these components

can be defined as follows:

lb := the vector of lower bounds, length r, (2.1)

ub := the vector of upper bounds, length r, (2.2)

c := the objective function vector, length r, (2.3)

A := the stoichiometric matrix, with r rows and m columns, (2.4)

x := the vector of reaction rates, length r, which we aim to find. (2.5)

The optimisation problem can then be expressed as:

Maximise x · c, (2.6)

subject to lb 5 x 5 ub, (2.7)

and Ax = 0 (2.8)

This is an example of a linear programming problem, which allows linear programming

solvers to be used to solve FBA problems, as described in section 2.6.1. The ability to use

linear programming for FBA makes it particularly attractive due to the speed of available

linear programming solvers.

An extension to this is the use of a multi-level linear problem, where a problem is first

maximized according to one objective (c), and then subject to that maximal objective

value, is maximised according to another objective (c′), as follows:
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Maximise x · c′, (2.9)

subject to lb 5 x 5 ub, (2.10)

and Ax = 0, (2.11)

and Maximise x · c, (2.12)

subject to lb 5 x 5 ub, (2.13)

and Ax = 0 (2.14)

This can be easily implemented because c is typically only nonzero for a small number

of reactions, so after the first optimisation round, lb and ub can simply be set to equal

the value of x obtained for these reactions.

As described elsewhere, the most important biological assumption inherent in FBA is

that the cell is in steady state, so the total production and consumption of each metabo-

lite must balance, although certain pseudo-reactions can simulate uptake or excretion [71].

However, certain extensions exist to FBA, such as Dynamic FBA (DFBA), which approx-

imate dynamic conditions as a series of steady states [72]. The results of such approaches

can be validated using 13C metabolic flux analysis [73]. Other dynamic approaches in-

clude dynamic multi-species metabolic modelling (DMMM), which models competition

between species in a microbial community [74].

Unfortunately, Flux Balance Analysis models are sometimes underdetermined, so there

is a need for approaches to try to improve the quality of the constraints in models [75].

Flux Variability Analysis [76] (FVA) is one such approach, which varies fluxes to find the

maximum and minimum rates for a given biomass production rate [77]. Fast thermody-

namically constrained flux variability analysis (tFVA) is a technique for speeding up FVA

by removing a variety of thermodynamically infeasible reactions, as is described further

in the next paragraph [78]. I take a similar approach in section 3.4.3.

Another way to introduce further constraints is via Thermodynamic metabolic flux

analysis (TMFA) and thermodynamic variability analysis, which remove thermodynami-

cally infeasible reactions and loops and generates information on feasible metabolite activ-

ity and free energy changes [79, 80]. Removing these loops avoids violating the loop law:

there is no net flux around loops of chemical reactions in steady state [81] (this is equiva-

lent to Kirchoff’s voltage law). This technique of removing infeasible loops before solving

a model can also be applied as a pre-processing step to most other approaches [82]. Energy

Balance Analysis (EBA) is another approach to integrating thermodynamic constraints

into FBA [83].

Other approaches to further constraining models focus on biological, rather than chem-

ical, context. For instance, Parsimonious FBA (pFBA) is intended to identify the subset
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of genes which maximise the growth rate in the model,and hence the stoichiometric ef-

ficiency [84]. Where flux rates are constrained by the availability of a related chemical,

conditional FBA can be used to model this relationship, such as in Elucidating temporal

resource allocation and diurnal dynamics in phototrophic metabolism using conditional

FBA [85] and Evaluating the stoichiometric and energetic constraints of cyanobacterial

diurnal growth [86]. Resource balance analysis (RBA) limits flux rates by protein avail-

ability, providing another constraint [87]. CAFBA, constrained allocation flux balance

analysis, is another, more recent technique for modelling how protein availability affects

metabolism, including multiple classes of protein [88]. Cost-reduced sub-optimal FBA

(corsoFBA) combines protein and thermodynamic modelling components to constrain a

model, reducing the growth rate below that that would be possible in a normal FBA

model.

Bayesian flux estimation approaches [89] and the METABOLICA framework [90] at-

tempt to address similar problems to in this thesis, although normally on much smaller

sample sizes or models, and with a different sampling approach.

On the other hand, some methods relax some of the constraints of FBA, such as

flexFBA [91], which relaxes the constraints around the biomass function in order to allow

for improved predictions for cells that are not yet in steady state.

2.8.3.2 Regulatory methods

Regulatory methods for constraining FBA are those which incorporate information from

cell regulation and related external data in order to make a flux balance analysis model

more specific to a particular set of conditions. For instance, Steady-state Regulator Flux

Balance Analysis [92] is used to measure the effect of constraints on metabolic genes, and

Integrated FBA (iFBA) is capable of incorporating regulator and signalling pathways into

an FBA model in addition to metabolism, and can incorporate multiple reaction speeds

to give predictions of model dynamics [93, 94].

The simplest regulatory methods use a purely boolean on/off model of regulation,

which obviously results in some information loss. Continuous information about regu-

lation can be incorporated probabilistically, such as by PROM [95, 96] or QSSPN [97],

or in discrete categories [53], but regulatory information is typically modelled as continu-

ously controlling reaction rate, such as by FlexFlux [98] or the multi-formalism interaction

network simulator (MUFINS) [99].

One of the most readily available sources of quantitative data to parametrise metabolic

networks is gene expression data. An example of this is transcriptional FBA (tFBA),

which uses continuous gene expression differences between pairs of real world conditions

constrain FBA [100]. Transcriptionally regulated flux balance analysis (TRFBA) [101]

is another recent method for converting gene expression data to flux bounds via a con-

32



stant multiplier, along with some ability to compensate for unavailable gene expression

information.

There are a variety of sources for gene expression to use in metabolic network parametri-

sation. The most abundant but also most time consuming to collate is of course the

supplementary information of various papers. More convenient databases also exist, such

as the Gene Expression Atalas [102], Array Express [103], and the Gene Expression Om-

nibus [104]. Some of these, such as the Gene Expression Atlas, Gene Chaser [105] and

Profile Chaser [106] also contain useful metadata [107].

Discrete ‘Switch-based’ methods for metabolic data integration Discrete, or

‘switch-based’ methods completely remove reactions which meet certain criteria - typically

where the expression level for one or more genes required for the reaction is below a certain

threshold [108]. A typical method that falls into this class is Gene Inactivity Moderated

by Metabolism and Expression (GIMME) [109, 110], which performs standard FBA after

removing reactions against a flat transcription threshold. The flux data obtained can then

be compared with known active reactions as a validation step [111]. This can be extended

to estimate turnover fluxes in the form of Gene Inactivation Moderated by Metabolism,

Metabolomics and Expression (GIM3E) [112].

Discrete regulation methods are particularly appropriate for creating tissue specific

models for multicellular organisms, since often certain pathways are largely dormant in

certain tissues. This can be modelled by using mixed integer programming to fit discrete

flux targets to the network based on associated gene expression data, and then using

linear programming to fit the fluxes to these targets [113, 114]. This Integrative Metabolic

Analysis Tool (iMAT) implements this procedure [115].

Another tissue specific discrete algorithm is Integrative Network Inference for Tissues

(INIT) [116]. This aims to produce metabolic models which are specific to particular cell

types by integrating protein abundance data—the steady state assumption is modified in

order to better model protein production, and mixed integer programming is used once

again to fit the model to experimental protein abundance data [117].

Continuous ‘Valve-based’ methods for metabolic data integration Continuous

regulation techniques adjust the FBA input model smoothly, rather in discrete steps. Typ-

ically, they adjust the upper and lower bounds to reaction rates to constrain the model to

match outside data, often by adjusting the bounds in proportion to some normalisation

of the measured expression of genes associated with each reaction [108]. Examples of this

include E-flux [118] and E-flux 2 [119], METRADE [120], FALCON [121] and PROM [95].

Some evidence indicates that this continuous model of the relationship between gene ex-

pression and protein concentration, and hence metabolic flux, is more biologically accurate

than a discrete model [117, 122].
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In the example of E-flux, the relationship between gene expression and reaction rate

bounds is primarily based on the upper bound: when gene expression is low, the upper

bound is low, and when gene expression is high, the upper bound is high (but the lower

bound does not follow it up) [110, 118]. This models a situation of zero order kinetics,

where the network flux as a whole is constrained by enzyme concentration bottlenecks.

E-flux can generate underdetermined models without a unique solution, so E-flux 2 fol-

lows this with minimisations of the flux vector’s Euclidean norm to fully determine the

result [119].

Expression data-guided flux minimisation (E-Fmin) [123] is a method which fits fluxes

to a function of gene expression level, much like GIMME, but in a continuous manner.

FALCON estimates enzyme abundances from gene expression data explicitly, by con-

trast to most other methods which infer flux constraints directly from gene expression

levels. METRADE combines gene expression data with multi-objective optimisation to

investigate how phenotypes trade off between multiple potential biological objectives.

Network pruning Network pruning methods are similar to discrete data integration

methods in that they turn off some reactions entirely, but they are much more aggressive,

removing as many reactions as possible to fit some set of criteria. Examples include FAST-

CORE [124], FASTCORMICS [125], MBA [126], mCARDE [127] and OnePrune [128].

Owing to the combinatorial nature of testing reaction removals, these methods can be

quite slow, but Cost Optimisation Reaction Dependency Assessment (CORDA) [129] of-

fers a clever solution by assigning penalties to reactions implemented as a placeholder

metabolite, and then optimising for the minimisation of this placeholder metabolite in

order to identify which undesirable reactions are necessary for each desirable reaction.

This notion of uncovering a smaller subnetwork of important reaction dependencies is

similar to my aim in Chapter 6, although quantifying dependencies differently.

Other methods A number of methods take other approaches to creating biologi-

cally accurate models. For instance, the Regularised Context-Specific Model Extraction

method (RegrEx) uses regularised least squares optimisation to fit fluxes to experimen-

tal data such as gene expressions [130]. The Huber penalty convex optimisation function

(HPCOF) represents an alternative optimisation function which has produced results with

good correlations to experimentally determined values, and with the removal of some dif-

ficult to measure parameters. Finally, other approaches exist which are designed to for-

mulate objective functions, rather than relying on those determined experimentally [131].
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2.8.4 Genetic perturbation

Although genetic perturbation methods share the same basic mechanics with regulatory

methods, their aims are somewhat different. Whereas the regulatory methods described in

section 2.8.3.2 are primarily intended to model natural biology as well as possible, genetic

perturbation methods are primarily intended to perform simulations of genetic knockout

experiments. This capability can guide the scientific process by providing information

about what experiments are likely to be productive in pursuit of a specific goal. For

instance this could be design of modifications for genetic engineering, where the goal is

often high excretion of a specific metabolite, or it could be identification of synthetic

lethal knockout 1 combinations at a rate far faster than could be achieved by in vivo

experimentation [133].

A variety of methods exist for finding and examining synthetic lethal sets of genes.

For a set of n genes, the number of potential synthetic lethal combinations of size k

grows roughly as n!
k!(n−k)! ; given that n is typically on the order of 1000, this means that

the number of combinations to be checked quickly becomes unreasonably large even for

modest values of k. For this reason, many techniques are focused on ways of reducing the

search space. For instance, Fast-SL interprets gene-protein-reaction associations directly

to reduce the problem size to a more manageable level [134]. Another technique is to

use minimal cut sets to identify synthetic lethal reaction sets from the reaction network

topology directly, and infer gene sets from these [135]. Data Mining Synthetic Lethality

Identification Pipeline (DAISY) is a statistical approach to predicting synthetic lethality

by combining genomic survival of the fittest, shRNA-based functional experiments and

pairwise gene coexpression [136]. There are also methods for dosage lethality methods,

such as Identifying Dosage Lethality Effects (IDLE), which simulates pairwise knockouts

via gene expression levels. [137]

Another area of research in genetic perturbations to metabolic models is improving

model assumptions to make better predictions about behaviour after perturbations.

For instance, Minimisation of Metabolic Adjustment (MOMA) is a technique where

the most likely post-perturbation state is assumed to be that which is most similar to

the pre-perturbation state [138]. Similarity is modelled here by Euclidean distance, which

means that finding the new flux space becomes a quadratic programming problem. While

these are slower to solve than linear programming problems, since the simplex algorithm

is not applicable, there are nevertheless a wide range of mature tools available [139].

IOMA, short for Integrative ’Omics Metabolic Analysis [140], is another model which

uses quadratic programming, allowing it to incorporate kinetics information to give more

accurate predictions of post-perturbation behaviour.

1Synthetic lethality refers to the situation where a combination of mutations are lethal, even though
the constituent mutations are not. [132]
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By contrast, Regulatory On/Off Minimisation (ROOM) [141], does not minimise Eu-

clidean distance from wild type, but instead uses mixed integer linear programming to

minimise the number of fluxes that undergo large changes, using an objective function

that includes change thresholds.

Flux Balance Analysis with Flux Ratios (FBrAtio) adds flux ratio constraints to a

standard FBA model via modifications to the stoichiometric matrix [142, 143]. This

helps with an underdetermined model, and allows a perturbation to be performed while

enforcing that the behaviour of other reactions does not change.

The RELATCH [144] approach is another way in which a reference flux distribution

can be used to improve predictions of behaviour under perturbation, in this case using a

small number of hand chosen constraint parameters, representing different ways of reaction

to perturbations.

2.8.5 How this work fits in

This thesis is about the creation of unsupervised techniques for knowledge discovery,

rather than specific predictive tasks. This unsupervised goal that is currently primarily

covered by unbiased techniques, which operate purely on network structure itself, and

aim to quantify the possible behaviours of metabolic networks. Examples of this kind

of approach include Elementary flux modes [18] and Generating flux modes [48], and

Extreme Pathways [40]. Much of the progress on these techniques has been aimed at

either constraining the solution spaces further, such in Gerstl et al. [54], or increasing the

speed of existing techniques [145]. These techniques are concerned with characterising

the space of possible flux distributions for a given metabolic network, and this is a goal

that has also been attempted using Monte Carlo simulations, such as in [67] and [146].

However, these techniques make the assumption, whether explicitly or implicitly, that

the behaviour of a cell is well modelled by a uniform distribution over the space of possible

fluxes. One of the goals of this thesis is to explore how various biased sampling techniques,

presented in Chapter 3, can improve on this, while still allowing the characterisation of

a flux distribution, in what can be termed a partially biased approach. This not only

has the benefit of being arguably more realistic, but also matching the techniques used in

section 2.8.3.2, so that similar techniques can be used with or without experimental data.

The most similar previous work on this area appears to have been [147], although this is

with a sample size 10 times smaller, and no sophisticated post-processing.

Because this thesis uses techniques based on Flux balance analysis to perform this

partially biased analysis, it is also worth comparing the techniques here to other related

techniques, even when they are used in a different application. In view of the need to

generate a set of varying metabolic models, the various conditional regulatory methods are

most applicable here. Discrete regulatory methods are touched on in Chapter 3, which are
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comparable to GIMME [109, 110], but I use continuous methods far more in this thesis,

taking some inspiration from the E-fluxes [118, 119] for the design of both gene regulation

strategies themselves, and the sampling strategies in Chapter 3, which required a similar

approach of choosing flux limits in order to generate a particular flux distribution.

2.9 Conclusion

This chapter has covered relevant background material to provide context for the rest

of the thesis. This started with general biological background, in section 2.2, and pro-

gressed to gradually more specific biological background, with section 2.5 and section 2.8

describing details of the most comparable related work. Finally section 2.6 and section 2.7

introduced those technical and implementation background details that are relevant to

some or all of the following chapters.

Some background for algorithms described in only specific chapters is left for those

chapters. The next chapter, Chapter 3, presents a taxonomy that is useful to understand

the mechanism and purposes of the techniques described in this thesis.
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CHAPTER 3

Characterising state spaces of

flow networks: sampling

metabolic models

3.1 Introduction

In Chapter 2 it was discussed how, under a number of reasonable assumptions, the

metabolism of an organism can be modelled as a many dimensional polytope containing

all feasible flux assignments. The two main groups of methods to analyse this polytope

are unbiased methods, which attempt to decompose the flow network in order to achieve

an understanding of every possible flux, and biased methods, which attempt to find the

one true biologically correct solution.

However, there is a significant gap between biased and unbiased methods that is

under investigated. Organisms are able to react to many situations, and so there is a

large amount of merit in characterising the full range of phenotypes that they are capable

of, but on the other hand we want to interpret these responses in a manner that is biased

towards the most important and likely phenotypes, and we want to downplay detail that

is less important. This more aggressive approach avoids the overly cautious responses

given by fully unbiased methods which pin the correct answer down to somewhere in a

few tens or hundreds of continuous dimensions.

The aim of this chapter is therefore to introduce a set of sampling techniques which

fill this gap by finding sets of solutions which are all optimal, but for a set of models

which are similar, but not identical in some way—for instance, different perturbations of

a single model.

The most important property of these solution sets is that they exhibit variance that

makes them suitable for characterising flow network properties during later analysis. The
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success of this goal can primarily be evaluated through the success of the use of these

datasets in the other chapters. In addition, particular attention is paid to attempting

to mimic ‘biologically realistic’ variation. The only way of truly looking at biologically

realistic variation is to base the sampling on real biological datasets, which is touched

on in section 3.2.5, but outside the core scope of this chapter. However, even when the

raw data is experimentally derived, transforming it into a usable model often requires

extensive normalisation and data processing, and proving the correctness of this is often

very difficult. For this reason the target of biological realism used in this chapter is mainly

restricted to techniques which are biologically justifiable, in that they imitate a realistic

biological mechanism—many of the techniques here have strong parallels with existing

unbiased techniques discussed in Chapter 2.

The final goal of this chapter is to demonstrate that these techniques can actually be

implemented to provide data for use in demonstrating techniques in the other chapters.

Since metabolic models typically have large numbers of variables, the sample sizes required

were very high, and by the nature of the use of random perturbation, many modifications

of models were required. In addition, any kind of batch-based sampling requires that a

large number of models is maintained and modified at any given time. These targets meant

that the actual implementation of software capable of supporting the sampling discussed

in this chapter was a significant part of the challenge. This new software enabled the

creation of what I believe to be the two largest metabolic network datasets of their kind,

at approximately half a million samples each.

3.1.1 Overview

In order to characterise phenotypes that imitate nature in a useful and justifiable way, we

need to design a distribution from which to draw them. This requires some bias towards

more biologically beneficial solutions, but also methods to induce variation, so that a

larger space is explored.

Previous efforts [148, 149] to explore the flux space have sometimes taken an approach

of blind, uniform Monte-Carol sampling: they pick a set of fluxes, check if it is feasible,

and try again. This does have the effect of creating a very unbiased view of the shape

of the flux space, but as described in section 2.4 there is no reason to expect a natural

population to exhibit such a uniform distribution.

This implies that it in order to increase the realism of the sample, a superior approach

is to use Flux Balance Analysis to find a solution that is on the surface of the flux polytope

for a given set of constraints. This implies some degree of biological optimality, which is

a reasonable assumption [150] and also has a performance advantage, since it allows us

to avoid checking infeasible fluxes.

This chapter is therefore separated into three sections:
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• Section 3.2 describes a selection of ways in which metabolic models can be modified

to approximate real world variation. This defines the sampling space.

• Section 3.3 describes sampling strategies that can be used to define the draw distri-

bution within the sampling space.

• Section 3.4 describes some concrete examples of pairings of techniques from sec-

tion 3.2 and section 3.3.

Expressed mathmatically, the aim of this chapter is to sample vectors of reactions

rates x which, or a system with r reactions and m metabolites, where

lb := the vector of lower bounds, length r, (3.1)

ub := the vector of upper bounds, length r, (3.2)

c := the objective function vector, length r, (3.3)

A := the stoichiometric matrix, with r rows and m columns, (3.4)

(3.5)

satisfy the optimisation problem

Maximise x · c, (3.6)

subject to lb 5 x 5 ub, (3.7)

and Ax = 0 (3.8)

as previously described in section 2.8.3.1.

Variation induction, in section 3.2, describes of methods of generating variance for

this sampling, by exploiting the typically underdetermined nature of this optimisation

problem, or by modifying the problem itself, either the upper and lower bounds, lb and

ub, the objective function, c, or the network structure, A. Sampling priors, in section 3.3,

describes the data sources that can be used to choose the values for these modifications,

in a way that is as biologically justifiable as possible. This either means attempting to

infer values from experimental sources, or simulating biological processes. Finally, the

case studies in section 3.4 give specific instantiations of these sampling techniques, the

results of which are used in later chapters.

3.2 Inducing variation to create sample spaces

Three obvious methods present themselves for inducing variation in a metabolic model

in order to create a range of solutions: A, modifying the network structure itself, B,

modifying the constraints to reaction rates, and C, modifying objective values.

40



Modifying network structure by removing reactions is equivalent to limiting reaction

rates to zero. Similarly, from both a biological and technical standpoint, adding reac-

tions is best modelled by adding a short list of reactions with rate limits of zero to the

model, to create another instance of modifying rates. However, these modifications are

worth breaking down as separate instances of constraint alterations, due to their different

biological interpretations and technical lineage.

3.2.1 Modifying the environment

One of the most straightforward ways in which constraints can be varied is by varying the

substrate available to the cell. In a computational instantiation, this means varying the

constraints on the uptake proxy reactions to simulate different combinations of available

resources. Obviously, this corresponds to the fact that multiple environments exist in

the wild, however there is also a more subtle point here: wild organisms do not typically

evolve for one exact set of conditions, instead they evolve to cover a niche. This means

that rather than being optimised for one exact substrate, and ‘hoping’ that others will be

similar enough that they survive, evolution is optimising for the sum of growth over the

conditions experienced.

Model organisms grown in laboratories for many generations on tightly controlled

media are in fact a very unusual situation, where the organism is optimised for one

precise substrate, but then potentially introduced to something entirely new. It is worth

noting that this optimisation occurs on an inter-generational timescale as well, in that a

genotype or set of genotypes that can evolve rapidly to deal with the set of likely new

situations is more successful than one that cannot.

Mathematically, this corresponds to modifying lb and ub in equation (3.6), specifically,

those elements of lb and ub which correspond to auxiliary exchange pseudo-reactions.

These are reactions which represent the introduction or removal of material from the

system, and are hence one sided - rather than having both substrates and products like a

real chemical reaction, they have just substrates or products, and act as a sink or source.

Section 3.4.4 provides an example of environment modification sampling.

3.2.2 Modifying network structure by removing reactions

Binary reaction knockouts, particularly by single gene deletions, is the archetypal prac-

tical application of metabolic network models, typically featuring as a ‘hello world’ style

example in tutorials for metabolic network analysis packages. This is because it is simple

conceptually and also relatively easy to test, since it mirrors in vitro single gene deletion

studies.

In terms of technical implementation it is often easier to simulate by fixing both the
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upper and lower bounds of a reaction at zero, since this avoids needing to actually alter

the model structure. This corresponds to setting values of lbi = ubi = 0 for values of i

corresponding to reactions that need to be removed. This is equivalent to, and simpler

to implement, than completely removing reactions from the model, which would involve

reducing the lengths of all the vectors in equation (3.6), and removing columns from

A. Although leaving redundant values in the model has a slight negative impact on the

time to solve the linear programming problem, most solvers identify these redundancies

quickly meaning that the time saved would be much less than that required to modify all

the problem variables.

3.2.3 Modifying network structure by adding reactions

Modifying metabolic models by adding new reactions is typically modelled by taking a

path of adding putative new reactions with zero flux, and adjusting their fluxes to see

their effects. There are four separate scenarios that we can seek to model by adding

reactions.

Firstly, from a genetic design perspective, this can be used as a selection procedure

to investigate the merits of engineering in new reactions. In this case, the set of putative

reactions is a list of those which could plausibly be engineered in, such as from a related

species with particularly interesting properties.

Secondly, we could be attempting to expand an existing metabolic model, by checking

for reactions which might be missing. These are normally implied by the known existence

of reactions or phenotypes which are pointless or implausible without them. For instance,

if an organism is known to be able to consume a certain feedstock, and part of a known

pathway for this exists, then this provides strong evidence that any missing reactions in

that pathway are probably present as well. For this, the set of putative reactions is best

provided by a closely related but larger metabolic model.

Thirdly, we could be attempting to model the natural variation in a population that

is capable of horizontal gene transfer. In this case, we once again have a well known set of

possible reactions controlled by genes mobilised by plasmids or other vectors. However,

here we ideally want to assign a cost to having a reaction at all, since horizontal gene

transfer is hypothesised to be a method to avoid all cells needing to replicate rarely used

genes. This is something of a computational difficulty, because this kind of binary penalty

pushes the model out of what is solvable using linear programming.

In each of these cases, much as in reaction removal, the best computation approach is

to start with a larger model with various reactions i turned off via setting lbi = ubi = 0,

as opposed to modifying the network structure.

Lastly, we might wish to model the much rarer event of evolution of new reactions,

rather than simply moving existing reactions around. This is more conceptually complex,
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and requires a model of the underlying mutation mechanism, which is itself a relatively

poorly characterised field.

In Iterative Multi Level Calibration of Metabolic Networks [10], I experimented with

the first and second scenarios, testing synthetic reaction additions and identifying missing

reactions. This was successful at proposing synthetic reactions to transplant from an E.

coli model, but with the species that were tested, missing reaction detection was less

effective, possibly due to the fact that one model was already derived from the other.

3.2.4 Modifying objective values

Modifying the primary biological objective values shares many biological properties with

modifying the environment. In one case, the materials available are changing as availabil-

ity changes, whilst in the other, the materials required are changing as the exact challenges

that the cell faces changes. In either case, we create a situation where we acknowledge

that a phenotype is tailored as a compromise not just between multiple static objectives,

but between the range of values that those objectives can take. A starting approximation

to this is the use of a small number of discrete objective functions included in metabolic

models. The most common of these are:

• the ATP maintenance allowance, which is the raw energy required to survive;

• the biomass objective, which is the bill of materials required for growth; and

• sometimes a maintenance and repair function, which is the slightly different set of

materials required for maintaining existing biomass.

These are typically used in the pattern of setting a limit on all but one and optimising

for the last, but it is also common to explore the tradeoffs between these objectives.

There is also a separate, less biologically meaningful, but nevertheless very technically

important application to modifying objective values: tie breaking. Section 3.2.6 describes

how, for many models, maximising biomass does not fully determine the flux space, leav-

ing multiple different solutions still feasible. Fixing the biomass objective at a maximum

and then creating further objectives provides a method to break this tie whilst exploring

possibilities further. These secondary objective functions should be biochemically reason-

able, so it makes sense for them all to reduce fluxes in order to avoid futile loops and

create a parsimonious result, but the ratios between these objectives can be altered in

order to explore the multitude of possible ways to achieve the objective value.

Unsurprisingly, modifying objective values in equation (3.6) just involves modifying c.

However, if we take the approach of using objective function modification to perform tie

breaking, this in fact necessitates a further round of optimisation with new values for lb,

ub and c, denoted lb′, ub′ and c′:
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lb′i :=



xi, where ci 6= 0,

lbi, where ci = 0 and lbi ≥ 0,

lbi, where ci = 0 and lbi < 0 and xi < 0 or

0, where ci = 0 and lbi < 0 and xi ≥ 0

(3.9)

ub′i :=



xi, where ci 6= 0,

ubi, where ci = 0 and ubi ≤ 0,

ubi, where ci = 0 and ubi > 0 and xi > 0 or

0, where ci = 0 and ubi > 0 and xi ≤ 0

(3.10)

c′i :=


1, where xi < 1,

−1, where xi > 1 or

0, where xi = 0

(3.11)

This is ensures that in the second round of optimisation, either c′i 6= 0 or ub′i = lb′i = 0

for all values of i, and optimises for small fluxes where possible and consistent with the

previous maximum. This is the second round optimisation method implemented as a

default in my Fbar package (section 3.4.1).

3.2.5 Modifying reaction rates directly using gene expression

data

Gathering large amounts of real data about reaction rates is difficult, especially for internal

fluxes. However, gathering large gene expression data sets is relatively easy, and so there

is a natural draw to attempt to infer reaction rates from gene expression. This has been

approached many times [95, 118–121], but the relationship between gene expression and

reaction rate is in general unknown, and an area of active research with good evidence

that the relationship is complex, as discussed in [7].

One might assume that the lack of a simple relationship between gene expression

and flux might imply a fundamental problem with techniques that assume that flux can

be predicted via a simple relationship with gene expression. However, in fact this is

not the case, because these methods work on constraining the limits of reaction flux.

This means that what they are actually achieving is a softened on/off regulation, which

has much stronger biological support: if gene expression is sufficiently low, the enzyme

concentration can be too low for the reaction to occur at all.

Although we do not know the exact shape of the relationship between a given gene

expression and reaction rate, we would still like to exploit this common and high fidelity
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data type to make predictions of higher level functionality. The current state of the art

in interpreting gene expressions is ontology analysis, which uses black box correlations

between genes and general areas of biological functionality, so any intermediate layer that

provides a degree of interpretation and justification to inferences from gene expression

data sets is welcome. This technique must use a strong prior from known properties of

the metabolism, strong enough to ignore bad signals that are present in data sets with

small sample sizes.

Completely controlling reaction rates directly from gene expression is not compatible

in the FBA framework described in equation (3.6), because if x was fully determined by

gene expression data, then there would be no optimisation step left to be done. However,

most models contain large numbers of reactions which are not gene expression controlled,

either because they are biologically spontaneous, or because the controlling gene-protein-

reaction mapping is not included in the model. Moreover, control of reaction rates is

typically not implemented directly, because for more than a handful of exactly chosen

fluxes, it is not possible to find a solution which is consistent with all of them unless they

are precisely correct, which is far beyond the capabilities of the current state of the art

in both transcriptomics and metabolic modelling.

For these reasons, it is typically the case that gene expression values are used to

generate relative flux constraints, which are implemented via adjusting lb and ub.

As described in section 2.8.3.2, a large number of different functions have been used

for mapping gene expression levels to metabolic network constraints, from simple boolean

switches to much more complex multi-step processes such as in E-flux 2 and SPOT [119].

However, the pre-processing and normalisation of gene expression levels is an impor-

tant precursor to any regulatory algorithm, and one that is potentially overlooked, or

addressed only implicitly by the flexibility of the regulatory algorithm itself.

For instance, in the Colombos dataset [151] used in Chapter 5 and Chapter 6, several

stages of normalisation have already been done. This makes the dataset convenient and

easy to use, but has the potential to lead to loss of information. This is unfortunately

necessary because, due to its nature as an integrative project, the various different data

sources for Colombos have not necessarily had the same postprocessing treatment already,

and so aggressive normalisation is required to make them at least somewhat comparable.

By way of comparison, in section 4.2, the smaller amount of much more raw data

required a customised normalisation protocol in order to convert the dataset to a suitable

format, as described in section 4.2.1.

3.2.6 Taking advantage of slack in model

Large metabolic models are rarely fully determined. This means that most of the time,

there will be more than one flux distribution which achieves optimality in their objective.
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Figure 3.1: A simplified sketch demonstrating slack in a metabolic network. Assuming that
the network is optimised for ATP production, and limited by light availability, there is slack in
this model. This is because for any given value of ATP production, the cell must have been
excreting and ingesting oxygen at the same rate, but that rate is not known.

This is referred to as slack in the variables that are not fully determined, and in many

situations represents a fault with a model (see figure 3.1). Equation (3.9) describes one

way to address this issue. However, in this application slack is in fact useful, because it

means that a set of constraints to the metabolic network will not produce a single optimal

solution, but a set which can be explored.

This means that it is possible to find some model variation without actually altering

the model at all, but simply by sampling from the (potentially small) set of optimal

solutions. In the terminology of equation (3.6), this would involve sampling reaction rates

x′ by varying c′as follows:

Maximise x′ · c′, (3.12)

subject to lb′ 5 x′ 5 ub′, (3.13)

and Ax′ = 0, (3.14)

(3.15)
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where

∀‖c
′‖

i=1 c′i ∼ N (0, 1) (3.16)

lb′i =

lbi, where c = 0,

xi, where c 6= 0,
(3.17)

ub′i =

ubi, where c = 0,

xi, where c 6= 0,
(3.18)

(3.19)

subject to

Maximise x · c, (3.20)

subject to lb 5 x 5 ub, (3.21)

and Ax = 0 (3.22)

A normal distribution is used for c′ here for simplicity; any continuous distribution is

a reasonable choice. A continuous distribution is preferred to a discrete one because in

this context it guarantees that x′ is almost surely determined.

In the research described in section 4.2, I used this technique to identify and highlight

fluxes that were most strongly affected by a given set of gene expressions.

3.3 Sources for prior distributions over sample spaces

When we lack a prior belief on the best sampling strategy to use with a variation induction

technique, it is reasonable to devise the most ‘fair’ sampling method possible. However,

we would ideally want to do better than this, and find a technique that produces a more

realistic solution.

One of the most obvious and best sources for how to induce variation is to find a

real world experimental source, so that we are selecting uniformly from a set of known

real conditions. This is particularly relevant to environmental and gene expression based

variation induction, because many datasets do exist for this [102, 105, 106]. However, real

world sources are not always available, not always appropriate to every situation, and even

where they do exist are not perfect information sources. In particular experimental sources

have many potential sources of error from experimental and analytical steps, during which

often make implicit assumptions about the expected shape of the distribution of values,

and even if we had a perfect measurement of gene expression, this is only a weak to

moderate correlate of protein abundance, let alone reaction rate [152, 153]
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Furthermore, experimental data almost always measures collections of cells, meaning

that they often do not capture variance within populations well.

Another option is via an evolutionary approach. We normally think of evolution as

a technique for optimisation, which we use in situations where we want a single optimal

solution. However, it inherently works on populations of solutions, which means that it

is also suitable in this context for adjusting a population to optimally fit a landscape

such that the typical individual in the population has high utility. This is clearly relevant

to evolvable properties, such as in adjusting gene expressions or adding and removing

reactions, because it simulates the real life sampling procedure. However, in addition it

can act as a simulation of environmental variation when combined with these techniques,

because it can pick up on the effects of simultaneous change in these aspects: individuals

that require a large simultaneous change in both phenotype and environment are less

likely than those that require only change in one at a time.

Modifying objective values is a more difficult area when it comes to choosing the pat-

tern of variation induction. This is because the real mechanisms depend on complex and

difficult to measure biochemical interactions. However, objective functions are typically

based on experimentally determined biomass composition, leaving less room for variation.

3.3.1 Gene expression sampling

Gene expression variation induction can be used to generate populations of metabolic

models in one of two ways: by computing flux constraints from a real world quantita-

tively measured gene expression dataset, or by using a gene-protein reaction mapping

in conjunction with a different sampling approach, such as a uniform or evolutionary

sampling approach.

In the research projects described in Chapter 5 we used the first approach of using

a logarithmic function to map from each gene expression to a flux value, as introduced

in [120]. If we define:

yi := the gene expression of gene i, (3.23)

sgn(x) :=


−1 if x < 0

0 if x = 0

1 if x > 0

(3.24)

h(yi) := the flux adjustment from gene i, (3.25)

then the function used is

h(yi) = (1 + |log(yi)|)sgn(yi−1), (3.26)
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The data was pre-normalised, and had a large number of samples allowing for a rea-

sonable precision in the standard deviation measurement.

However, in section 4.2, the number of gene expressions available was much smaller

(11 samples from 4 gene expression conditions), since all gene expressions came from the

same series of experiments. This had the benefit that direct comparison was more valid,

but meant that it was desirable to find a near optimal parameter assignment for the gene

expression function itself and for the preprocessing of the gene expression vectors, in order

to improve the signal to noise ratio in the resulting simulated reaction rates.

3.3.2 Evolutionary sampling

In Iterative Multi Level Calibration of Metabolic Networks [10], described in section 4.3, an

evolutionary sampling approach was taken, specifically a multi-objective evolutionary ap-

proach using a gene expression function so that mutation could be conducted in genotype

space, but evaluation could be conducted in metabolic flux space. This approach has the

major benefit that it produces a population that describes a tradeoff between metabolic

objectives, whilst providing a bias towards individuals that are evolutionarily accessible,

in other words, those genotypes that can be obtained via a series of intermediates with

at least moderately high fitness levels.

Section 3.4 also contains an example of an evolutionary sampling approach.

However, taking an evolutionary sampling approach has a large drawback in terms of

the number of parameters involved. Evolution is an extremely complex process and many

relevant variables, particularly mutation rates, are not known or easily measured. This

leaves a situation where uniformity assumptions about mutation rates [154] have to be

made which are difficult to justify.

3.3.3 Environment modification

As described in section 3.2.1, the situation of organisms growing in a stable, homogeneous

medium is far more common in the laboratory than in the real world, and often less

common in the laboratories than microbiologists would like. For the examples in this

thesis, one goal of this chapter is to provide a data set that mimics real world variation

in organisms. In order to do that, it is desirable to have a source of external variation in

addition to internal genetic variation and environment modification is a way to provide

that. Many studies of condition variation exist but they tend to be small and transcribing

them to usable notation is a slow and difficult manual task, so it is much better to simulate

these values.

Unfortunately, unlike with gene expression values, we cannot simply create new en-

vironments via a Gaussian random walk, because without feedback from the fitness of
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the organisms, the environment could wander into an area where no models are viable.

This happens when the limits on uptake from the environment are too strict for the linear

programming solver to find a solution. Specifically, this only happens in models that in-

clude maintenance thresholds, minimum limits on biomass generation, ATP expenditure,

and possibly other processes, which represent minimum biological upkeep requirements

and preclude a zero-flux model. Instead, the environment must be constrained to an area

where there exist viable models, whilst still varying enough to promote genetic heterogene-

ity. This idea of the organism fitness affecting the environment might seem backwards,

but in reality this is just a matter of deciding to gather data only where it exists.

The case study described in section 3.4.4 provides an example of this.

3.4 Case studies

This section describes three case studies showing instantiations of the concepts described

earlier in this chapter. The datasets yielded by these case study sampling strategies are

used as demonstrations in the final two chapters, and this intention guided their creation.

The desirable properties of these datasets primarily involved having reasonable amounts of

variance, in order to cover a useful area of the solution space, and for inference algorithms

to work well one them.

Firstly, and least interestingly, this meant that the values in the resulting metabolic

models had to vary. This is in many ways one of the central tenets of this thesis: cells

naturally gravitate towards a neighbourhood of advantageous metabolic states, but at the

same time it is worth modelling their variance.

Secondly, this variance should have a stochastic component. The alternative, which

would probably look like a kind of grid sampling, has multiple weaknesses. Not only is it

more difficult to justify biologically, but it also does not scale well and is more difficult

to implement because simulations must depend on each other. Furthermore, it runs the

risk of inference algorithms picking up structure from the sampling strategy, rather than

latent structure in the metabolic model itself.

Thirdly, the variance should be spread across as many reactions as possible. This

requirement was the focus of section 3.4.3, where I tried to make sure that reaction rate

limits were quite ‘tight’, such that many of the reactions had random constraints on them,

to induce variance. The intention of this is firstly to make it possible to draw inferences

about the behaviour of more reactions, since we do not learn much about reactions that

do not vary much. This also has merit from a biological realism perspective, since it is

generally assumed that most reactions in a cell are at least sometimes active.

Fourth, trivial correlations are to be avoided. This particularly concerns situations

where multiple simulations yield results that are similar or identical up to a scaling factor.
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This would be bad because such simulations, while not resulting in exactly the same

numbers, do not yield further information on the actual relationships between reaction

speeds. The use of stochastic constraints is a significant step to avoid this potential

problem, when used in conjunction with making sure that limits were generally tightly

linked to reaction rates. On examination of the datasets, it also appeared to sometimes

be a potential issue during an initial ‘burn in’ period, where the network was limited by a

single reaction. Throwing away early samples that were affected by this was the simplest

solution to this.

Finally, and most elusively, there was the desire for the sampling strategy to be ‘bi-

ologically justifiable’. This is a difficult concept to really justify, but it is part of the

reason for taking an evolutionary environment modification strategy in section 3.4.4. The

advantage of this is that it at least has its basis in solid theory: environments change,

and organisms evolve to adapt to those changes. Of course, the exact details of how

their environments typically change is a significant experimental question that is beyond

the scope of this thesis, and the question of how exactly they tend to evolve given those

changing environments is another step further in difficulty.

3.4.1 Implementation: Fbar

In order to implement the sampling strategies described here, as well as support the

analysis described in the other chapters, it was necessary to create an R package, which I

named Fbar, for Flux Balance Analysis in R [155]. This package provides facilities for flux

balance analysis, but it takes a markedly different approach compared with previous tools.

Most tools for flux balance analysis are targeted towards relatively interactive, exploratory

use, with a large number of functions for activities such as modifying reactions one by one,

and often contain complex previously published analysis processes as complete, first order

operations. This is extremely convenient for new users to quickly get some results, and is

designed to support a pattern of use where models are created, modified in a number of

ways, and evaluated. However, this design makes these packages less useful for the goal

of large scale simulations, where large numbers of models need to be created and then

immediately evaluated.

In contrast to previous packages, Fbar is designed to support large scale simulations.

Whereas in previous packages a typical work flow consists of loading one model, and

then iterating cycles of modification and re-evaluation, Fbar works by loading a single

base model, and then combining it with multiple parameters (typically flux bounds or

objective vectors), to generate a set of models which can then be evaluated quickly, and

potentially in parallel.

These changes reduce Fbar’s overhead on top of the actual linear programming code

to a negligible level, and also reduce load times by about 3 fold compared to the fastest
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tested alternative, the Matlab package COBRA. In particular, for a large model, Fbar

was able to achieve a model loading and parsing time of 0.05 s to 0.085 s, compared to over

1 s in the Sybil R package. This represents a time saving of 127 h for a 500 000 sample

dataset, or over 5 days. Fbar also has substantial user friendliness advantages compared

to alternatives: at the time of writing it is the only R flux balance analysis package which

works out of the box.

It is available on Github at https://github.com/maxconway/fbar and is published

on the Common R Archive Network (https://cran.r-project.org/package=fbar),

where it is seeing significant levels of use—over 460 downloads per month at the time

of writing.

3.4.2 Case study 0: Placeholder sampling approach

My first sampling approach was a simple one, designed to quickly produce small sample

datasets, for use in testing the functionality of the interpretation functions and the sup-

porting framework. It had to be simple to verify by eye but did not need to be especially

fast, since it would only be used to produce small numbers of samples over small networks.

However, it was necessary to take an approach that would produce variance immediately,

without requiring any burn-in period.

The approach selected was to perform a first simulation of the network with relaxed,

default constraints (giving a flux vector x), and then to set the new lower (lb′) and upper

(ub′) bounds as follows:

lb′ =

0, x ≥ 0,

x ∗ (1− U(0, 1)5), x < 0
(3.27)

ub′ =

0, x ≤ 0,

x ∗ (1− U(0, 1)5), x > 0
(3.28)

where U(a, b) is a uniform random variable in the interval [a, b].

The term 1 − U(0, 1)5 has a distribution function as shown in figure 3.2, which con-

strains each flux by a small, randomly chosen amount, with a mean of 16.7%, and a

median of 3.0%.

The total sample size used here was 1000.

3.4.3 Case study 1: Batch based proportional adjustment

The goals of my second sampling approach were to ensure that variance was induced in

as many of the reactions as possible, and to ensure that performance was high enough to
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Figure 3.2: Empirical cumulative distribution function of the random constraint used in sam-
pling approach 0.

create a large dataset in a reasonable time, even when simulating over a large network.

In order to achieve the required performance and create a code base suitable for

long running simulations, I committed to using in place model adjustment rather than

parsing the model repeatedly, since this gave an approximately 10 fold increase in speed

at the sacrifice of only a small amount of flexibility around reaction addition and removal

sampling. I also moved to a batch process, with 100 simulations per batch in this instance.

Batches were saved in the high performance Feather file format, giving a 14 fold I/O speed

increase compared with CSV.

The primary goal with this sampling approach was to ensure that as many reactions as

possible showed variance, which meant that it was necessary for the reaction rate bounds

to vary a small amount, near to the optimal rate of the reaction, given the other bounds.

This is because if any reaction is too constrained, there is no feasible solution to the model,

and it is non-viable. This can occur if the added constraints have too wide a variance

(since then there is a high chance of an extreme constraint in at least one reaction), or if

the constraints are not centred around the pre-constraint optimal values of the reactions,

since then the composition of these small effects will make the model non-viable.

To find appropriate constraints, the constraint modification approach was split into

two components, taking advantage of the batch structure.

53



Firstly, within each batch, upper and lower bounds for individual models were chosen

from a random uniform distribution between 90% and 100% of the widest bounds for the

whole batch (see equation (3.30)). In comparison with the approach taken in section 3.4.2,

this removed the long tail of the distribution which could lead to a single constraint

dominating the network.

lbi,t+1 = U(0.9, 1) ∗
n∧

i=1

lbi,t (3.29)

ubi,t+1 = U(0.9, 1) ∗
n∨

i=1

ubi,t (3.30)

where lbi,t and ubi,t are the lower and upper bounds respectively for model i in batch

t, which has size n. ∧ and ∨ represent the minimum and maximum functions respectively.

Secondly, it was important to ensure that the whole batch bounds were close to the

unbounded flux values (specifically within 111 %, given the previous section). To achieve

this the bounds on each reaction were set to 1 % above the maximum flux value found in

any model in the previous batch, unless this maximum flux value was very small (<1 % of

the previous upper bound). If the maximum flux value was indeed very small, the bound

was instead tightened by 1 %. This avoided constraining unused reactions too quickly, so

that they could become active later in the simulation run, once the bounds on the used

reactions had been tightened.

In this approach, at each iteration, each reaction is restricted to on average 5 % below

the batch bound, and then the batch bound is only increased by 1 % above the previously

found maximum flux. At a glance this can give the impression that the bounds would

inexorably tighten by a net of 4 % at each iteration, but it should be noted that the batch

bounds are set to the maximum of the fluxes in the whole batch, so that with the chosen

batch size of 100, the bounds on an otherwise unconstrained reaction would actually move

up by on average 0.899 % per iteration.

This simulation was continued for 5000 generations, with a batch size of 100, giving a

total sample size of 500 000.

3.4.4 Case study 2: Evolutionary sampling with environment

variation

As stated previously, evolution as existing in nature has the objective of maximising

expected fitness over a population of solutions, in contrast to most designed optimisation

algorithms, which are evaluated on the single best result that they produce. This is partly

because natural evolution typically exists in a changing environment, which means that
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over-specialisation can be detrimental.

For this reason, this case study attempts to imitate aspects of an evolutionary approach

that create a ‘balanced’ population of solutions. The basic features of an evolutionary

algorithm are operations for mutation, evaluation, and selection [156], so it makes sense

to describe the sampling approach in terms of these operations.

Mutation was achieved via a Gaussian random walk in genotype space. Specifically,

the value for each gene gi + 1 in a model in generation i was sampled from a Gaussian,

with standard deviation 0.01 and mean centred on the value of the same gene in a model

in the previous generation, gi, subject to constraining the value to between 0 and 1. These

samples were taken in genotype rather than phenotype space since this reduced the size

of the space to be explored.

Evaluation started with transforming from genotypes to phenotypes. This used the

genotype-phenotype predicate functions that came with the biological model, combined

with the convention of translating boolean ‘and’ to ‘min’ and boolean ‘or’ to ‘max’, in

order to generalise this function to continuous values in the range [0, 1]. The resulting

value was then transformed by x4 in order to place more of the search space over lower

flux values. The result of this was used to transform the model bounds. As discussed

previously, it was also important to induce some environmental variation, in order to

support a diversity of solutions. This was achieved by random uniform sampling of each

of a small set of selected exchange reactions, chosen along the lines of the procedure

described in [157].

The selection procedure was also designed to encourage diversity of solutions. The

solutions were ranked by their biomass output and by their mean gene activation, and

then the bottom and top quartiles were discarded respectively. Zero biomass output (not

biologically viable) solutions were also discarded even if they represented > 1/4 of the

results. The remainder were randomly replicated to bring the total number of solutions

back up to the maximum for the generation, and the next generation was constructed by

mutation as described previously.

This procedure was followed for 4870 generations with a batch size of 100, for a total

of 4 870 000 samples.

This flux dataset used the iJO1366 model of E. coli, compared to the significantly

smaller core metabolism model used in the other case studies. This made it substantially

more computationally demanding to both create and to analyse in Chapter 6, but it

contains features that are more realistic, in particular a larger number of reactions that

are not involved in biomass production, and larger number of fully dependent reactions—

pairs which share a metabolite exclusively.
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3.5 Conclusion

This chapter has described the potential modification strategies that can be used in biased

Monte-Carlo sampling over metabolic flow networks, and how those strategies can be

conditioned in a way that is appropriate to use with metabolic network simulations. The

core purpose of this chapter was to both describe and define these modification strategies,

and to show how concrete sampling strategies can be derived from them which can create

datasets which can yield information about metabolic network properties. As can be seen,

these datasets were created, and owing to the new software described in section 3.4.1, this

was possible with large sample sizes in a reasonable time frame: tens of hours rather

than weeks. These dataset obviously also needed to be useful for characterising network

properties, and this is demonstrated in the following chapters.

These modification strategies and conditioning themselves are for the most part fairly

well known. However, the concept introduced here of biased sampling over metabolic flow

networks appears to be novel, and demonstrates a new pattern that allows for analysis

of metabolic networks to combine general network structure with condition specific infor-

mation. Finally section 3.4 described case studies covering a variety of these techniques,

which are used both for validation and as examples in Chapter 5 and Chapter 6. The

datasets created in case studies 1 and 2 represent to my knowledge the largest datasets

of their kind in existence, at approximately 500 000 samples each.
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CHAPTER 4

Small sample approaches

4.1 Introduction

This chapter describes approaches that I have developed to aid in the understanding of

small sets of metabolic networks—techniques to interpret structure of single networks,

to compare pairs of similar networks, and to work with small single digit collections of

networks derived from small gene expression data sets.

This forms something of a counterpoint to the approaches described in Chapter 5 and

Chapter 6, since with small sample sizes the challenges are somewhat different. With

small sample sizes, finding statistically significant features of the datasets is much more

difficult, but with the correct tools it is possible to have a greater degree of human

involvement. The sections in this chapter are organised moving from small collections of

networks (section 4.2) to analysing single networks (section 4.4) because as the sample

size gets smaller, more analytic and visual options become available.

One hypothesis of this chapter is that there is useful information to be inferred via

various techniques for metabolic network comparison, even with small numbers of models

compared to the other chapters. The various projects differ in their approaches to doing

this, with a variety of more specific aims. An important thread of discussion of visu-

alisation techniques for metabolic networks, particularly for differences between them.

Although I created some different approaches to this, my overall conclusion was that vi-

sualisation on its own is not enough, and that more sophisticated statistical methods, as

discussed in the following chapters, are required. This is a human limit as much as a

software limit, since regardless of how effectively the information is displayed, systems

with even tens of components are hard to understand when they have high large numbers

of interactions between them, let alone systems of thousands.

The overall result of this chapter it to show that the techniques in the following

chapters are needed: techniques which require detailed human comprehension do not
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scale well for large networks.

4.2 Comparison across 11 samples from 4 gene ex-

pression conditions

In this project I worked on data regarding Salmonella infection in mice, specifically re-

garding differences between how Salmonella defends against the immune system. The

sequence count data set consisted of 11 measurements for each of 6579 genes: three tech-

nical replicates for each of the three in vivo conditions, and two technical replicates for

the in vitro input condition. The dataset structure is illustrated in table 4.1.

The aim here was to develop an approach that could construct an consistent expla-

nation for the similarities and differences observed between the replicates in terms of the

metabolism that was consistent with the measured gene expression. This was accom-

plished by fitting metabolic networks to the gene expression data available from each

of the replicates. These metabolic models needed to provide a strong prior in order to

compensate for the low numbers of replicates, and the overall data pipeline needed to

be adjustable in such a way as to find only the most strongly supported insights, with-

out having too many parameters and risking overfitting the model to already identified

explanations.

↓ Gene locus Group 1 Group 2 Group 3 Control
Replicate → 1 2 3 1 2 3 1 2 3 1 2

FQ312003.1012 3 4 2 6 1 0 0 6 7 61 105
FQ312003.1187 8 9 0 8 4 4 0 0 10 1025 793
FQ312003.1229 0 0 2 1 0 0 0 4 5 119 128
FQ312003.1320 2 0 0 0 0 0 0 0 2 75 41
FQ312003.1463 6 4 0 0 0 2 2 0 0 259 165
FQ312003.1509 0 3 0 0 0 0 2 0 4 31 47

Table 4.1: A sample of the start of the Salmonella gene expression dataset. This illustrates
the structure: three experimental groups, with three replicates each, plus a control group, with
two replicates. Groups are listed in the first row, whilst replicates are listed in the second row.
There is significant structural variation in the expression counts between groups and replicates,
necessitating aggressive normalisation.

In the terminology introduced in Chapter 3, this means that this was a case of mod-

ifying reaction rates directly, but with a carefully designed expression-flux function and

feedback system, in order to be able to find the smallest gene expression based modifi-

cation that would produce noticeable results in the metabolic network. The first steps

towards this were several layers of normalisation applied to the gene expression data.
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4.2.1 Preprocessing and methods

Gene expression data consists of count data that shows large amounts of variation between

technical replicates, owing to variation in the sample preparation, but within technical

replicates it shows less variation and a large amount of positive skew. It was therefore

important to create a normalisation approach for this gene expression data which would

remove as much technical variation as possible, while maintaining the variance required to

create a metabolic model which uses large parts of its network, as described in section 3.4.

After experimentation with a large variety of different normalisation approaches, a log-

normal distribution was assumed for each technical replicate. The first step was therefore

to take the natural logarithm of the each count plus one (since there were some zeros,

particularly in the in vitro experiments where the values are generally much smaller). Each

technical replicate was then divided by its overall mean to compensate for differences in

sample preparation and materials, and then the mean count was found for each gene in

each experimental group, across the technical replicates. Normalisation was conducted for

each gene against the in vitro input as a control, and the standard deviation was adjusted

to 0.1, to achieve an overall distribution which was approximately normal with mean 1,

apart from a spike at 1. Figure 4.1 shows the results of this normalisation.
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Figure 4.1: Kernel density estimate showing distribution of gene expression values after nor-
malisation. Groups 1, 2 and 3 (red, green and blue respectively) are in vivo experimental groups,
whilst Input (purple) is the in vitro control.

A standard metabolic model from the literature was used [158], which featured Gene-

Protein-Reaction mappings which could be used to specify which genes affected which

reactions. To combine this with the RNA data, each gene in the RNA dataset was
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mapped to the equivalent gene in the metabolic model. Where multiple genes correspond

to a particular reaction, they were combined via a continuous extrapolation of the boolean

function encoded in the Gene-Protein-Reaction mappings. Specifically, if both of the genes

or gene sets are required (i.e. an AND relation), the result was the minimum activation of

the two; if one of the genes or gene sets are required (i.e. an ‘OR‘ relation), the result was

the maximum activation of the two. Where there was missing information about a gene,

the gene was assumed by default to be abundant, leaving the other gene in the expression

to dictate the output level. The resulting values were termed ‘reaction activations’.

The reaction activations resulting from combining the gene expressions were still single

values, approximately normally distributed around 1. By comparison, reactions require

upper and lower constraints to control their rate, and appropriate settings for these values

vary widely. The functions to map from reaction activations to constraints therefore

should be defined conditionally on typical rates for the reactions of interest, but given a

certain typical rate, the functions should be monotonic in reaction activation.

The approach taken to define these activation to constraint functions was to first

conduct flux balance analysis using the very liberal constraints that existed in the model

by default, in order to establish a ‘base’ rate for each reaction. This ‘base’ rate was then

multiplied by the reaction activation to create a ‘target’ rate, and the constraints were

set to α each side of this target. α = 10% was found to be a reasonable value for this

constraint width via a manual parameter search. Some exploration was conducted into

using a gradient descent approach to find an optimal value for α, by finding a value that

was as small as possible whilst still producing a viable model. However, this was found to

produce little increase in the result quality over a hard coded value, whilst increasing the

complexity of the whole system considerably, and making the tuning of other parameters

slow and unpredictable. Finally, based on these new constraints, a second round of flux

balance analysis was run to find the final flux values, taking 50 repeats with reorderings

in order to detect under determined values.

4.2.2 Postprocessing and results

The results of the previous section were four flux distributions: three experimental, and

one control. This represents over 4000 different flux values, so significant further effort

was required to find the most interesting parts of this dataset. In this project a heuristic

approach was taken to this problem. First, reactions were removed that fit one of a set

of deselection criteria:

• all reactions where flux values were identical across experimental and control groups,

• all reactions that were under determined by the model (standard deviation>1× 10−6),

• all reactions where the base flux was under determined (index of dispersion>1× 10−3),
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• all reactions in the exchange subsystem.

Then the top 30 reactions were selected, ordered by the standard deviation of the difference

between the experimental fluxes and the control, divided by the reaction constrain width.
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Figure 4.2: Plot of normalised flux change for a number of highly regulated reactions. Numbers
show experimental groups, y axis shows reaction ID, and x axis shows normalised flux change.

After selection these reactions were plotted first using a dot plot (see figure 4.2), and

then using an adjacency matrix based heat map plot (see figure 4.3 and figure 4.4).

Figure 4.2 shows on the y-axis the top 30 highly regulated reactions, grouped by their

subsystems (the coloured, labelled bar). The x-axis shows the flux change for each group

(shown by coloured numbers) against the in vitro control, which is labelled at as 0 and

fixed at zero due to this normalisation.

The heat maps, figure 4.3 and figure 4.4, consist of part of the adjacency matrix of the

metabolic model (reactions against metabolites), overlaid with flux differences between

groups and against control, respectively. This is much easier to understand by eye than

a list of reaction equations, whilst remaining readable with a larger number of elements

than would be possible for a network diagram.
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Figure 4.3: Heat map showing raw flux change, compared by experimental group. Colour
shows change in flux, x axis shows metabolites, y axis shows reactions.
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Figure 4.4: Heat map showing raw flux change, experimental groups vs control. Colour shows
change in flux, x axis shows metabolites, y axis shows reactions.
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4.2.3 Conclusion

The results of this study supported existing theory and data around the effects of the

biological interventions conducted, particularly by demonstrating the growth pathway up-

regulations which lead to the increased growth rate seen in bacteria hosted by gp91(phox)

deficient mice, such as the increase in the use of Phospho-N-acetylmuramoyl-pentapeptide-

transferase, an enzyme which participates in cell wall synthesis. [9]. The results of this

study were published in Transcriptome and proteome analysis of Salmonella enterica

serovar Typhimurium systemic infection of wild type and immune-deficient mice [9].

From a technical point of view, figures 4.3 and 4.4 represent, to my knowledge, a

new way of plotting changes in flux between related metabolic networks. They highlight

reactions and metabolites with substantial differences effectively, and are capable of still

being readable when displaying relatively large portions of the network. However, they are

weaker in terms of wasted space, since a typical metabolic network is relatively sparsely

connected.

Overall, this work succeeded in the aim of producing consistent explanations for the

observed biological effects, and moreover proved the hypothesis that this was possible,

and a viable method of knowledge generation, since the predictions of the fitted metabolic

model mirrored separately identified biological results.

4.3 Pairwise statistical and visual comparison via evo-

lutionary optimisation: Metabex

In Iterative Multi Level Calibration of Metabolic Networks [10], I worked on the com-

parison of two closely related species in the Proteobacteria genus Geobacter, which have

potential applications in electricity production. The datasets explored here were the re-

sults of an evolutionary multi-objective optimisation procedure. For each species this

optimisation procedure produced a Pareto front—a large collection of models with vary-

ing gene expression values, representing points along the tradeoff between two metabolic

objectives, in this case biomass production and a proxy for electricity production. A

simple step plot (see figure 4.5 for an example) of the two objectives against each other

can be used to visualise the general shape of the Pareto fronts, but understanding the

underlying features that cause the shape is much more difficult. However, the intended

application of this research was the creation of an automated system to suggest avenues

of exploration for metabolic engineering, and so it was very important to identify smaller

sets of useful modifications, since these are easier to test. The most important hypothesis

here was not about the multi-objective optimisation component itself, but the information

available in the resulting dataset of Pareto optimal models. Specifically, hypothesis was
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that the information available in Pareto front datasets could be used to generate mean-

ingful insights into cell behaviour. There was also the hope that this could be used in a

semi-automated fashion to allow exploration of metabolic networks with some guidance

about important features.
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Figure 4.5: Sketch of step plot of Pareto front. The points represent potential objective
tradeoffs, whilst the line connects the subset of these points that are not Pareto dominated by
any other point—the Pareto front.

In this project I tackled the goal of explaining the variation in the network over the

datasets from a correlation based standpoint. Starting with raw simulated expression

data, such as visualised in figure 4.6, I first fitted a line to the tradeoff between metabolic

objectives represented by the existing Pareto front, and then measured the correlation of

each reaction activation to this line. After aggregating by subsystem labels, this generated

plots such as figure 4.7.

This provides a signal for where to look for the most important reactions, and a more

time consuming manual review of each interesting looking subsystem can yield a smaller

set of reactions of particular interest, but understanding how these reactions interact

together is more difficult.

Network plots are the clearest way of presenting small metabolic models or parts of

models, but by contrast, for larger models these plots are completely unreadable, as more

edges necessarily cross each other, and any pattern in the positioning of nodes becomes

far more dependant on the whim of the layout algorithm used than on the actual structure

of the data. Therefore, it is very important to view interesting reactions in the context of

65



0 1 2 3
expression

de
ns

ity

Alanine Metabolism
Alternate Carbon Metabolism

Amino Acid Metabolism
Anaplerotic reactions

Arginine and Proline Metabolism
Aromatic Compound degradation

Benzoate Degradation
Carbohydrate Metabolism

Cell Envelope Biosynthesis
Central Metabolism

Cofactor and Prosthetic Group Biosynthesis
Cysteine Metabolism

Energy Metabolism
Fatty Acid Synthesis

Folate Metabolism
Glycolysis/Gluconeogenesis

Glyoxylate Metabolism
Lipid and Cell Wall Metabolism

Nitrogen Metabolism
Nonenzymatic Chemical Reactions

Nucleotide Metabolism
Nucleotide Salvage Pathways
Nucleotides and nucleic acids

Other
Pentose Phosphate Pathway

Purine and Pyrimidine Biosynthesis
Threonine and Lysine Metabolism

Transport
Tyrosine, Tryptophan, and Phenylalanine Metabolism

Valine, Leucine, and Isoleucine Metabolism
Vitamins & Cofactor Biosynthesis

0 1 2 3
expression

Su
bS

ys
te

m

Figure 4.6: Plot showing expression change across subsystems in two Geobacter species. The
colours show species; G. sulfurreducens is blue and G. metallireducens is red. The density plot
at the top shows the distribution of expression levels. Expression levels expressed in fold change
from wild-type, so zero means no expression, one means unchanged level from wild-type, and
2 means expression at double the wild-type level. The box and whisker plot shows the genes,
aggregated by subsystem, on the same x-axes as the density plot. All subsystems are up or
down regulated significantly (p < 0.01). We can see that where subsystems are labelled in both
models, they are typically regulated similarly. Where larger differences exist, such as in Valine,
Leucine and Isoleucine metabolism, this is due to the subsystems being quite small, so that
small differences in the reaction sets included can create relatively large differences in overall
regulation. This figure differs from figure 4.7 in that this figure shows raw expression, whereas
figure 4.7 shows correlation between gene activity and phenotype.
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(a) Geobacter sulfurreducens.
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(b) Geobacter metallireducens.

Figure 4.7: The density plot at the top of each figure shows the distribution of correlation
between expression level and position in the Pareto front. The Gaussian component to the
correlation distributions shows the effect of genetic drift, whilst in figure 4.7a, we see marked
selection away from 0—this indicates that most of the genes have either a positive or a negative
effect on the phenotype, and so most face selection pressure in one direction or the other. The
box and whisker plots show the genes, aggregated by subsystem, on the same x-axes as the
density plot. The bar charts to the left act as a key, and show the mean expression levels for
each subsystem. This figure differs from figure 4.6 in that this figure shows correlation between
gene activity and phenotype, whereas figure 4.6 shows raw expression.
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only their local neighbourhood, and to allow a great deal of manual input into selecting

both what is shown, and how it is laid out. In this case I decided to base a model viewer

on an existing network visualisation package, Cytoscape, in order to gain access to fast

rendering and interaction features, whilst using Cytoscape’s application programming

interface in order to statistically filter and preprocess the data to be viewed. I named

this postprocessing and visualisation platform Metabex. This enabled the creation of plots

such as figure 4.8, where a subset of reactions to view was selected by the correlation based

approach described earlier, transformed to a bipartite graph representation and pushed

to Cytoscape via the application programming interface, with annotations to specify a

visual presentation to make the underlying data clear.

reaction space

Abbreviation Name
CA2abc calcium transport via ABC system
CRET creatininase
CRO4t3 chromate transport out via proton antiport
CYOO2 cytochrome-c oxidase (2 protons translocated)
IGPDH imidazoleglycerol-phosphate dehydratase
ORNTAC ornithine transacetylase
UACMAMO UDP-N-acetyl-D-mannosamine oxidoreductase

Figure 4.8: Network visualisation of a subset of reactions from G. metallireducens and asso-
ciated key. This subset is derived via a variant on the procedure shown in Figure 4.7. Nodes
in burgundy indicate positive correlation with Fe2+ synthesis, whilst nodes in green indicate
negative correlation with Fe2+ synthesis. Arrow weight shows stoichiometry. The stoichiometric
network shown here only represents a portion of the metabolome. Underlying this metabolic
network is the genetic network of genes and their links to the reactions that they regulate, in a
multiplex manner [159].
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4.3.1 Conclusion

This project fulfilled the goal of providing a comparison between metabolic networks, but

something was left to be desired in terms of usability and technical maintainability of

the Metabex tool itself, as a result of a great deal of interactions between different open

and closed source packages. However, this did confirm to me that adding a degree of

user interaction to network plots made them substantially easier to understand, since it is

possible to look at different parts of the network without worrying so much about reactions

overlapping each other. The first hypothesis, that it is possible to use Pareto fronts

to identify meaningful behavioural information appears to be true. This is particularly

evident from figure 4.8, where it was clearly identified that chromate and calcium exchange

are highly correlated with Fe2+ synthesis. This is not a particularly surprising result in

itself, but the method by which it was obtained is novel and showed great potential, since

this effect is not directly visible from the metabolic network structure. The secondary

goal, to base a semi-automated tool upon this technique, was less successful. Although the

statistical component was effective, the actual user interaction achieved in this attempt

left much to be desired, and was greatly improved upon in section 4.4.

4.4 A platform for examining small numbers of mod-

els: FBAonline

In this project (MetCiliates: a ciliate meta-model multi compartment resource for the anal-

ysis of the free-living ciliates metabolism. A Tetrahymena thermophila case study. [11]),

I worked in a collaboration to create and analyse a new model of the free living ciliate

Tetrahymena thermophila. This revealed that whilst these kinds of large scale metabolic

models are becoming widely available and accessible in online repositories such as BiGG

(bigg.ucsd.edu), access to even relatively simple analytic approaches is much more re-

stricted. For instance, the current most popular toolbox, Cobra [160], requires the instal-

lation of Matlab and Git, the manual installation of a linear programming solver, followed

by obtaining the toolbox itself using the Git ‘clone’ command and a Matlab install script.

For a user familiar with the relevant packages, this installation procedure is involved

and error prone, whilst for someone who is primarily interested in investigating only one

particular organism, this represents an unreasonably high barrier to use.

My Fbar (see section 3.4.1) package is designed to deal with some of these difficulties,

and after the installation of R, Fbar itself is installed with one line. However, overall

Fbar is intended to be targeted specifically towards more technically able users, as it is

designed with a small API to make it easy to include as part of large analytical pipelines.

This meant that for the Tetrahymena project, the aim was to create a platform that
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would have a lower barrier to entry than Fbar, and to provide some of the analyti-

cal techniques I had developed with Metabex, but without the associated usability and

maintainability difficulties.

My solution to this was to create the web application FBAonline. This uses Fbar as

a back end to provide a browser based tool for analysing metabolic models. In addition

to basic flux balance analysis, it provides:

• flux rate comparison similar to that used described in section 4.2;

• network visualisation similar to that provided by Metabex’s Cytoscape integration,

using the Vis.js JavaScript library; and

• a new reaction clustering approach that works by trimming a hierarchical clustering

of the full network.

Input is accepted from Google sheets—the aim here is to encourage easy collaboration

on model curation. The development of a browser based tool also allows the use of

relatively fast open source linear programming solvers without the potentially complex

installation procedures for packages like GLPK.

The reaction clustering approach embedded in FBAonline works by using the Walk-

trap community detection algorithm [161] to find hierarchical community structure in

the reaction connectivity network. This establishes a dendrogram covering the entire

metabolic network, but this tree has several hundred leaves, and so is too verbose to read.

This is therefore followed by slicing the tree into subtrees at a set height in order to select

the strongest connections, and then selecting the largest of these well connected subtrees.

FBAonline’s interactivity is particularly helpful for choosing the best cut height, since

this differs between models.

Figure 4.9 shows the results of this reaction clustering approach applied to Tetrahy-

mena thermophila. The detail level (specified by cut height) can be varied by the website

controls. At the level chosen in figure 4.9 we can see the identification of four sections of

the metabolic model. These sections focus on phosphotransferase, fatty acid elongation

and galactose metabolism separately, along with a section covering the overlap of hydroly-

ses in fatty acid elongation and galactose metabolism. These areas of the metabolism are

strongly represented in the figure because they contain large numbers of similar molecules,

linked by several inter-conversion reactions. At lower detail levels, these areas are linked

together and other, more sparsely connected areas are shown in addition.

The techniques embedded in FBAonline covered the requirements for the project it

was created for, and cover the majority of requirements for the typical metabolic network

analysis projects that I have experienced. These analyses are restricted to those that are

fast enough to be interactive, since the amount of time people are prepared to wait for
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Figure 4.9: Clusters of reactions in Tetrahymena thermophila metabolic model found by tree
cutting approach.

a web application tends to be less than even a graphical local application. This means

that the techniques described in the later chapters are too complex to be embedded in

FBAonline directly. However, the possibility exists of precomputing datasets for widely

available published models, which could allow them to be explored via this tool; this is

discussed further in section 7.2.

4.4.1 Conclusion

This project was successful in that it was indeed able to demonstrate that comparative and

explorative flux balance analysis tools could be provided in a much easier to use manner,

including the ability to make comparisons between models and take advantage of the

resultant information. One limiting factor on this success was of course the requirement

of easy, real time usability itself, because this limited the tool to only comparing model

pairs, rather than being able to use statistical techniques with multiple models. In terms

of the visualisation component of the tool, the limiting factor was found to be human as

much as technical. The network visualisations were good enough for viewing elements

of the network that were already known to be significant, but the overall system is too

complicated to understand in this piecemeal manner.

4.5 Conclusion

This chapter has described three studies in inferring latent structure in metabolic networks

across relatively small numbers of models, showing that at least some information about

biological network structure can be inferred even without the larger datasets used in the

other chapters. Section 4.2 demonstrated that metabolic network comparison can be
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used to generate biologically relevant insights, by showing how it can directly describe

the mechanism for increased growth under particular conditions. In section 4.3, I showed

how the analysis of both individual metabolic networks and pairs of networks can be

enhanced by the use of Pareto optimisation to generate large sets of examples against

which to measure the correlation of various properties. In this section I also introduced

the advantages of closely coupling statistical and graphical network analysis, in order to

make it easier to understand the results of complex network analyses, and in section 4.4,

I demonstrated how such techniques can be made more approachable and user friendly,

such that they could be easily shared with others.

This represented the first use of any kind of metabolic network analysis on the datasets

described in section 4.2 and section 4.4 and the first software specifically for metabolic

network comparison in section 4.3. In addition all of the software (Fbar, Metabex, and

FBAonline) is novel in its design and instantiation.

In terms of the visualisation approaches discussed in this chapter, the central conclu-

sion is that visualisation alone is not enough. It seems that there is progress to be made

in the field of metabolic network visualisation, and the tools created here, particularly

FBAonline, are as good as any available, but there is a tradeoff between the size of the

network community and the clarity of presentation, and a human component that limits

the complexity that can be understood. These weaknesses of visualisation tools form part

of the motivation for the direction of the rest of this thesis, since if network structures

cannot be directly detected by visualisation, statistical tools are required.

The following chapters address approaches where much larger sets of models were

used, with more heavily automated unsupervised approaches.
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CHAPTER 5

Network interpretation by

Similarity Network Fusion

5.1 Introduction

This chapter discusses my use of Similarity Network Fusion (SNF) to integrate data from a

population of E. coli models representing different states of the genotype and phenotype.

Similarity Network Fusion is a network integration technique introduced in 2014 in the

paper Similarity network fusion for aggregating data types on a genomic scale [6, 162].

It is designed to merge multiplex networks (sets of networks with the same nodes but

different edges) into simple single layer networks. Naturally, this ability to merge data

from multiple sources is relevant to multi-omic research, which often involves the situation

of having multiple links between corresponding entities.

In the paper Multiplex methods provide effective integration of multi-omic data in

genome-scale models [12], I applied SNF to a multi-omic dataset for the first time.

The overall hypothesis that this chapter aims to prove is that it is possible to extract

information about population structure from metabolic network datasets, derived both

from experimentation and random sampling using the techniques described in Chapter 3,

and furthermore to show that this population structure is at least somewhat derived from

the network itself, rather than merely the sampling strategy. In the context of this chapter,

population structure means structure, such as clustering, that exists in the comparisons

between different metabolic networks in the dataset (versus network structure which exists

in the comparisons between nodes and edges inside metabolic networks).

This population structure was identified successfully using the Weighted Similarity

Network Fusion technique, followed by application of spectral clustering. Clustering tech-

niques can have a tendency to find structure from noise, meaning that it was important to

validate that this structure was real. This was first achieved by repeating the technique on
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both real and simulated datasets, testing my assertion that the population structure was

at least partially intrinsic to the network structure itself. Then, this overall population

structure was shown to be connected to Fe2+ fluxes in both datasets, highlighting that

since the underlying causes for the structure were related, this was extremely unlikely to

have occurred by chance.

This is particularly interesting because these types of clusters would normally be

attributed to genetic variation, or a bistable regulatory mechanism, rather than to being

implied by the metabolic network itself.

This chapter first introduces some background and theory on SNF before discussing

how I applied it to multi-level metabolic data, and how the core algorithm was modified to

tailor it to this application. The resulting technique is then applied to an experimentally

derived gene expression database, and to a simulated dataset from Chapter 3, resulting

in the detection of similar quantised patterns in both datasets.

5.2 Overall approach

The overall aim of this piece of work was to demonstrate methodology that could be

used to interpret multi-omic biological data, and understand more about the genotype-

phenotype relationship.

To conduct this research a high quality starting data set was needed, which was based

on two resources: the Colombos gene expression database, and the iJO1366 model of

Escherichia coli. The Colombos database contains whole genome gene expression values

for 2369 different conditions of E. coli growth, whilst the iJO1366 model is a recent

metabolic model of E. coli which contains 2583 reactions.

From these two resources, the complete genotype-metabolome-phenotype data set was

created by simulating metabolic activity using iJO1366 for each condition in the Colombos

database, using min and max functions in place of AND and OR to convert gene predicates

in the model into real valued functions, and then converting the results of this into reaction

bounds using a logarithmic function similar to that in equation (3.26) on page 48.

This created a resulting population of 2369 individuals, where each individual consisted

of a full gene expression vector, and a simulated metabolic flux vector created from the

gene expression vector. In addition, a phenotype was extracted based on the acetate

production rate of each individual.

In order to analyse this data using SNF, it had to be in the form of a multiplex net-

work. The first and most obvious network representation would be to use the metabolic

network itself to provide network structure, with genes as one layer, reactions as another,

and links quantified by some sort of similarity measure across all individuals in the popu-

lation. However, on further inspection this approach falls apart, because the gene-reaction

74



Figure 5.1: Flowchart of data types and processes. The process begins with gene expression
data. From this gene expression data, metabolic flux data is generated for each condition. Phe-
notype data is a biologically important subset of the flux data. Similarities between conditions
are computed from each of these data types separately. Finally these similarities are combined
by SNF into an overall similarity matrix.

mapping is many to many. An individual reaction often either has no controlling genes

or a combination of several, and individual genes control many reactions. Instead, the

similarity used in this research was similarity between individuals, so that the resulting

multiplex network consisted of a fully connected network of 2369 individuals, with edges

representing pairwise similarity in their genotype, metabolome, and phenotype. Figure 5.1

shows an overview of the approach taken. Similarity here was calculated using simple cor-

relation. For a more complete discussion of similarity computation, see section 6.4, and

for background, see section 2.7.2.
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5.3 Background on mathematics of Similarity Net-

work Fusion

5.3.1 Motivation

In recent years, complex networks have come to increased prominence as a dataset type.

Many types of information, particularly in biology, are best represented in terms of pair-

wise interactions (edges) between entities (nodes), which can be a particularly compact

form for large systems in which only a small proportion of elements have interesting

interactions.

As more datasets are gathered and stored as complex networks, it becomes increasingly

common to find multiple network datasets (edge sets) that refer to the same entities (node

sets). One might suppose that sometimes these network datasets are different reflections

of some common underlying network, and therefore wish to integrate the known dataset

to discover the structure of the underlying, unknown, dataset. This is the purpose of

Similarity Network Fusion (SNF) [6].

5.3.2 Definition of W

W are the base similarity networks that need to be integrated, represented as similarity

matrices.

In different applications of Similarity Network Fusion, these can represent different

quantities, but in this context they represent the similarities between individual samples

in the Colombos dataset. Two of these similarity networks are used, representing similar-

ities between the genomes and similarities between the metabolomes, represented by the

internal fluxes in a metabolic network simulation based on the genotype,.

Of course, this meant that it was necessary to calculate a single scalar similarity value

from the vector properties of each pair of individuals. In order to do this, I used an

approach that was similar to the scaled exponential similarity kernel suggested in Wang

et al. [6], but with extra normalisation steps which I found to be necessary. First, I

removed gene expressions and fluxes for which less than 10% of values were known and

finite. Then, each expression and flux was divided into 20 quantiles, and each value was

replaced by their quantile number, to deal with the high kurtosis. Finally, I calculated

the Euclidean distances between nodes (conditions), and found similarities Pij in each

layer v by exponential negative squared Euclidean distance

P
(v)
ij = e

−
[
d
(v)
ij

]2
, (5.1)

where d
(v)
ij denotes the Euclidean distance between the two arrays representing conditions
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i and j in the vth layer.

For comparison, the scaled exponential similarity kernel suggested by Wang et al. [6]

is defined as follows:

W(i, j) = exp

(
−ρ(xi, xj)

2

µεi,j

)
. (5.2)

where ρ is the Euclidean distance function, µ is a parameter typically in [0.3, 0.8] and

εi,j is a separate scaling function:

εi,j =
mean(ρ(xi, Ni)) + mean(ρ(xj, Nj)) + ρ(xi, xj)

3
(5.3)

where mean(ρ(xi, Ni)) is the mean distance between xi and its neighbours.

I experimented with this version but found the results to be similar with or without

the scaling function, which I suspect to be due to the aggressive normalisation which I

carried out beforehand. For this reason I judged that it was better to not use the scaling

function, since it added another layer of complexity without an associated improvement

in outcome.

5.3.3 Definition of P0

P0 are the starting state of the networks, which will be modified as the algorithm iterates.

As such, they start as normalised versions of W . Appropriate normalisations are:

P0 = D−1W (5.4)

where

D(i, i) =
∑
j

W(i, j), (5.5)

or

P0(i, j) =


W(i,j)

2
∑

k 6=i W(i,k)
if j 6= i

1
2

if j = i
(5.6)

Equation (5.6) is more robust to numerical instabilities.

5.3.4 Definition of S

S are local similarity matrices for the networks. These are modified similarity matrices

such that only the K nearest neighbours of a node have non-zero similarity. If Ni is the
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set of neighbouring nodes of xi (including xi), then we define local similarity by:

S(i, j) =

W(i, j) if j ∈ Ni

0 otherwise
(5.7)

5.3.5 Core operation

The core network integration procedure consists of iteration of the following update equa-

tion:

P
(v)
n+1 = S(v)

n ×

(∑
k 6=v P

(k)
n

m− 1

)
× (S(v)

n )T , v = 1, . . . ,m, (5.8)

where v is the index of each of the m layers, k ranges over all layers except for the one

under consideration, n is the iteration number, P
(v)
n is the similarity matrix, and S

(v)
n is

the local similarity matrix, both referred to the vth layer at the nth iteration.

For a set of networks (layers of a multivariate network), this iteration repeatedly makes

each network more similar to the others until they converge to a single integrated network.

5.4 Weighted Similarity Network Fusion tool

In order to combine the multiple gene expression and phenotype networks together, I

created a modification of SNF [6]. More technical details on the modified version can be

found in section 5.4.1. SNF takes a number of networks with the same set of nodes (i.e.,

layers of a multiplex network), and iteratively alters each network to resemble the others,

until all the networks converge to an aggregate network. However, this assumes that each

layer has equal importance, which is not a reasonable assumption in this case. For this

reason, I developed a weighted similarity fusion approach that allows us to account for

the quality of the metabolic reconstruction when linking gene expression and phenotype.

This allows the use of differing weights between layers to reflect this. For instance, in the

network fusion process, if the predictive capability of the genome-scale model is high, one

is able assign more importance to the phenotypic data rather than to the transcriptomic

data.

Since this multi-omic model and multilevel formulation provide phenotypic flux rates

from gene expression profiles associated with growth conditions, one may object that

the transcriptomic layer should carry no weight in the fusion process. However, the

fluxomic layer is a result of predictions of the metabolic model, and therefore it should

not be considered as the only indicator of the response to a given condition. In fact, in

applications to genome-scale models (as in this study), the weight represents the level of
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confidence in the model itself.

Let P be the multiplex network of similarity between environmental conditions. P is

computed, using (equation (5.1)) on m = 3 omic levels, i.e., from the distance between

gene expression arrays in the transcriptomic layer, from the distance between flux rate

arrays in the metabolic layer, and from the distances between the phenotype fluxes selected

from the metabolic layer. The central equation of standard SNF is equation (5.8), which

is iterated to actually conduct the fusion process, namely a finite number of message

passing steps in which the m layers co-evolve. Equation (5.8) describes the update step

for each of the m status matrices P(v), representing similarities of conditions in each layer.

These matrices are initialised as a normalised form of the similarity matrices of the m

networks. S(v) are kernel matrices, giving a normalised form of similarity only to the K

nearest neighbours.

Note that equation (5.8) computes an unweighted mean over P(k 6=v). To introduce

a weighted network fusion, we introduce a vector of weights, b ∈ Rm, which are used

to alter the update step and take a larger input from some of the m layers than others.

Then, we replace equation (5.8) by performing the following update step for each layer:

P(v) = S(v) ×

( ∑
k 6=v

(
P(k) × bk

)
(m− 1)×

∑
k 6=v bk

)
× (S(v))T , v = 1, . . . ,m. (5.9)

5.4.1 Further changes to weighted SNF tool

Conducting weighted SNF required that I created an upgraded version of the original

SNF library. This is online at https://github.com/maxconway/SNFtool.

As well as modifying the original library to allow weighted network fusion, it was also

necessary to improve the performance of the algorithm, due to the size and structure of

the datasets being used. My first approach to this was to parallelise the algorithm, by

exploiting the independence between the message passing steps: at each iteration step

t, the edge weights in each network layer are only dependent on edge weights as of the

previous step, t−1. This means that it is possible to achieve up to an m−fold performance

increase when fusing m networks.

However, this speedup was not found to be enough to achieve acceptable performance,

so in addition a convergence detection heuristic was implemented, to replace the original

library’s hard coded iteration count. At each step, this heuristic works out the mean of

the normalised mean absolute deviations between equivalent values in each layer, as a

measure of the progress towards fusing the networks. However, sometimes the algorithm

will converge (in the sense of making negligible progress with each iteration) before this

measure has reached zero, so the heuristic calculates the first and second backwards finite

differences, and stops iteration if both are less than 0.01.
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Mathematically, this indicator function is defined as

xt =
m∑
v=1

n∑
i=1

n∑
j=1

abs(mP
(v)
t,ij −

∑m
v=1 P

(v)
t,ij)

n2
∑m

v=1 P
(v)
t,ij

, (5.10)

and we stop iteration when |xt − xt−1| < 0.01 & |(xt − xt−1)− (xt−2 − xt−3)| < 0.01.

Where xt is the progress measure, P
(v)
t,ij is the value of element i, j of the vth layer of

the similarity matrix at the nth iteration, m is the number of layers, and n is the number

of nodes in the network.

In tests this heuristic achieved a large speed improvement over the original fixed it-

eration number approach, whilst being conservative enough to deliver merged results of

equal quality.

5.5 Application

In the transcriptomic layer, a condition is represented by a gene expression array; con-

versely, in the phenotypic layer, it is represented by a flux rate array. The phenotypic flux

data and, to a lesser extent, Colombos expression data displayed high kurtosis, indicating

that both layers display many outliers. Outliers were not removed for two main reasons:

firstly, in some cases this would remove most of the data; and secondly, this represents

a biologically reasonable all-or-nothing regulation, as one would see in a bistable system

created by positive feedback in regulation (for instance [163]).

After constructing the multi-omic similarity network, I fused together the phenotype

and gene expression layers with a K value of 500 (number of nearest neighbours) and

a phenotype-transcriptome weight ratio of 2:1. I then assessed the resulting network by

conducting spectral clustering and plotting a heat map. Spectral clustering was cho-

sen primarily because it is recommended by the authors of [162]. In the heat map, the

data is well represented by three clusters. Whilst moving to larger numbers of clusters

could decompose the centre cluster slightly, it sacrifices most of the contrast at the clus-

ter boundaries. Figure 5.2 shows the heat map resulting from the spectral clustering

performed on the fused network, whose outcome is reported in [12].

To detect those fluxes and expressions that are most indicative of the three config-

urations, I employed a regression technique based on recursive partitioning [164]. This

suggested a number of decision trees with only two rules splitting on flux values, each

able to assign the correct cluster in 97% of cases. I validated these fluxes as genuinely

important via bootstrapping: on repeated samples of 80% of the data, the same fluxes

were detected as important. The fluxes I found to be closely associated with clustering

are reported in table 5.1. Of these, the eye immediately jumps to biomass generation

and 5-deoxyribose production as associated with growth rate. The other exchange reac-
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Reaction name Importance (rounded %) Cluster 1 LB Cluster 3 UB
Biomass generation 17 1.009824 1.0079

CHEBI:44800 production 17 0.001353165 0.001350586
5-deoxyribose production 17 0.0002332694 0.000232825

p-Cresol production 17 0.0002251908 0.0002247617
CHEBI:16490 production 17 2.019649e-06 2.0158e-06

Other 15

Table 5.1: After clustering the conditions in the case study, I built decision trees to predict the
cluster from the flux rate of key reactions (and genes). This table reports those reactions that
are good predictors for the clustering. For instance, conditions with low and high biomass are
likely to be in two different clusters according to the value of biomass produced. The reactions
shown here are therefore highly correlated with cluster membership. It appears that the clusters
can be thought of in terms of a general growth rate, so the boundaries for each flux pointed in the
same direction. Cluster 1 is highest growth, Cluster 3 is lowest growth, and Cluster 2 is medium
growth (i.e., contained between the lower boundary (LB) and upper boundary (UB) listed in
the table for clusters 1 and 3). Interestingly, two reactions (CHEBI:44800 and CHEBI:16490)
out of the five predicted are underground reactions, which we hypothesise as symptoms, rather
than causes, of the shifts between metabolic clusters. Since they provide alternatives to primary
pathways, they are likely to be used when the primary pathways become saturated.

tions may have specific relationships with growth rate configurations, or their detection

may be due to a general correlation between rates of bacterial growth and excretion of

byproducts. The orange and green bars in figure 5.2 show how effective these fluxes are

in partitioning the data into clusters. This indicates that the cluster structure is of high

importance to the core metabolism of the cell.

5.6 Similarity Network Fusion on simulated data

Previously in this chapter, SNF was applied for multi-omic data integration, combining

different kinds of biological data. However, it can also be used for exploration of pure

metabolic data, by integrating information from different subsystems. Figure 5.3 shows

an example of this, applied to the dataset generated in section 3.4.4. Normalisation

was similar between this simulated dataset and the experimental dataset (0 mean and

0 standard deviation), and equation (3.26) was used to transform both into usable flux

bounds. Distances were calculated between subsystems separately, and then the resulting

31 distance matrices were re-integrated via SNF.

Figure 5.3a and Figure 5.3b show coarse and fine grained clustering respectively—

clustering into just two groups results in the ‘cleanest’ clustering, but targeting a larger

number of groups gives a very high degree of in-cluster consistency in the rate of biomass

production (green). This consistency appears to be a result of the underlying data gener-

ation mechanism: because the data was generated by an evolutionary mechanism, models

are grouped into distinct ‘families’, descended from a common ancestor. This validates
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the ability of this approach to uncover latent structure in the population data, supporting

the validity of its results on biological data.

It can also be seen that the clusters are strongly connected with biomass production,

but less so with other metabolic processes, such as glucose uptake, as shown in blue. This

is because in this application, data was integrated from every subsystem, and biomass

production requires a large number of separate inputs, from almost all subsystems, giving

it a high correlation to the integrated similarity.

5.7 Validation

Showing the validity of unsupervised learning techniques is often challenging, particularly

when one wants to show both correctness and usefulness—the most persuasive way to show

correctness is to replicate some kind of labelled data, much like in supervised learning,

but in an unsupervised learning context, it is implicit that only replicating existing results

is not useful.

One disadvantage of clustered heatmaps such as those in figures 5.2 and 5.3 is that

they can have a tendency to be too sensitive to clustering patterns, and appear to show

clustering that is not actually there. It is therefore important to also compare these

clustered heatmaps to similar heatmaps where the row and column order is based on

simpler dataset characteristics. In this case the row and column ordering variables were

chosen based on the biomass and Fe2+ fluxes. The biomass flux was chosen as the most

important flux and because its reaction includes a large number of terms, meaning that

it is affected by many different processes and pathways. Fe2+ was chosen because it very

clearly exhibits an interaction with biomass that has different modes.

Figure 5.4a and figure 5.4b show these unclustered heatmaps. We can very clearly

see that in both heatmaps, there are two distinct regions. In one region, there is a

clear line, showing that is this region, Fe2+ and biomass rates are well correlated. In

the other region, there is no overall order, indicating that Fe2+ rate is decorrelated from

biomass generation in this region. We can also see that while these two modes exist

in both datasets, they actually occur at different points between the real and simulated

datasets. This is to be expected, since these datasets have very little in common except

their underlying metabolic models; their substrates are different, which means that in

one, Fe2+ availability is only a limiting factor at low availability, while in the other, it is

a limiting factor at high availability.
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5.8 Conclusion

This chapter describes the application of a modified version of the Similarity Network

Fusion algorithm to a large metabolic and gene expression dataset, resulting in the de-

tection of quantised cell states. This technique is then repeated on a simulated dataset,

where similar quantised cell states are detected.

This similarity demonstrates that the quantisation is not simply an artefact of the

dataset used, and therefore must be induced by the network itself (or be an artefact of

the clustering procedure). However, similar quantised patterns of Fe2+ exchange were

also detected, supporting the hypothesis that the quantisation was genuinely resultant

from the network structure itself, since this could not have been caused by the clustering

algorithm.

This provides clear evidence that metabolic network structure can inherently imply

quantised population structure, and that analysis of large metabolic network datasets can

identify this structure.

This research represented the first application of a weighted Similarity Network Fu-

sion approach, and the first application of any Similarity Network Fusion approach to a

metabolic multi-level model.

This is important because not only does it imply that Similarity Network Fusion is

effective at finding population structure that derives from network structure, but that such

structure exists. Typically such structure would be attributed to genetic or regulatory

effects, but this work shows that it can be caused by network structure itself.
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Figure 5.2: Heat map of the similarity matrix of the fused E. coli multi-omic network, arranged
by spectral clustering into three components. The x and y axes represent the 2369 conditions,
whilst the intensity of the colours in the centre represent the similarity between each of the
pairs of x and y conditions. The red numbers are cluster labels, from 1 (highest flux rates) to
3 (lowest flux rates). The intensity of the orange and green bars on the top and side represent
5-deoxyribose exchange rate and biomass production, respectively. The rate of both these fluxes
can be partitioned and can be used with high confidence to provide clear distinctions between
the clusters of conditions. The partitioning process we used was able to provide a similarly clear
distinction in both dimensions using each of the fluxes reported in Table 5.1.
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(a) Coarse clustering. (b) Fine clustering.

Figure 5.3: Heat maps of the similarity matrices of the case study 2 dataset, fused by subsystem
and arranged by spectral clustering. The x and y axes represent the samples generated by the
simulation, whilst the intensity of the colours in the centre represent the similarity between each
of the pairs of x and y samples. The intensity of the blue and green bars on the top and side
represent glucose exchange rate and biomass production, respectively.

(a) Experimental data from gene expression. (b) Simulated data from case study 2 dataset.

Figure 5.4: Heat maps of the similarity matrices from both experimental and simulated data,
with their rows and columns organised by biomass and Fe2+ fluxes respectively. The x and y
axes represent the samples generated by the simulation, whilst the intensity of the colours in the
centre represent the similarity between each of the pairs of x and y samples. The intensity of
the blue and green bars on the top and side represent Fe2+ exchange rate and biomass produc-
tion, respectively. These heat maps clearly show distinct phases of correlated and uncorrelated
behaviour between the fluxes.

85



CHAPTER 6

Hierarchical Block Matrices and

Local Network Learning

6.1 Introduction

Hierarchical Block Matrices, or HBMs [165], are a structure of similarity matrix, which

can be recovered by performing iterative Markov clustering to aggregate the data into a

tree structure [166]. This is highly applicable to metabolic network analysis as a way to

identify subsystems at a variety of levels of organisation. For this reason, I discuss here my

applications of HBMs first to simple network structure measures that are agnostic of the

underlying network type, and then on to more advanced measures based on similarities

of node fluxes.

A novel similarity estimation approach, termed Local Network Learning, was used to

approximate conditional dependencies between network nodes, exploiting the flow network

structure itself in order to remain computationally tractable even on large datasets.

The aim of this chapter is to introduce the use of Hierarchical Block Matrices and

Local Network Learning to detect network structure in datasets of similar metabolic flow

networks, with the hypothesis that this combination of methods can uncover meaningful

data about network structure. Specifically, this approach is evaluated by comparison with

existing, manually curated subsystem labels, and found to outperform more traditional

methods.

The work in this chapter was presented at BBCC2018.

6.2 Testing on synthetic data

Hierarchical Block Matrices have been used in generative contexts a number of times [167–

169] for testing hierarchical graph clustering algorithms, but the approach of using an
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explicit iterative Markov clustering approach to reconstruct Hierarchical Block Matrices

directly has only previously been used in the context of chromatin contact clustering [166].

Given the quite different context in which they will be used in this chapter, it is important

to demonstrate the usage of HBM based structure detection on synthetic graphs. In

general, in order to validate the effectiveness of an unsupervised learning technique, it

is important to first test it on data with known ‘correct’ answers. Since this method

is intended to find hierarchical structure in network data, synthetic datasets are needed

which both definitely possess such structure, and definitely do not.

Figure 6.1 shows the results of these tests.

The first tests, shown in figure 6.1a, figure 6.1b, figure 6.1c and figure 6.1d show

successful detection of structure in graphs with hierarchical structure, whilst figure 6.1e

shows a true negative result in a completely connected graph. Figure 6.1f and figure 6.1g

show slight true positives, where the algorithm divides the lattice and ring graphs in half.

Finally, figure 6.1h shows a successful detection of the major structure in an environment

with some noise. In the figure, noise was introduced by overlaying a constant lattice for

the sake of repeatability, but similar results are also found using normal and uniform

noise.

In figure 6.1, the inflation parameter to the Markov clustering subroutine was fixed

at 3 in every test, in order to enable clear comparison. This is higher than the default

value of 2, since from experimentation it appears that in this context a higher inflation

parameter leads to the identification of more levels of hierarchy (as shown in figure 6.1b

and figure 6.1d), at the expense of the potential for true positives such as in figure 6.1f

and figure 6.1g. The same value of 3 is used throughout the rest of this chapter, since

experimentally it appears to be high enough to find large amounts of structure, without

giving too many false positive levels of hierarchy when used on real data, as evidenced by

cluster stability across small network perturbations.

These results demonstrate the ability of Hierarchical Block Matrices to detect structure

in synthetic graphs, showing that their use for the same task on real metabolic networks

is at least feasible. These synthetic graphs have been introduced as adjacency matrices

with an obvious notion of similarity between nodes, but in real world networks the best

notion of similarity is less clear, as will be discussed in the next section.

6.3 Network structure measures

Hierarchical Block Matrices have found use in chromatin contact maps, where the input

data is a boolean specifying whether a pair of nodes interact. This means that a logical

starting point is to base the structure measure on the existence of a link between two

nodes in question. However, as discussed in section 2.7.3, metabolic networks, like many
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(a) Four cliques. (b) Four cliques, joined in pairs.

(c) Four cliques joined in a line. (d) Four cliques, three of which are joined in a
line.

(e) Complete graph. (f) Ring.

(g) Lattice. (h) Four cliques joined in pairs, plus noise.

Figure 6.1: Plots showing validation of HBM usage for graph clustering. Left hand sides of
plots show adjacency matrices, right hand sides show the resulting hierarchical clusters.
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kinds of flow networks, are naturally described by bipartite graphs. These have two classes

of nodes: metabolite nodes, which describe physical entities in the system, and reactions,

which describe processes transforming between these entities. This means that it does

not make sense to use direct links, but instead to summarise the bipartite graph as two

boolean adjacency matrices, one for reactions and one for metabolites, with the reaction

matrix being TRUE where the two reactions share a metabolite, and FALSE otherwise,

and vice versa for the metabolite matrix. This can be calculated as the reaction or

metabolite subgraph of the square of the adjacency matrix.

1 2 3

level

no
de

Figure 6.2: Plot of clustering of reactions provided by Hierarchical Block Matrix with boolean
links based on metabolite sharing. Y-axis shows reactions (labels are omitted for clarity). X-
axis shows hierarchical levels. Colours represent clusters, but are arbitrarily chosen so matching
colours only indicate matching clusters within columns.

Creating a Hierarchical Block Matrix using just boolean reaction connectedness al-

ready shows some promise—in figure 6.2, it is possible to see the identification of two

main clusters, one large and one small, along with a large number of unclustered reac-

tions, shown by the areas with narrow colour bands. However, this clustering does not

appear to have identified any hierarchical structure, and the coarse nature of the clus-

tering, particularly the grouping of the highly connected core as a single cluster covering
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Figure 6.3: Plot of clustering of reactions provided by Hierarchical Block Matrix with boolean
links based on inverse connectivity of shared metabolites. Y-axis shows reactions (labels are
omitted for clarity). X-axis shows hierarchical levels. Colours represent clusters, but are arbi-
trarily chosen so matching colours only indicate matching clusters within columns.

over half the nodes, make this result only useful as a proof of concept.

One approach to improving the effectiveness of this approach in the highly connected

core is to attempt to highlight the most important connections. In figure 6.3 this is

achieved by setting connection strength between two reactions via a metabolite m to

equal 1/deg(m), or vice versa for metabolites. This is very successful: it yields many more

levels, and it also shows hierarchical structure. This structure is particularly obvious in the

highest levels, but a more detailed examination in fact finds that structure is discernible

on around 10 levels. This is promising, since it shows that the core concept of HBM

clustering to identify hierarchical metabolic network structure is effective, if used with

the correct reaction similarity measure.

These connectivity based approaches have the advantage that they are not really

specific to metabolic networks at all, since they involve no simulation; this means that they

can be applied to a variety of areas, with potentially different network measures applicable

in each situation. For instance network distance is more applicable to situations with a
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more clear idea of an additive link cost, such as latency in communications networks.

However, using measures of node similarity that are based purely on network structure

is somewhat unsatisfying, precisely because they can be applied to pretty much anything

that can be represented as a network. It would be superior to have measures that are

more specific to the semantics of flow networks, and which can capture the possibility

that different subsystem descriptions are appropriate under different conditions.

6.4 Local Network Learning based similarity mea-

sures

6.4.1 Predictivity gain

In order to create a measure of node similarity that uses more of the semantics of the

network, we can use a similarity between the fluxes in the nodes to indicate to what

extent nodes belong together. Correlation based flux similarity measurements such as

those discussed at other points in this thesis are simple to understand and implement,

but they are limited in terms of the kinds of relationships they can pick up on. It would be

preferable to use more flexible models to capture the strength of the relationship between

two fluxes by using an ‘information gain’ style approach [170].

To describe this predictivity gain approach, it is best to first define some variables

while initially ignoring the network structure of the problem:

B := a matrix with p rows and q columns, (6.1)

T (y,X) := a training function, where (6.2)

height(X) = length(y), (6.3)

and returning a prediction functionP (), (6.4)

P (X′), := a prediction function, which returns a vector y′, where (6.5)

length(y′) = height(X′), (6.6)

C(y,y′), := a cost function, which (6.7)

takes two equal length vectors, and (6.8)

returns a scalar measure of their dissimilarity, with (6.9)

∀a, C(a, a) = 0 (6.10)

We can then define the predictivity gain, G, provided by a column a on another

column, b, both of matrix B as follows, using the notation B\a to mean ‘matrix B,
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except for column a’.

G(a, b) = C(b, T (b,B)(B\b))− C(b, T (b,B\a)(B\b\a)) (6.11)

For simplicity, this equation assumes that the training function T is perfectly regularised—

in real life, cross validation is normally required.

However, there are some problems introduced by this approach. Firstly, when the

number of available features q is large, training a model takes a long time and requires a

large amount of data and a highly regularised model to avoid overfitting. Secondly, we

may have a situation where more than one feature in B\b is a very good predictor of b.

In this case, we would end up assigning a low similarity to each, since although they might

all be able to deliver a high quality prediction on their own, they would all deliver little

information gain over and above the others. The best way to remedy this would seem

to be to try every combination of features, and weight the importance of an individual

feature based on the predictive power of all combinations that it was used in. However,

this approach increases the computation time with O(q!).

This line of reasoning takes us to the idea that this approach could be infeasible with

a large number of nodes, as we see in metabolic networks. However, the fact that we are

dealing with a network in fact allows us to overcome this difficulty.

6.4.2 Predictivity gain applied to metabolic networks

In order to apply a predictivity gain approach to a set S of n flux vectors obtained from

n metabolic networks using the terminology of equation (2.1), we can use the following

assignments:

p = n (6.12)

q = r (6.13)

B = [{x : x ∈ S}]T (6.14)

In other words, we form the matrix B by vertically concatenating the flux vectors

obtained by maximising each of a set of metabolic networks. This means that the ordering

of the rows and columns in B is unimportant, unless the original set of metabolic networks,

or their reactions were ordered. However, while unordered, the columns of B do possess

important structure. Since each column corresponds to a particular reaction, they have

an implied network distance which we can exploit.

In order to effectively explain this, we need to introduce some more definitions:
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G := the metabolic network graph, with adjacency matrix

[
0r,r A

AT 0m,m

]
6= 0

(6.15)

R := the reaction adjacency graph, with adjacency matrix AAT 6= 0 (6.16)

NR(v) := the function which returns the set of vertices which are adjacent to node v in graph R.

(6.17)

It is important to note here that NR(v) = NG(NG(v)), due to the bipartite nature of

metabolic network graphs such as G, . In other words, adjacent reactions in R are not

directly connected in G, but instead are connected at a distance of 1, which means that

they share at least one metabolite.

With these definitions, for any given reaction v0, the neighbouring reactions NR(v0)

(for example v1...4 in figure 6.4) can be thought of like a Markov blanket. In other words,

the rate of reaction v0 can only be directly dependent upon the rates of reactions in

NR(v0), since NR(v0) are the set of reactions that involve any metabolite which is involved

in v0; any other reactions can only constrain v0 indirectly, via constraints on reactions in

NR(v0). This means that we can fully estimate the degree of control of reaction v0 only

with reference to reactions NR(v0), which is a much smaller set, and therefore allows us

to take this nonlinear, information gain based approach.

6.4.3 Calculating predictivity

At this stage, we wish to estimate the importance of the rate effect of each neighbouring

reaction to a reaction of interest, by comparing the effectiveness of models with and

without the neighbouring reaction. In order to do this we can take a supervised learning

approach, regarding each neighbouring reaction as a feature and the target reaction as

our labelled data. This means that we can consider this approach as constructing a

feature selection problem for each node, specifically with a backward elimination style

approach [171]. This is an appropriate approach because the goal here is to exhaustively

and fairly evaluate feature quality, rather than taking a heuristic approach to get the

best possible prediction as quickly as possible. It is worth comparing this strategy, which

involves retraining a model with and without each feature to an input fuzzing approach,

which would involve training one model and then replacing each feature in turn with

disinformation, such as zeros or random noise. The problem with a fuzzing approach is

that it implicitly relies on the trained model having no internal biases between features.

For instance in the case of two identical features, we would need to rely on the trained

model having treated both identically, rather than just using the first encountered and
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NR(V0)

Figure 6.4: A sketch demonstrating reaction neighbourhoods. In this sketch, red nodes rep-
resent reactions, light blue nodes represent metabolites, and light blue lines represent their
interactions. Red dashed lines represent reaction adjacency, and the yellow highlighted area
shows the results of the reaction adjacency function.

discarding the other.

From here on, the term “Local Network Learning” to refer to this approach of quan-

tifying edge importance by how much information gain it provides on a node’s value. A

literature search found that this technique appears to be novel in general, and is certainly

novel in this context. The most similar approaches are regulatory and Bayesian network

reconstruction techniques, which are similar in their domain and data types; and wrapper

methods of feature selection, which have a similar intention and technical approach, apply

to tabular data.

6.4.4 Choice of supervised learning algorithm

The next question is what class of supervised learning algorithms to use. I have intention-

ally designed this approach to yield a large number of well structured tabular problems,

rather than any more exotic data type, since this opens up a wider range of candidate

algorithms. However, because the number of problems created is very large, the technique

chosen must be fast to train. Decision tree models are an obvious candidate here because

they are fast to train and capable of modelling the kind of piecewise linear prediction

landscape that is expected from this problem—as mentioned in Chapter 2, the feasible

space of linear programming problems is a complex polytope. They work well as a coun-
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terpoint to the use of pure regression models, which have the advantage that they are

capable of not displaying feature bias, in the sense described in the last paragraph, and

have demonstrated their effectiveness at other points in this thesis.

6.4.5 Applying network local predictive power based similarity

measures

Demonstrating a Local Network Learning approach requires a set of test datasets, and

the selection of examples of regression algorithms to use as the kernel that estimates node

values from their neighbours.

The datasets described in section 3.4 were created with the testing of a Local Network

Learning approach in mind, and are used here as demonstration data. This is one of the

reasons for the particular focus on enhancing the variance in the dataset, since if the value

of a node is constant, it is not possible to measure the effects of the adjacent nodes. Even

when nodes are not constant, if the value of too many nodes are too easily predicted, then

too many perfect models are produced, making the resulting dataset of model errors too

sparse and difficult to work with.

Although using a local modelling technique cuts the computational load significantly

(see section 6.4.6), there are still a large number of models to be created, meaning that

performance was a primary concern in the choice of regression algorithms.

The two algorithms selected were:

• simple linear regression, for its speed and for the correspondence with the base case

of using correlation as a similarity estimator, and

• the Cubist regression tree algorithm [172], for its speed and because I had previously

found it to have very good performance in this type of application [12].

6.4.6 Reducing computational load by enhancing graph sparsity

This network local predictivity approach requires the construction of O(|E|) models,

where (|E|) is the number of edges in the graph, with the mean number of features of

the models proportional to the mean degree of the graph. The time to build a decision

tree scales with at least O(m) in the number of features, but more commonly O(m2),

since without making strong independence assumptions, every feature must be compared

to choose every split [173]. This gives an overall complexity of O(|E|3), but note that

the relevant graph here is a graph of connections between reactions. To construct this

we must remove each metabolite node and add edges connecting every neighbour of each

removed node. Obviously this operation significantly increases the edge count, and with

it the time complexity, particularly for those metabolites with large numbers of edges.

95



This increase in edge count was a substantial problem for large models. Fortunately,

however, the structure of the reaction networks made it possible to increase sparsity with

minimal loss of information. The number of reactions per metabolite is highly skewed,

with a 95th percentile of 10, but a maximum of over 1000. This meant that 95 % of

edges could be removed from the graph by removing only around 0.5 % of metabolites,

giving a speedup on the order of 8000 fold. The metabolites removed by this approach

were manually checked to ensure that they were biologically reasonable to ignore, such as

water and oxygen, which can typically be assumed to be available in excess, and so were

not constraining the rates of reactions that consume them.

Another performance advantage of this method is derived secondarily from this reduc-

tion in the typical number of features per model. When one is training models with large

numbers of features, it is necessary to use large sample sizes to avoid overfitting. How-

ever, in this case the local learning approach already selects features down to a smaller

set which are expected to have a large correlation with result, so it is possible to use a

smaller sample size than would otherwise be required. For decision trees, execution time

scales with O(n) in the number of samples, so the execution time reduction was relatively

modest, but the reduction in memory requirement, also O(n), was far more significant.
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(a) Linear model.
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(b) Cubist regression tree.

Figure 6.5: Plot of reactions (y-axis) against clustering levels (x-axis) for case study 0 dataset
(placeholder sampling approach). Colours represent clusters, but are arbitrarily chosen so match-
ing colours only indicate matching clusters within columns.

In figures 6.5, 6.6 and 6.7, we can see that in most cases this technique produces

high quality hierarchical clusterings across a wide range of simulated datasets without

requiring significant tuning, and whilst using two very different regression algorithms to

conduct local learning. Figure 6.8 shows that the success of this clustering approach
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(a) Linear model.
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(b) Cubist regression tree.

Figure 6.6: Plot of reactions (y-axis) against clustering levels (x-axis) for case study 1 dataset
(batch based proportional adjustment). Colours represent clusters, but are arbitrarily chosen so
matching colours only indicate matching clusters within columns.
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(b) Cubist regression tree.

Figure 6.7: Plot of reactions (y-axis) against clustering levels (x-axis) for case study 2 dataset
(evolutionary sampling with environment variation). Colours represent clusters, but are arbi-
trarily chosen so matching colours only indicate matching clusters within columns.
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(b) Cubist regression tree.

Figure 6.8: Plot of reactions (y-axis) against clustering levels (x-axis) for a data set derived
from Colombos database of real world gene expression, similar to that used in Chapter 5. Colours
represent clusters, but are arbitrarily chosen so matching colours only indicate matching clusters
within columns.

carries over to use on real world data; furthermore this was possible with only a handful

of changes to normalisation code. This confirms that this technique can be used as a

structure detection approach seamlessly for both theoretical analysis of metabolic models

themselves and applied analysis of the predictions of those models on real world data.

Since this approach was successful even with the prokaryotic methods used here, it is

likely that it would show even greater success on larger, eukaryotic models, since these

have organelles which display further inherent structure.

The clusters found show consistency in some areas across different datasets and tech-

niques, whilst also showing the differences that should be expected given the differences

in the underlying datasets and prediction algorithms. The hierarchical cluster structure

is supported by manually curated subsystem labellings available for the underlying E.

coli model, whilst also providing hierarchical structure that clusters both more and less

coarsely than these manual labellings. Finally these clusterings are condition dependent:

we can see how they vary depending on the flow patterns in the dataset, providing valuable

information about condition dependent hierarchical structure.

6.5 Validation

As stated previously, validation of clustering is challenging, especially when the goal is

knowledge discovery, rather than the replication of already known structure. However, in
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this situation, we are lucky enough to have at least one known true assignment of reactions

to clusters: the subsystem labels available in the dataset. This is not the only possible

assignment by any means, but nevertheless we would hope that HBM based clustering

shows at least some similarity with the subsystem assignment.

In order to show this relationship, the Adjusted Rand Index [174] was calculated for

each clustering level in each Hierarchical Block Matrix against the human derived sub-

system assignments. I also calculated the Adjusted Rand Index for multiple shuffled

versions of each of the HBM assignments (in blue), in order to provide a baseline, since

although the Adjusted Rand Index is already corrected for the expected similarities be-

tween datasets by chance, providing an experimental counterpoint also provides us with

a way to see the variability. Trivial clusterings with only one cluster were filtered out.

This validation process was partly inspired by that used in Zhao et al.[175], which

also examines network structure and uses a shuffled baseline, although the baseline is

generated by shuffling the network rather than the labelling, as here. In addition, I

evaluate the results via comparison with human labelled subsystems, whereas in Zhao et

al., the comparison is purely derived from network measures.

Figure 6.9 shows the results of this validation—red box plots represent the various

levels of HBM cluster assignments found, while the blue box plots represent the corre-

sponding shuffled cluster assignments. We can see clearly that the Hierarchical Block

Matrix with Local Network Learning approach outperforms the shuffled variant, and this

is borne out statistically: p < 0.05 for 5 out of the 8 groups.

The final three rows in figure 6.9 represent more conventional clustering approaches

for comparison, showing that my approach generally outperforms them. K-means was

used in the context of clustering reactions directly by their flux values, while the walktrap

algorithm was used to cluster based on the network structure itself.

The Adjusted Rand Index is lower for the biological model, based on gene expression

data. A significant reason for this is that this dataset had both smaller variance in reaction

rates and a smaller sample size than the synthetic datasets, demonstrating the utility of

synthetic dataset generation.

6.6 Conclusion

This chapter demonstrates for the first time the utility of Hierarchical Block Matrix

techniques for the detection of hierarchical structure in metabolic networks. This is shown

initially using network structure based similarity measures, before introducing a Local

Network Learning approach to efficiently estimate predictivity based similarity measures

between flow network nodes. The Local Network Learning approach introduced appears

to be novel in the context of metabolic networks, certainly with the implementation
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described here, and may also be novel in a wider context.

The combination of hierarchical block matrices and Local Network Learning was also

able to extract hierarchical structure from metabolic network datasets, and this structure

achieved an Adjusted Rand Index against existing manual labellings of reactions that

was both statistically significant and superior to what which was found using comparable

methods.
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Figure 6.9: Adjusted Rand Index values compared to human labelled subsystems for real (red)
and shuffled (blue) Hierarchical Block Matrix clusters. All box plots show Adjusted Rand Index
versus human labelled subsystems, across different clustering levels. The x axis shows Adjusted
Rand Index. The y axis shows experiment groups: combinations of a machine learning method
(linear model or Cubist decision tree) used for local network learning and a dataset to which it
was applied: either a simulated case study or biological gene expression data. P-values for each
comparison are shown in black. The final 3 rows are controls provided by k-means and walktrap
clustering algorithms.
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CHAPTER 7

Future work

7.1 Network of networks vs structure of solution spaces

In this thesis, the term ‘structure is used in two slightly different contexts. There is

structure as used in Chapter 6, that is the structure of the metabolic network itself,

such as pathways and subsystems. There is also structure as described in Chapter 5,

which is the structure of the solution space of the metabolic model, such as clusters

of solutions that behave similarly. These concepts are both interesting and important,

but can be thought of as conceptually perpendicular—they are much like the difference

between grouping a table by rows or by columns. An obvious future direction for this

research would be towards methods that can detect structure in both directions at once.

The most obvious method for this would be to work in one direction and then the other,

perhaps by finding groups of solutions and then separately identifying network structure

within these groups. However, this would mean that no information was transferred

between the network structures of different groups, so an ideal solution would instead

somehow perform the grouping in both directions simultaneously.

7.2 Precomputing datasets for FBAonline

As discussed in section 4.4, at present, the FBAonline platform is limited by its web

application nature to using those network exploration techniques that run in near real

time. However, this situation could be improved by noting that while a large number

of metabolic network models exist, the number of high quality, human verified models

that are readily available from online databases numbers only in the hundreds or low

thousands, meaning that it would be tractable to precompute some analysis of these.

This approach would be particularly appropriate for the local network learning technique

described in Chapter 6, where calculating the distance estimate between nodes is much
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slower than the analysis of the resulting distance network.

7.3 Other flow network data

Although the focus of this thesis is metabolic networks, much of the content is in fact ag-

nostic to the data type, and similar techniques could be applied with minimal modification

to other fields.

Potential examples include infrastructure networks, such as road and logistical net-

works, and distribution systems for utilities such as water and electricity, as well as

information networks which exhibit some conservation of flow, such as packet switched

communications networks and financial transaction networks.
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CHAPTER 8

Conclusion

This thesis has explored methodology for the detection and interpretation of structure in

metabolic flow networks, using statistical analyses over large datasets.

This began with Chapter 3, which introduced the concept of biased Monte-Carlo

sampling over metabolic network state spaces, and described how this idea could be used

as the core of a conceptual framework to allow the same analysis techniques to be used

seamlessly in contexts from pure in silico simulation to multi-level integration of real in

vivo data. Chapter 3 also catalogued the primitives that could be used to build data sets

from either biological data or Monte-Carlo simulations, and demonstrated these primitives

in the creation of three case study datasets of varying complexity. Finally, section 3.4.1

introduced a popular new software tool for conducting these simulations, which is faster

than any other tool tested. This allowed two of these case studies to be what appear to

be the largest datasets of their type, at half a million samples each.

Chapter 4 is a description of three research projects which worked with datasets which

were small enough for the use of analytic techniques that involved visualizing flux data di-

rectly. The first of these discusses parameter tuning a metabolic model of Salmonella in or-

der to fit experimental gene expression values. This provided a mechanistic explanation of

growth differences between conditions which were separately identified experimentally [9].

The second of these projects continued a theme of comparative metabolic modelling, by

comparing datasets created by evolutionary sampling of two metabolic models of differ-

ent Geobacter species. This was successful in providing clear explanations of differences

between the species [10], but an attempt to provide an easily useable platform to repeat

this analysis was less successful. The third project in this chapter addressed this in the

creation of a much more usable tool for metabolic network comparison, which was then

used in the creation of a new organism model [11]. These projects also described different

approaches to visualizing differences between metabolic networks. While these visualisa-

tion approaches had various strengths, their common weakness was the inability to scale
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to whole organism networks, demonstrating the need for the statistical techniques in the

later chapters. These projects (and the case studies described in Chapter 3) involved the

creation of three new software tools: the visualization tools Metabex and FBAonline, and

a core metabolic network simulation and manipulation library, Fbar.

Chapter 5 shows the use of a modified version of the Similarity Network Fusion algo-

rithm to a large metabolic and gene expression dataset, along with a simulated dataset

created in Chapter 3, resulting in the detection of quantised cell states in both. These

quantised states were also shown to be linked to similar reactions in both, demonstrating

that they were an emergent product of the metabolic network structure. This represented

the first use of Similarity Network Fusion, with or without modification, in a multi-level

metabolic context, and successfully showed metabolic network structure across multiple

levels in real world data.

Finally, Chapter 6 demonstrates for the first time the ability of Hierarchical Block

Matrix clustering approaches to detect structure in metabolic networks, and introduced

the novel Local Network Learning similarity calculation approach. This created a tech-

nique for hierarchical network structure detection which was validated against manually

labelled subsystems and found to outperform both a random baseline and a selection of

standard clustering algorithms.

Overall, this thesis shows that structure can be detected in metabolic networks by

using machine learning approaches on large sets of feasible metabolic network states, and

introduces a number of new methods for this. This is shown in both the network struc-

ture itself and the structure of populations that is implied by the networks themselves.

Furthermore, a large advantage over purely analytic approaches is shown: using machine

learning methods allows for a seamless transition between theoretical testing using biased

Monte-Carlo simulations and practical inference on real world data.
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Liò, Giovanni Manzini, and Flavio Mignone. Stable: a novel approach to de novo

assembly of rna-seq data and its application in a metabolic model network based

metatranscriptomic workflow. BMC bioinformatics, 19(7):184, 2018.

[16] Gustav Kirchhoff. Liv. on the motion of electricity in wires. The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science, 13(88):393–412, 1857.

[17] Nathan E Lewis, Harish Nagarajan, and Bernhard O Palsson. Constraining the

metabolic genotype–phenotype relationship using a phylogeny of in silico methods.

Nature Reviews Microbiology, 10(4):291, 2012.

[18] Jürgen Zanghellini, David E Ruckerbauer, Michael Hanscho, and Christian Jun-

greuthmayer. Elementary flux modes in a nutshell: properties, calculation and

applications. Biotechnology journal, 8(9):1009–1016, 2013.

107



[19] Andrew Makhorin. Glpk (gnu linear programming kit), 2000. B B, 2014.

[20] Stefan Theussl and Kurt Hornik. Rglpk: R/GNU Linear Programming Kit Interface,

2017. R package version 0.6-3.

[21] Stefan Theussl. ROI.plugin.glpk: ’ROI’ Plug-in ’GLPK’, 2017. R package version

0.3-0.

[22] Anqi Fu and Balasubramanian Narasimhan. ECOSolveR: Embedded Conic Solver

in R, 2018. R package version 0.4.

[23] Florian Schwendinger. ROI.plugin.ecos: ’ECOS’ Plugin for the ’R’ Optimization

Infrastructure, 2017. R package version 0.3-0.
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[71]  Lukasz P Zieliński, Anthony C Smith, Alexander G Smith, and Alan J Robinson.

Metabolic flexibility of mitochondrial respiratory chain disorders predicted by com-

puter modelling. Mitochondrion, 31:45–55, 2016.

[72] Radhakrishnan Mahadevan, Jeremy S Edwards, and Francis J Doyle III. Dynamic

flux balance analysis of diauxic growth in escherichia coli. Biophysical journal,

83(3):1331–1340, 2002.

[73] Wolfgang Wiechert. 13c metabolic flux analysis. Metabolic engineering, 3(3):195–

206, 2001.

[74] Kai Zhuang, Mounir Izallalen, Paula Mouser, Hanno Richter, Carla Risso, Radhakr-

ishnan Mahadevan, and Derek R Lovley. Genome-scale dynamic modeling of the

competition between rhodoferax and geobacter in anoxic subsurface environments.

The ISME journal, 5(2):305, 2011.

112



[75] Jennifer L Reed. Shrinking the metabolic solution space using experimental

datasets. PLoS computational biology, 8(8):e1002662, 2012.

[76] Anthony P Burgard, Shankar Vaidyaraman, and Costas D Maranas. Minimal re-

action sets for escherichia coli metabolism under different growth requirements and

uptake environments. Biotechnology progress, 17(5):791–797, 2001.

[77] R Mahadevan and CH Schilling. The effects of alternate optimal solutions in

constraint-based genome-scale metabolic models. Metabolic engineering, 5(4):264–

276, 2003.

[78] Arne C Müller and Alexander Bockmayr. Fast thermodynamically constrained flux

variability analysis. Bioinformatics, 29(7):903–909, 2013.

[79] Christopher S Henry, Linda J Broadbelt, and Vassily Hatzimanikatis.

Thermodynamics-based metabolic flux analysis. Biophysical journal, 92(5):1792–

1805, 2007.

[80] Meric Ataman and Vassily Hatzimanikatis. Heading in the right direction:

thermodynamics-based network analysis and pathway engineering. Current opinion

in biotechnology, 36:176–182, 2015.

[81] Nathan D Price, Iman Famili, Daniel A Beard, and Bernhard Ø Palsson. Extreme

pathways and kirchhoff’s second law. Biophysical journal, 83(5):2879–2882, 2002.

[82] Jan Schellenberger, Nathan E Lewis, and Bernhard Ø Palsson. Elimination of

thermodynamically infeasible loops in steady-state metabolic models. Biophysical

journal, 100(3):544–553, 2011.

[83] Daniel A Beard, Shou-dan Liang, and Hong Qian. Energy balance for analysis of

complex metabolic networks. Biophysical journal, 83(1):79–86, 2002.

[84] Nathan E Lewis, Kim K Hixson, Tom M Conrad, Joshua A Lerman, Pep Charusanti,

Ashoka D Polpitiya, Joshua N Adkins, Gunnar Schramm, Samuel O Purvine, Daniel

Lopez-Ferrer, et al. Omic data from evolved e. coli are consistent with computed

optimal growth from genome-scale models. Molecular systems biology, 6(1):390,

2010.
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