401,941 research outputs found
Kernel methods in genomics and computational biology
Support vector machines and kernel methods are increasingly popular in
genomics and computational biology, due to their good performance in real-world
applications and strong modularity that makes them suitable to a wide range of
problems, from the classification of tumors to the automatic annotation of
proteins. Their ability to work in high dimension, to process non-vectorial
data, and the natural framework they provide to integrate heterogeneous data
are particularly relevant to various problems arising in computational biology.
In this chapter we survey some of the most prominent applications published so
far, highlighting the particular developments in kernel methods triggered by
problems in biology, and mention a few promising research directions likely to
expand in the future
Methods in Computational Biology
Modern biology is rapidly becoming a study of large sets of data. Understanding these data sets is a major challenge for most life sciences, including the medical, environmental, and bioprocess fields. Computational biology approaches are essential for leveraging this ongoing revolution in omics data. A primary goal of this Special Issue, entitled “Methods in Computational Biology”, is the communication of computational biology methods, which can extract biological design principles from complex data sets, described in enough detail to permit the reproduction of the results. This issue integrates interdisciplinary researchers such as biologists, computer scientists, engineers, and mathematicians to advance biological systems analysis. The Special Issue contains the following sections:•Reviews of Computational Methods•Computational Analysis of Biological Dynamics: From Molecular to Cellular to Tissue/Consortia Levels•The Interface of Biotic and Abiotic Processes•Processing of Large Data Sets for Enhanced Analysis•Parameter Optimization and Measuremen
A Molecular Biology Database Digest
Computational Biology or Bioinformatics has been defined as the application of mathematical
and Computer Science methods to solving problems in Molecular Biology that require large scale
data, computation, and analysis [18]. As expected, Molecular Biology databases play an essential
role in Computational Biology research and development. This paper introduces into current
Molecular Biology databases, stressing data modeling, data acquisition, data retrieval, and the
integration of Molecular Biology data from different sources. This paper is primarily intended
for an audience of computer scientists with a limited background in Biology
Essential guidelines for computational method benchmarking
In computational biology and other sciences, researchers are frequently faced with a choice between several computational methods for performing data analyses. Benchmarking studies aim to rigorously compare the performance of different methods using well-characterized benchmark datasets, to determine the strengths of each method or to provide recommendations regarding suitable choices of methods for an analysis. However, benchmarking studies must be carefully designed and implemented to provide accurate, unbiased, and informative results. Here, we summarize key practical guidelines and recommendations for performing high-quality benchmarking analyses, based on our experiences in computational biology
Statistical physics methods in computational biology
The interest of statistical physics for combinatorial optimization is not new, it suffices to think of a famous tool as
simulated annealing. Recently, it has also resorted to statistical inference to address some "hard" optimization problems, developing a new class of message passing algorithms. Three applications to computational biology are presented in this thesis, namely:
1) Boolean networks, a model for gene regulatory networks;
2) haplotype inference, to study the genetic information present in a population;
3) clustering, a general machine learning tool
Essential guidelines for computational method benchmarking
In computational biology and other sciences, researchers are frequently faced
with a choice between several computational methods for performing data
analyses. Benchmarking studies aim to rigorously compare the performance of
different methods using well-characterized benchmark datasets, to determine the
strengths of each method or to provide recommendations regarding suitable
choices of methods for an analysis. However, benchmarking studies must be
carefully designed and implemented to provide accurate, unbiased, and
informative results. Here, we summarize key practical guidelines and
recommendations for performing high-quality benchmarking analyses, based on our
experiences in computational biology.Comment: Minor update
Towards molecular systems biology of gene transcription and regulation
Ten years after the determination of the RNA polymerase 11 structure, the basic mechanism of mRNA synthesis during gene transcription is known. In the future, the initiation and regulation of transcription must be studied with a combination of structural biology, biochemistry, functional genomics, and computational methods. In this article, the efforts of our laboratory to move from an integrated structural biology of gene transcription towards molecular systems biology of gene regulation are reviewed
- …