2,195 research outputs found

    A Construction Kit for Efficient Low Power Neural Network Accelerator Designs

    Get PDF
    Implementing embedded neural network processing at the edge requires efficient hardware acceleration that couples high computational performance with low power consumption. Driven by the rapid evolution of network architectures and their algorithmic features, accelerator designs are constantly updated and improved. To evaluate and compare hardware design choices, designers can refer to a myriad of accelerator implementations in the literature. Surveys provide an overview of these works but are often limited to system-level and benchmark-specific performance metrics, making it difficult to quantitatively compare the individual effect of each utilized optimization technique. This complicates the evaluation of optimizations for new accelerator designs, slowing-down the research progress. This work provides a survey of neural network accelerator optimization approaches that have been used in recent works and reports their individual effects on edge processing performance. It presents the list of optimizations and their quantitative effects as a construction kit, allowing to assess the design choices for each building block separately. Reported optimizations range from up to 10'000x memory savings to 33x energy reductions, providing chip designers an overview of design choices for implementing efficient low power neural network accelerators

    A novel energy-driven computing paradigm for e-health scenarios

    Get PDF
    A first-rate e-Health system saves lives, provides better patient care, allows complex but useful epidemiologic analysis and saves money. However, there may also be concerns about the costs and complexities associated with e-health implementation, and the need to solve issues about the energy footprint of the high-demanding computing facilities. This paper proposes a novel and evolved computing paradigm that: (i) provides the required computing and sensing resources; (ii) allows the population-wide diffusion; (iii) exploits the storage, communication and computing services provided by the Cloud; (iv) tackles the energy-optimization issue as a first-class requirement, taking it into account during the whole development cycle. The novel computing concept and the multi-layer top-down energy-optimization methodology obtain promising results in a realistic scenario for cardiovascular tracking and analysis, making the Home Assisted Living a reality

    Enabling stream processing for people-centric IoT based on the fog computing paradigm

    Get PDF
    The world of machine-to-machine (M2M) communication is gradually moving from vertical single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organizations and people - A world of Internet of Things (IoT). The dominant approach for delivering IoT applications relies on the development of cloud-based IoT platforms that collect all the data generated by the sensing elements and centrally process the information to create real business value. In this paper, we present a system that follows the Fog Computing paradigm where the sensor resources, as well as the intermediate layers between embedded devices and cloud computing datacenters, participate by providing computational, storage, and control. We discuss the design aspects of our system and present a pilot deployment for the evaluating the performance in a real-world environment. Our findings indicate that Fog Computing can address the ever-increasing amount of data that is inherent in an IoT world by effective communication among all elements of the architecture

    Predictive maintenance of induction motors using ultra-low power wireless sensors and compressed recurrent neural networks

    Get PDF
    In real-world applications - to minimize the impact of failures - machinery is often monitored by various sensors. Their role comes down to acquiring data and sending it to a more powerful entity, such as an embedded computer or cloud server. There have been attempts to reduce the computational effort related to data processing in order to use edge computing for predictive maintenance. The aim of this paper is to push the boundaries even further by proposing a novel architecture, in which processing is moved to the sensors themselves thanks to decrease of computational complexity given by the usage of compressed recurrent neural networks. A sensor processes data locally, and then wirelessly sends only a single packet with the probability that the machine is working incorrectly. We show that local processing of the data on ultra-low power wireless sensors gives comparable outcomes in terms of accuracy but much better results in terms of energy consumption that transferring of the raw data. The proposed ultra-low power hardware and firmware architecture makes it possible to use sensors powered by harvested energy while maintaining high confidentiality levels of the failure prediction previously offered by more powerful mains-powered computational platforms

    Distributed Compressed Sensing of Sensor Data

    Get PDF

    End-to-End Optimization of Metasurfaces for Imaging with Compressed Sensing

    Full text link
    We present a framework for the end-to-end optimization of metasurface imaging systems that reconstruct targets using compressed sensing, a technique for solving underdetermined imaging problems when the target object exhibits sparsity (i.e. the object can be described by a small number of non-zero values, but the positions of these values are unknown). We nest an iterative, unapproximated compressed sensing reconstruction algorithm into our end-to-end optimization pipeline, resulting in an interpretable, data-efficient method for maximally leveraging metaoptics to exploit object sparsity. We apply our framework to super-resolution imaging and high-resolution depth imaging with a phase-change material: in both situations, our end-to-end framework computationally discovers optimal metasurface structures for compressed sensing recovery, automatically balancing a number of complicated design considerations. The optimized metasurface imaging systems are robust to noise, significantly improving over random scattering surfaces and approaching the ideal compressed sensing performance of a Gaussian matrix, showing how a physical metasurface system can demonstrably approach the mathematical limits of compressed sensing
    • …
    corecore