266 research outputs found

    Fusing Loop and GPS Probe Measurements to Estimate Freeway Density

    Full text link
    In an age of ever-increasing penetration of GPS-enabled mobile devices, the potential of real-time "probe" location information for estimating the state of transportation networks is receiving increasing attention. Much work has been done on using probe data to estimate the current speed of vehicle traffic (or equivalently, trip travel time). While travel times are useful to individual drivers, the state variable for a large class of traffic models and control algorithms is vehicle density. Our goal is to use probe data to supplement traditional, fixed-location loop detector data for density estimation. To this end, we derive a method based on Rao-Blackwellized particle filters, a sequential Monte Carlo scheme. We present a simulation where we obtain a 30\% reduction in density mean absolute percentage error from fusing loop and probe data, vs. using loop data alone. We also present results using real data from a 19-mile freeway section in Los Angeles, California, where we obtain a 31\% reduction. In addition, our method's estimate when using only the real-world probe data, and no loop data, outperformed the estimate produced when only loop data were used (an 18\% reduction). These results demonstrate that probe data can be used for traffic density estimation

    A Review of Traffic Signal Control.

    Get PDF
    The aim of this paper is to provide a starting point for the future research within the SERC sponsored project "Gating and Traffic Control: The Application of State Space Control Theory". It will provide an introduction to State Space Control Theory, State Space applications in transportation in general, an in-depth review of congestion control (specifically traffic signal control in congested situations), a review of theoretical works, a review of existing systems and will conclude with recommendations for the research to be undertaken within this project

    Dynamic model-based techniques for the detection of incidents on freeways

    Get PDF
    "March, 1979."Bibliography: leaves 56-59.U.S. Department of Transportation Contract No. DOT-/OS-60137A.S. Willsky ... [et al.]

    Detection of abrupt changes in dynamic systems

    Get PDF
    Some of the basic ideas associated with the detection of abrupt changes in dynamic systems are presented. Multiple filter-based techniques and residual-based method and the multiple model and generalized likelihood ratio methods are considered. Issues such as the effect of unknown onset time on algorithm complexity and structure and robustness to model uncertainty are discussed

    Study of real-time traffic state estimation and short-term prediction of signalized arterial network considering heterogeneous information sources

    Get PDF
    Compared with a freeway network, real-time traffic state estimation and prediction of a signalized arterial network is a challenging yet under-studied field. Starting from discussing the arterial traffic flow dynamics, this study proposes a novel framework for real-time traffic state estimation and short-term prediction for signalized corridors. Particle filter techniques are used to integrate field measurements from different sources to improve the accuracy and robustness of the model. Several comprehensive numerical studies based on both real world and simulated datasets showed that the proposed model can generate reliable estimation and short-term prediction of different traffic states including queue length, flow density, speed and travel time with a high degree of accuracy. The proposed model can serve as the key component in both ATIS (Advanced Traveler's Information System) and proactive traffic control system
    corecore