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Abstract

In this paper we discuss an approach to the detection of
incidents on freeways. Our techniques are based on the use of
a macroscopic dynamic model describing the evolution of spatial-
average traffic variables (velocities, flows, and densities)
over sections of the freeway. With such a model as a starting
point we develop two incident detection algorithms based on the
multiple model and generalized likelihood ratio techniques. We
also describe a new and very simple system for processing raw
data from presence-type vehicle detectors to produce estimates
of the aggregate variables, which are then in turn used as the
input variables to the incident detection algorithms. Simulation
results using a microscopic simulation of a two-lane freeway
indicate that: (1) our algorithms are robust to the differences
between the dynamics of actual traffic and the aggregated dynamics
used to design the detection systems; and (2) our methods appear
to work as well as existing algorithms in heavy traffic conditions
and work better in moderate to light traffic. Areas for future
work are outlined at the end of the paper.
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I. Motivation and Overview

The problem addressed in this paper is the development of a systematic

approach to the detection of freeway incidents (accidents, stalled cars,

debris on the road, etc.). The goal of our work was the design of

algorithms that: (1) directly use data from conventional presence detec-

tors which provide binary information at each point in time, indicating

the presence or absence of a vehicle directly over the detector; and

(2) minimize human operator requirements in detection, classification, and

isolation of incident events. The consideration of this problem is of

obvious importance both for the efficient dispatching of emergency ser-

vices and for the design of advanced technology traffic control systems,

which require accurate knowledge of existing traffic conditions in order

to provide effective on-line control decisions.

Our work represents a new approach to the traffic incidents detection

problem in that we have based our analysis on a dynamic model that des-

cribes the temporal evolution of key traffic variables (flows, densities,

velocities) representing aggregate traffic conditions over links of the

freeway. Having such a model, we can then bring into play a variety of

modern system-theoretic procedures for estimation, detection, and

identification.

Prior to our investigations, several researchers [1-8] had studied

the problem of reliable incident detection on freeways and had developed

a number of automatic detection systems. All of these techniques directly

utilize information available from presence detectors. While many of
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these algorithms take into account the temporal evolution and temporal

or spatial correlation of observables derived from detector data, none

of these techniques involve the systematic utilization of nonlinear

differential equations that relate key traffic variables. In the most

comprehensive study of incident detection systems of this type (8],

Payne, et.al., have indicated that these techniques have false alarm

problems when traffic compression waves occur. Intuitively, the use of

dynamic models that capture such phenomena should help to alleviate

this problem. In addition, we have found that previously developed

algorithms do not do well in detection capacity-reducing incidents in

light or moderate traffic. Again the use of dynamics should be of use in

extracting information concerning such incidents in which the direct

effect on the observables may not be dramatic.

Motivated by the preceding observations and by the successful studies

of dynamic models for traffic behavior [9,40] and of freeway traffic control

based on such models [10-13], we have considered the problem of incident

detection based on the model proposed by Payne [9,40], which is reviewed

in Section II. Several key issues arise immediately when one considers

such an approach:

(a) The incident detection techniques in [1-8] are, in general, ex-

tremely simple to implement and are directly amenable to decentralized

implementation. Thus, any increase in complexity that may arise in

implementing a model-based algorithm must be. justified by an accompanying

improvement in overall system performance.
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(b) The incident detection algorithms in [1-81 operate directly

on quantities available from the output of loop detectors. On the

other hand, the Payne model [40] describes the evolution of aggregate

variables. Hence, in order to implement the model-based incident de-

tection algorithms, we must develop a method for estimating the aggregate

variables when provided with loop detector data.

(c) The aggregate or macroscopic dynamic model in [9,40] clearly

represents an approximation to real traffic behavior. Thus, any in-

cident detection algorithm based on this model must be insensitive to

the discrepancies between actual traffic behavior and that predicted by

the dynamic model.

With these issues in mind, we have developed incident detection

systems using two different dynamic model-based hypothesis testing

techniques, the multiple model (MM) and generalized likelihood ratio

(GLR) algorithms. The MM and GLR methods are briefly reviewed in

Section III and IV, and the testing of these algorithms using direct

measurements of the aggregate variables is discussed in Section V.

The next step in our study concerned the problem of using presence

detector data to produce estimates of the aggregate variables needed as

inputs for our detection algorithms. The nature of presence detector

data is discussed in Section VI, and in Section VII we develop an

extremely simple system for the estimation of traffic variables (speci-

fically density and flow) from presence detector data. We feel that
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this system is of interest in itself. In Section VIII we combine this

system with our detection algorithms and describe the results of

microscopic simulations in which presence detector data were generated

and used.

The results described in this paper indicate that dynamic model-

based detection algorithms do offer the potential for performance

improvements over existing algorithms. A number of questions remain to

be examined, perhaps the most critical of which is a precise assessment

of how much improvement is possible at what cost in terms of increased

detection system complexity. Issues such as this and others related to

the implementation of MM- or GLR - based incident detection algorithms

are presented in Section IX. Because of limitations on space, some of

the details of our work have been omitted. The interested reader may

find them in references [22-25].

II. The Aggregate Traffic Model

The detection algorithms we have developed are based on the

equations proposed by Payne [9,40] for the dynamics of freeway traffic flow.

This model captures basic aspects of both the fluid flow and car-following

models of traffic dynamics. The variables in the dynamic model are

spatial mean velocities Cv, in miles per hour), densities (p, in cars/mile/

lane), and flows (4, in cars/hour/lane) over links of the freeway between

presence detector locations. This yields a spatially discretized set of

coupled equations.
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where $i = v.p.. Here subscripts are used to denote the link number with
1 11

which each variables is associated, Sx. is the length of link i, W.
1 1

represents acceleration noise (used to model normal variations in ve-

locities due to the statistical behavior of individual drivers), and v

and T are parameters introduced by Isaksen and Payne to model driver

response characteristics. The v e(p) term represents the driver's desired

equilibrium speed as a function of the density of traffic. A number of

shapes for this curve have been proposed, and we have used a form which

yields the correct properties at high and low density and yields

reasonable maximum capacities. Our techniques could be easily adapted

e e
to any other choice for the v -curve. The general form of our v -curve

depicted in Figure 2.1, is determined by 3 free parameters; v , the
free

equilibrium velocity under light traffic conditions; free, the density

at which the equilibrium velocity begins to decrease; and pjam, the

maximum density of cars that the freeway can hold. The curve between

pFree and pjam is logarithmicFree jam
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e v Zn (P. /PI
v (P) = Vfree n[j am/ (2.3)

n [p jam/ free]

P <P<Pj
free - P jam

As we will discuss in a moment, the parameters of the v -curve can be

adjusted on each link (thus the notation v. in (2.2)) to reflect freeway

conditions on that link.

Assuming we are modelling M links of the freeway (i=l is the upstream

link, i=M is the downstream link), we must modify the equations (2.1),

(2.2) on the end links to account for boundary conditions. Specifically,

on link 1 we use the equations

dpl Flow - vl (2.4)

dt - x (2.4)dt - x1

it- T T p1
For or 2 F w s (225)

For our simulations, "Flow" was assumed to be a Poisson arrival process

with a specified mean value, which was used to control the overall level

of traffic. For link M, we assume a zero density gradient across the

last boundary, leading to the equation

e
dvM (V -VM ) + v (PM)-v M + WM

M= M (2.6)
dt 1 T

(6X2M-l +XM



Links 1 and M essentially establish the boundary conditions, and thus

our primary concern is with results on the M-2 internal links.

Note that the specification of v e(p) implicitly defines the capacity

as the maximum allowable steady-state flow on the freeway. Specifically,

using the definition

~e(p) = pve (p )
(2.7)

we obtain the "fundamental diagram of traffic" depicted in Figure 2.2.

From this curve, we see that by adjusting Vfree or Pfree we can

parametrize the capacity (as defined above) on each link of the freeway.

Specifically, some algebra yields capacity as a function of the parameters:

Capcity = jPJamvfree

e n (Pfree/Pj am

Having this basic model, one can then consider the modelling of abrupt

changes in the model that correspond to particular incidents or other

inhomogeneities and problems that one wishes to distinguish from

capacity-reducing events. Specifically, we have modeled three types of

events for each link of the freeway:

(a) A capacityreducing incident on link i. This was modeled as

a decrease in the size of Pfree on the ith link, leading to the

appropriate decrease in capacity (e.g., a one-third reduction for loss

of one lane on a three-lane freeway).

(b) A pulse of traffic, lasting for a specified duration, entering

link i. This model was included for two reasons. First, one may want
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Figure 2.2 THE FUNDAMENTAL DIAGRAM OF TRAFFIC.
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to detect large disturbances caused by, say, a sporting event letting

out, in order to adjust a freeway control algorithm. Secondly, and

most importantly, normal random fluctuations of traffic are a possible

cause of false alarms for an incident detection system (e.g., the com-

pression wave problems discussed in Section I), and our inclusion of

this pulse model was based on a desire to determine if our detection

methods were capable of distinguishing such events from real incidents.

(c) Sensor failures. As mentioned in Section I, the macroscopic-

model-based detection systems we have developed assume that one has

measurements of Pi and vi on each link. At this level, a sensor failure

is defined as any condition such that the sensed density or velocity

differs systematically from the actual value of the variable being

measured. We will say more about sensor failure models when we discuss

the MNM and GLR methods in the next two sections.

For our simulation studies, we have considered a 6-link freeway,

where, under normal conditions, each link was assumed to have the same

number of lanes. The parameters Pfree and vfree were set at 23.1 cars/

mile/lane and 55 miles per hour which corresponds to a capacity of

2000 cars/hour/lane. The variable FLOW was taken as a mean flow (which

was varied in our study) plus a zero mean fluctuation of variance

2
50 (cars/hour/lane) . In our initial macroscopic simulation of the MM

and GLR detection algorithms we used a reduction of capacity by 1/3



(from 2000 to 1333 cars/hour/lane) to model an incident causing the

loss of one lane an a three-lane highway. This corresponds to a re-

duction in PF to 7.4. However, our later tests with microscopic

simulations led us to modify this model, since an incident in one lane

does effect traffic in other lanes through the lateral lane switching of

vehicles away from the lane on which the incident occurred. The value

of Pfre finally chosen was .03 cars/mile/lane. This value translates

into a capacity of 500 cars/mile/lane -- a reduction of 75% of capacity.

For the pulse of traffic model on link i, a valued of 1600 cars/

hour/lane was used as an input flow to the density equation on link i.

Finally, we have assumed that our measurements of Pi and v. are corrupted

by white noise. Initially for the macroscopic studies, the standard

deviations of these noises were taken to be 3.33 cars/mile/lane and

5 m.p.h., respectively. Later microsimulations, directly using presence

detector data, led to larger values for these noises: 10 cars/mile/lane

and 28 m.p.h. (see Section VII).

Finally, both the MM and GLR methods require the use of state

estimation techniques. As the dynamics of traffic (2.1), (2.2) are

highly nonlinear, an approximate filtering technique has been used. Let

our state be denoted by xCt):

x' (t) = fp (t),v (t,, .,PM(t),VM(ti] (2.8)

and our measurement vector by z(tk)

(tk) = x(tk ) + Nttk) (2.9)
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where the components of N are assumed to be independent white noise

processes.

The estimation technique we have used is the nominal linearized

Kalman filter. Let x(tltk) be our estimate of x(t) given

Zk = {Z(tl),...,z(tk)}. Then, given x(tkltk), we predict ahead to obtain

X(tk+lltk) by integrating (2.1), (2.2) assuming zero noise and an initial

condition of x(tkltk). The new measurement z(tk+l) is then incorporated

according to

x(tk+lltk+l) = X(tk+lltk) + H[z(tk+l) - x(tk+lk (2.10)

where the gain H is determined off-line by solving for the Kalman filter

gain for the traffic model linearized about some equilibrium mean flow-

density-velocity point. This linearization has been done about many

operating point. Comparing the Kalman gains from a wide variety of

such points revealed very little variation with flow. Thus, it ap-

pears that one set of gains adequately handles most levels of flow. It

should be mentioned that little work has been done under congested con-

ditions and a second set of gains may be needed under this scenario.

However, in spite of using only a single set of gains good performance

has resulted under widely varying traffic flow conditions.

III. The Multiple Model Method

The Multiple Model (MM) method for system identification has been

considered by several researchers, and we refer the reader to [26-281
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and the references cited therein for a detailed development of the

technique. The method addresses the problem of identifying a linear-

Gaussian system

x(t) = Ax(t) + wCt) (3.1)

Z(tk ) = Cx(tk) + v(t ) (3.2)

given the measurements Zk and a set of hypothesized models (i=l,...,N)

i. (t) = Aix (t) + w. (t) (3.3)

z(tk ) = C.x (tk ) + v.i (t (3.4)

The output of the MM method is the set Pi (t) of conditional proba-

bilities for the validity of each of the models given Zk. A Kalman filter

is implemented for each of the N models and the measurement residuals

i (tk+l) = Z(tk+l) - Cixi(tk+lltk)

from each filter are used to update the pi (tk) according to the equation

Fi (Yi tk+l))Pi (tk

Pi t k+l) N (3.6)
EFj (rj t ))pj (tk )

where Fi is the probability density for yi(tkl ) assuming the ith model

is correct. If hypothesis i is true, then yi is a white, zero mean,

Gaussian sequence with covariance
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Elyi(tk)Y(t k = Vi(tk) (3.7)

which can be determined off-line as part of the Kalman filter cal-

culations (see (16]). Thus

! -1
exp 2 i (tk+l) 'Vi (tk+l)¥i(tk+l)}

Fit ¥i)(t et) = (it (3.8)
[ (2T)m det (Vi(tk+ ))] 1/2

where m=dim y,. Essentially, the MM method consists of a set of one-

step predictors, each based on a different model for the observed data.

The probabilities, which are functions of the prediction errors

Yi' i=l,...,N, reflect the relative performance of each of these

predictors.

The MM method has been adapted for use with the Payne model as

described in the preceding section. A number of comments need to be

made about this design and about the MM method in general:

(1) We have implemented a nominal-linearized Kalman filter* for each

of our hypotheses:

For the normal model, the dynamics (2.1),(2.2)
used the normal ve-curve on each link.

For the model representing an incident on link
i, the dynamics (2.1),e(2.2) are modified by
replacing the normal v -curve on link i with
the reduced capacity curve.

* From now on we will call all our filters "Kalman filters." It should
be understood that they are all nominal linearized Kalman filters.



For the model representing a pulse of traffic
on link i, the dynamics (2.1),(2.2) are mo-
dified by including an input flow in the equa-

tion for Pi'

Theoretically, one set of Kalman gains is needed for each hypothesis.

However, although there are differences among the various models, the

Kalman gains are very similar. Thus, the same Kalman gain has been used

for the Kalman filters for each of these models.

(2) In addition to the above, there are also a set of models and

associated filters representing sensor failures. We have modeled a

failure in our ability to measure a particular state variable by modifying

the measurement equation (2.9).:

z(tk ) = Cx(tk) + N(tk ) (3.8)

where C is diagonal, with l's along the diagonal except for a zero in

the location corresponding to the particular state measurement which

is hypothesized to be faulty. Note that (3.8) corresponds to modeling a

failure as a measurement that contains only noise and is uncorrelated

with the state. For each of these models, we have used the same filter

gains as for the normal model except for zeroing the gains on the

measurement hypothesized to be faulty.

(3) The residuals from the Kalman filters are used together with (3.6)

to compute the probabilities for each hypothesis. Note that (3.6) was

derived assuming that

(a) the actual system and all of the hypotheses are
linear-Gaussian;

Mb one of the hypotheses matches the true system;



and

Cc) the true system does not switch from one
hypothesis to another Ccorresponding, for
example, to the onset of an incident).

None of these assumptions is valid, and thus some comments are in order.

Assumption (a) essentially addresses the problem of the utility of the

nominal-linearized Kalman filter -- i.e. assuming the dynamic model is

correct, is it valid to postulate that the filter residuals will be zero-

mean, white, with precomputed covariance? The second assumption implies

that (under assumption (a)) the residuals from one of the filters will

be white and zero mean. In practice this is never precisely the case,

but our experience has been that neither of these assumption has caused

great problems. A number of explanations can be given to account for

this, but there are no general results that predict when these filters

will work well. Based on our experience it is our feeling, however, that,

while the estimates from the filters may be sensitive to linearization

and model uncertainties, the performance of a detector based on the

residuals from these filters may be far more robust. Basically, a dis-

crete decision process should work well, as long as the models for the

several hypotheses are sufficiently different, When this is true, the

effect on the observables of the differences in the models will be

greater than the effect of the approximations introduced in applying the

MM approach. Intuitively, this can be thought of as a signal-to-noise ratio

problem, where the effects of the assumptions add uncertainty. In this
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sense, assumptions (a) and (b) will limit the minimum size incident

that can be detected, where size is to be interpreted as the magnitude

of the effect of the incident on the dynamics. For example, we may be

able to detect a stalled car, which causes severe and localized capacity

reduction, but the smaller effect caused, say, by debris on the road

may not be detectable. Also, as we will see, the effect of an incident

increases in magnitude as the level of traffic increases. Thus, one

might expect these to be a minimum flow level, such that it is impossible

to detect incidents in traffic lighther than that level. We will see

precisely this effect in our simulations.

It is worth noting that assumption (b) can lead to difficulties

if none of the hypothesized models are near the true dynamics. We will

point out several problems of this type which lead to particular issues

that must be considered in modifying our MM system to obtain improved

performance.

Assumption (c) can lead to difficulties in the ability of MM to

detect incidents as they occur -- i.e. before the occurrence of an

incident on link i, the probability for this hypothesis may become so

small that the system will not be able to respond quickly after the

incident has occurred. (this is the obliviousness problem discussed in

[301). In order to overcome this problem, one could implement a MM

system that included models that switched from normal traffic dynamics

to the various incident conditions, but the problem with this is that

one would have to implement a growing bank of filters to account for



the different times at which the switch could occur. Therefore we have

not adopted this approach. Rather, the remedy employed in our work is a

relatively common one -- a lower bound is set on any probability (we have

used .01). As we will see, this leads to good response characteristics.

We note also that the Kalman filter based on a pulse of traffic on link

i is unstable if no such pulse is there (the Kalman filter has a constant

driving term in the Pi equation not present in the true system).

Thus, if such a pulse were to develop at some point in time, the filter

estimate for this hypothesis might already be so much in error that the

MM system might not detect the pulse. To overcome this, whenever the

probability of a pulse model falls below .05, the estimate produced by

this filter is reset to the estimate for the most probable model.

IV. The Generalized Likelihood Ratio Method

The Generalized Likelihood Ratio (GLR) method for detecting abrupt

changes in dynamic systems is described in [173 for a specific case and

in [30] for a larger class of problems. The basic idea is the following.

We assume that a dynamic system under normal conditions is described by

the model

x(t) = Ax(t) + w(t) (4.1)

z(tk) = Cx(tk) + v(tk ) (4.2)
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A Kalman filter based on this model is implemented. We then hypothesize

that an abrupt change (the tth of, say, N possible abrupt changes) in

the system occurs at time 8 and that this change can modeled by an additive

term in (4.1) or (4.2). In this case linearity yields the following

model for the residuals of the normal model filter

y(t) = ag(t 1, 8) + y(7t) (4.3)

where y(t) is the normal zero-mean, white residual and g (t,8) is the

precomputable deterministic signature describing the bias induced in y

at time t by a type Q abrupt change occurring at time e. The parameter

a is an unknown scalar magnitude for the abrupt change (e.g., the size of

a bias in a sensor, the effect of a stalled car on the residuals, which,

as we've stated, may depend on the flow level).

Given the model (4.3) for each of the N hypotheses, we compute a

set of correlations of the actual filter residuals with the various

signatures

k

di(tk 8) = i gi(tm, )V (t )y(t ) (4.4)i ' m'eI m m m
m=l

The generalized log-likelihood ratio for a type i incident occurring'at

time e then is

d2 (tk, 

h i(tk,'0) = 4 5)
Si (tk ,)ik
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where

k -1
Si(tk',) = I gi(tm,')V - (tm)g(t m

which can be precomputed. If we define

i(tk) = max i(tk) (4.6)

we then have a measure of the likelihood that a type i incident has

occurred sometime in the past. A variety of decision rules can then

be devised based on these quantities (see, for example, [25,31]).

The basic idea behind the GLR method is that distinct incident modes

lead to distinct, systematic trends in the prediction errors produced

by the Kalman filter. The GLR algorithm compares the observed residuals

to the precomputed signatures for these systematic trends and from this

comparison produces measures of the likelihood that each hypothesized

incident type has occurred.

The GLR algorithm as described above has been adapted for use with

the Payne model. Again a number of comments are in order:

C1) In this case we have implemented a single nominal-linearized

Kalman filter based on the normal dynamics (2.1), (2.2).

(2) Since the true system and the Kalman filter are nonlinear, in prin-

ciple the decomposition of the filter residuals as in (4.3) is

not valid. However, we assume a decomposition of this form and

thus must calculate the incident signatures, which correspond to
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to the deterministic response to an incident of the true system-

normal mode filter combination. The nonlinearity of the system

and filter necessitated the computation of these signatures via

simulations: the macroscopic model and normal model Kalman filter

were simulated without any stochastic effects in the dynamics or

measurements, and, for each incident type, the model (2.1),(2.2)

was chosen to correspond to the particular incident. (e.g., a

reduced capacity v -curve on link i for the link i incident

hypothesis). The resulting filter residuals constituted the sig-

nature for that incident type. Note that this approach would yield

the correct signatures in the linear case. The models used for

capacity reducing incident and traffic pulses were the same as

those used in the MM method. Sensor failures, however, were

modeled by the development of a bias in one component of z

z(tk) = x(tk) + N(t) + c(t k) + e(tk,4.7)

where a is the unknown bias size, e is the time at which the failure

occurs, ei is the ith standard basis vector, and a(t,O) is the unit

step (=0 for t<8, =1 for t>8).

(3) As with the MM algorithm, the GLR system is based on several as-

sumptions that do not hold in the application to incident detection.

We have already commented on the effect of nonlinearities on the

decomposition of the residuals into a signature component and a

white noise part. Similarly, modelling errors imply that none
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of the hypotheses are precisely correct. As we discussed in

the preceding section, the issue then becomes one of signal-

to-noise: is the effect of the incident on the observables

significantly larger than the effect of the approximations and

uncertainties.

(4) Note that, unlike the MM algorithm, the GLR method explicitly

considers the shifting of the system from normal to incident

conditions at an unknown time. Thus, the obliviousness problem

of the MM method is not encountered here. The price one pays

for this, however, is the calculation of (4.4) for a number of

hypothesized times 8. In principle we should calculate i. (tk,0)

for 8=tl, .,t k -- a growing computational load. We have employed

a standard method for overcoming this -- we compute Z. only for a

"sliding window" of the most recent past tk M e tk . With a

sampling time tk - tk-l = 5 seconds, we have kept a 250 second

window, (51 points).

V. Simulations of the Macroscopic Detection Systems

The first two sets of tests of the GLR and MM systems were designed

to determine the performance characteristics of these methods and their

robustness in the presence of both modeling errors and the effects of the

linearizations involved in their design. For each of these sets of tests,

the GLR and MM systems were designed about a single, fixed operating
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point with fixed values for all parameters, such as the assumed

measurement noise covariances, the postulated effects of different in-

cidents on traffic dynamics, etc. The parameter values used were

those given in Section II. In addition, the linearized Kalman filters

were designed about a high mean flow operating point of 1667 cars/hour/

lane.

The first set of tests involved the use of data obtained from

simulating the model (2.1), (2.2) using parameter values that differed

from those assumed in the MM and GLR designs. The parameters that were

varied were

The actual mean flow onto link 1. This was varied
from a low flow of 900 cars/hour/lane up to capacity
(2000 cars/hour/lane), a very large range.

m The sensor noise variances. Significantly larger
values for these variances were used in some
of the experiments.

. The initial estimation error. Large values were
used for this in order to observe the transient
behavior of the algorithms.

The performance of both systems was encouraging:

Detection performance was uniformly good over the
entire range of actual mean flows used (900 to 2000
cars/hour/lane). No false alarms were observed,
no incorrect detections (e.g. declaring a pulse on
link 3 when the true event was an incident on link
4) occurred, and the response time of the systems
was small. Figures 5.1, 5.2 illustrate typical

* Note that this mean flow not only affects the gain, but it also is a
driving term in the prediction step of the filters, as it enters in as
a driving term in the equation for P1.
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performance of the GLR and MM systems. The value
of £ indicated in Figure 5.2 and in later figures
is 16. Under all of the assumptions used in the
derivation of the GLR method (such as the whiteness
of the residuals),this threshold implies a false
alarm probability at any instant of time of less
than .0002.

Performance is somewhat degraded when the actual
measurement variances are a factor of 16 larger
than nominal. No false alarms were observed,
and all incidents were correctly identified with,
however, an increased detection delay (compare
Figures 5.3 and 5.4 with 5.1 and 5.2).

Large initial estimation errors cause only tran-
sient effects on GLR and MM. Performance is
excellent after the initial start-up.

These tests, while indicating a certain level of robustness of the

GLR and MM systems, do not provide information about system robustness to

the details of the Payne model. To provide this type of information, we

have used a microscopic traffic simulation [15]. This program

is based on the St. John car-following equations [14] and

can be used to simulate traffic under almost any conditions. The program

simulates two lanes of flow, operates in discrete time and offers the

following features:

(a) a variety of vehicle and driver types can be modelled

(b) presence detectors can be placed as desired

Cc) on-ramp and input flow rates can be specified

Cd) accidents can be simulated by stopping a vehicle at

any desired time and location.
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Because the simulation is based on a microscopic model, the

position, speed, acceleration, driver type and vehicle type for each

vehicle on the road are known and available in the program. Thus, it

is possible to compute the density and average velocity of traffic over

links of the simulated freeway. We have done this in order to generate

measurements Cwhich we have then corrupted with noise) of the aggregate

variables used in the GLR and MM algorithms. These data were then fed

into the detection systems. The following are the conclusions that can

be drawn from this study:

· Both the GLR and MM systems performed well in
-detecting incidents down to flow levels of 900
cars/hour/lane. This gives us an idea of the
fundamental limitations of our algorithms --
at flows less than this the various noise sources
and approximations are stronger than the "signal"
due to the incident.

T· he GLR approach has some difficulties in dis-
tinguishing incidents from sensor biases.
We will discuss this problem in Section IX.
See Figures 5.5, 5.6 for typical MM and GLR
responses.

Short-term spatial inhomogeneities in traffic
cause transient responses in the GLR and MM
systems. Figures 5.7, 5.8 are for a sim-
ulation in which two slowly moving vehicles
disrupt traffic flow. As expected, this looks
like a "traveling incident". This could be

alleviated by a persistence requirement on
the probabilities or log-likelihood or by in-
corporating a traveling incident model for MM
and signature for GLR.
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Thus, while some questions are raised by these simulations, the

basic conclusion of this study is that the MM and GLR algorithms appear

to be insensitive to the details of the dynamic models used in their

design and to the precise parameter values used. On the other hand, the

data used in these simulations is not realistic: in the first set we

used a macroscopic simulation, while in the second we used a microscopic

simulation and actually computed the aggregate variable measurements

needed by counting cars on each link and averaging their velocities.

What is still missing is a system for taking presence detector data and

producing estimates of Pi and v. that can then be used as inputs to the

GLR and MM systems. This is the topic of the next few sections.

VI. The Nature of Presence Detector Data

In this section we briefly discuss the type of information contained

in the outputs of presence detectors. A detailed discussion is contained

in [23]. The ideal output of a detector at any time is 0 if no car is

above the detector and 1 if a car is present. Hence the time history

of a detector output is a sequenceof unit pulses, whose pulse width is

the time that an individual car is over the detector. From such data,

one can directly compute two quantities of importance in estimating

aggregate traffic variables and in detecting incidents:

(1) Car count data -- the number of cars passing a given detector

station in a prescribed interval of time. This directly yields flow
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information -- i.e. cars/hour/lane.

(2) Occupancy data -- the percentage of time that cars are over

the given detector during the prescriped time interval. This is related

to traffic density.

These quantities may contain errors due either to imperfections in the

detectors or to a car being counted twice, by detectors in adjacent lanes,

as the car switches lanes (see t23]).

Intuitively, when a capacity reducing blockage occurs somewhere

on a freeway, the density of traffic upstream of the incident location

increases, while it decreases downstream. Hence, one can consider

designing incident detection algorithms that look for low occupancy at

the downstream detector and high occupancy at the upstream detector. In

fact, this is the basis of many of the algorithms discussed [1-8]. Some

24 algorithms, all based on simple functionsof flow and occupancy cros-

sing calibrated thresholds, were studied by Payne, et.al., (8]. One

particular algorithm of this type, the so-called Algorithm #7, has

emerged as the most widely accepted incident detection system. This

algorithm employs an occupancy difference test along the lines of the

one mentioned above, together with a persistence requirement (to reduce

false alarms) and a test at adjacent detectors to reduce the number of

alarms caused by traveling compression waves. The details of this

algorithm are described in (8] and in [23].

We have used our microscopic simulation, equipped with presence

detectors at half-mile intervals to generate a number of scenarios
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for the testing of Algorithm #7 and of the systems described in the next

two sections. These results indicate that Algorithm #7 detects incidents

well in heavy traffic but has difficulty in detecting incidents in low

or moderate traffic. In our simulations this algorithm was unable to

detect incidents in flows below 1400 cars/hour/lane. In fact, in [23]

it is argued that the probability is .5 that Algorithm #7 will be able

to detect (with arbitrarily large detection delay) an incident at a flow

of 1300 cars/hour/lane. This is not a light traffic condition. In fact,

for the v -curve described in Section II, this flow corresponds to a high

enough density (> p ) so that the equilibrium velocity is 48 miles/hr.
free

Although the above comments indicate a limitation to the performance

of Algorithm #7, it should be remembered that: (1) this algorithm

directly uses presence detector outputs (averaged, typically, over 20-60

second time intervals); and (2) the algorithms is extremely simple to

implement. In the next two sections we develop a method for using

presence detector data with the MM and GLR systems. In Section IX we

discuss the complexity issue.

VII. The Estimation of Aggregate Variables from Presence Detector Data

As described in the preceding section, a presence detector provides

time-averaged information about traffic conditions at a fixed spatial

location. On the other hand, the variables in the models on which the

GLR and MM systems are based are spatial-averaged quantities at fixed

times. In this section we discuss the problem of processing data of
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the first type to produce estimates of variables of the second kind.

A number of authors [32-35] have considered density estimation systems.

The simpliest of these is discussed by Nahi and Trivedi [32,33]. Their

recursive estimation system is based upon counting vehicles as they

enter and exit the link. Given a good initial density estimate, Nahi's

method showed the ability to track the density very closely in spatially

homogeneous conditions. No results were presented for inhomogeneous

conditions. The issue Qf imperfect vehicle count information was not

considered. The performance with poor initial estimates was also not

discussed. Furthermore, an explicit homogeneity assumption was made in

the development of the system. This type of assumption is clearly not

valid for incident conditions and can be expected to lead to.large

estimation errors.

Motivated by the results in [32,33] we have developed a new link

density estimation system that is very simple and also overcomes the

limitations of Nahi's system. Consider a single link of a freeway with

detectors in each lane at both ends of the link. Let A be the time

interval over which the temporal averaging of loop detector data is per-

formed, and let k denote the discrete-time index --e.g, p(k) denotes

the spatial average density at time kA. Let
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C (k) = the number of cars counted in the time interval
U

Ck-1)A ¢ t • k4 at the upstream detector station

Cd k) = the number of cars counted in the time interval

(k-1)A < t < kA at the downstream detector station

OCC (k) = the occupancy measured at the upstream detector
U

station over the time interval (k-l)A < t < kA

OCC (k) = the occupancy measured at the downstream detector

station over the time interval (k-l)A < t < kA.

First note that C (k)/A is a direct measure of the flow (cars per unit
U

time) at the upstream detector, and Cd(k)/A is an analogous measure at the

downstream detector. Thus, a reasonable estimate of flow on the link

is the average of these quantities:

C (k) + Cd k)
(k) = u (7.1)

Also note that the difference C (k) - Cd(k) measures the change in the

number of cars on the link during the time interval (k-l)A < t < kA.

Hence we directly obtain the following equation for the evolution of

link density

C (k) - Cd (k) A
p(k) - p(k-!) = + wCk-l) = u k--L) + wu(k-l ) (7.2)

h

where h is the length of the link and w(k-l) is a noise process used to

model the possible discrepancies between the actual change in the number
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of cars on the link and the number obtained from car count information.

This discrepancy is caused by a detector missing a car or a car being

counted by detectors in two different lanes at the same station (see

[23] for details). The calculation of the variance Q of w(k-l) is dis-

cussed in [23], and a value of Q on the order of .1 cars/mile/lane was

found to be valid over a wide range of traffic conditions.

Equation (7.2) implies that we can use car count data to keep track

of changes in density, but by itself such data cannot reduce any initial

uncertainty in p, and the accumulation over time of the noise process

w(k) will lead to further deterioration in our estimate of density.

Thus we would like to use occupancy data to provide a direct measurement

of density.

Intuitively, if traffic is spatially and temporally homogeneous,

one should be able to relate temporal averages to spatial averages.

Using results of this type [36-38], it is shown in [23] that under

spatially homogeneous conditions density is proportional to occupancy.

The constant of proportionality is

a = 528 E 1 (7.3)

where Z is the length (in feet) of a vehicle picked at random, d is the

effective length of the loop detector, which is assumed known , and the

* Detectors have nonzero length. In addition, as discussed in [23], de-

tectors respond to vehicles in a somewhat larger region. In general, d is

a function of car length, Z (see [231).
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expectation in (7.3) is with respect to a given distribution of

vehicle lengths. See [23] for a discussion of the calculation of a.

Based on a specific distribution for L and a value of d=8 feet, we obtain

the value used in our studies:

a = 17.95 (7.4)

This analysis leads to the following processing algorithm. Let

OCC (k) + OCCd (k)
z~k) = u d (7.5)z(k) = 

2ct

Then, under spatially homogeneous conditions, we have

z(k) = p(k) + T(k) (7.6)

where n(k) is an unbiased sequence of errors, which are assumed to be

white with known variance R. Results in [23] indicate that the variance

of T(k) should be taken in the range from 50 to l00 cars/mile/lane.

Given the model (7.2), (7.6) we can design a one-dimensional Kalman

filter as a density estimation system that works well under spatially

homogenous conditions

p(k+llk) = El-)]p(klk-l) + Hz(k) + u(k) (7.7)

where the filter gain is given by
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HR + 2+4 (7.8)
Q + 2R+ Q +4QR

and the steady-state variance of-the residual

r(k) = z(k) - pQ(kk-1) (7.9)

is given by

Q + 2R + 
(2+4R0)V= (7.10)

This system has been studied using our microscopic simulation, and,

under normal conditions, large initial errors in the estimate of p can

be reduced significantly within one minute with measurements taken every

5 seconds. This is a major improvement over previously developed

techniques. Figure 7.1 depicts a typical simulation result.

Recall that the underlying assumption behind (7.6) is the homogeneity

of traffic. Clearly any inhomogeneity, such as an incident, may cause

the relationship (7.6) to fail. This leads directly to the following

idea: can we monitor the residuals (7.9) in order to detect such

inhomogeneities and to compensate the estimate (7.7) to correct for

errors in (7.6)? To this end, we consider a simple model for the

breakdown of (7.6) due to the development of spatial inhomogeneities --

the onset of a bias of unknown size v:

z(k) = p(k) + TnIk) + va(k-Q) (7.11)
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(where Ca(m)=l, m>0, =0, m<Q).

Using (7.2), (7.11) we can devise a simple density estimation system

for use under any traffic conditions. Design a Kalman filter as in (7.7).

Then, following the discussion of the GLR algorithm in Section IV, the

residuals (7.9) can be written as

r(k) = vg(k-0) + r(k) (7.12)

where r(k) is a zero mean, white process with variance given by (7.10)

The signature g(k-e) can be easily calculated in. this case as

g(j) = (l-H)j (7.13)

We now can implement a GLR-based algorithm (not to be confused with the

incident detection algorithm of Section IV). We compute

d(k,) = V i g(j-e)r(j) (7.14)
j=e

d2 (k,8)
l(k,e) = s(k,6) (7.15)

where

1 2 _______ _2_+1)

sj) = V g (k) = -l-H (7216)
._n 7l-fl-r 16V
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Here sCj) is a measure of the amount of information available in r(e).

r(8+l),...,r(e+j) about a bias initiated at time 8. Note from (7.13)

that the signature g decreases geometrically, and it is easy to see

that (7.16) reaches a limiting value

s(in) = (7.17)
V[1- C-HY) ]

The implications of these observations is that there is no reason

to calculate d(k,e) for k-8 too large, since r(k) contains essentially

no information about possible biases occurring at time e. Also, for

k-e too small, s(k-e) will be small, and we will not have accumulated

enough data to make a useful decision. In [23] these calculations are

carried out for the numerical values cited earlier in this section.

Based on these, we chose the window

k-13 < e < k-9 (7,18)

for the calculations (7.14), (7.15). In this range s(j)= .0, and we

used this constant value in our implementation of (7.15).

Let

e(k) = arg max (kr,e) (7.19)
k-13<8<k-9



-45-

The decision rule used was

Bias Detected
Z(k,86k)) > £ (7.20)

Normal conditions

where the threshold s is chosen to provide a reasonable tradeoff between

false alarms and correct detections (see [17,23,25,31] for treatments

of the evaluation of GLR performance). Note that the probability of

detection depends upon the size v of the bias. In [23] a tradeoff analysis

is carried out to determine detection performance as a function of postulated

size for V and values of s. Also, we refer the reader to [23] for a

discussion of expected sizes for v under different traffic conditions. The

results of this analysis are that in low or medium flows, values of v on

the order of 5 to 20 vehicles/mile/lane) can be expected to occur following

an incident, while values as large as 80 can occur in heavy traffic. Thus,

one can set £ at a higher value in heavy traffic, reducing false alarms

while maintaining a high correct detection probability. Note that flow-

scheduled thresholds are easily implemented, as the estimate of ~ given

by (7.1) is good. In our simulations, we found that thresholds ranging

from 2.5 at low flow levels to 3.6 in heavy flow produced good detection

performance.

Following the detection of a bias, we want to compensate the filter

estimate p to correct for the effect of the bias. In a manner similar to

the calculation of g(k-e), we can calculate the bias Pb in p(klk) caused
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by a measurement bias V occurring at time e.

PCk) = [l-Cl-H) =1 F(k-8)V C7.21)

Then, given that a detection is made at time k and given the most

likely time p from (7.19) and the most likely magnitude of the measurement

bias

V= d...) (7.22)
s(k-G)

we obtain an estimate of Pb:

pb = F(k- )v (7.23)

which we use to correct our estimate

P(knew k) p(klk)old - b (7.24)new -P old- Pb

Having done this and having compensated the measurements by subtracting

v from all incoming measurements, we are in a position to detect further

changes, such as the return to homogeneous conditions,

Figure 7.2 indicates the typical performance of this system. In

this simulation an incident introduces spatial inhomogeneities. Note

that the GLR system does not remove the entire bias in one step. This

* See [17J for the derivation of (7.22).
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is not only due to errors in the estimate V but also can be traced to

the fact that the model (7.1l) is a very simple idealization of the

relationship between z and p under inhomogeneous conditions. Yet even

with this simple model and the resulting very simple estimation - GLR

system (it is one-dimensional), the performance shown in Figure 72 is

extremely encouraging. The system has self-correcting characteristic

that allows it to track density under all conditions that we have

simulated.

Finally, recall that the GLR and MM systems require measurements

of both p and v. Using the approximation*

v = - (7.25)
p

we can obtain an estimate of velocity

v(k) = (7.26)

ptCkIk)

This estimate is not nearly as- good as the estimates of $ and p, due to

the errors in (7.25). The problem of estimating average velocity is

a difficult one. Some issues involved in this problem are discussed in

[23], and in Section IX of this paper.

* Note that for a compressible fluid (7,25) is an exact relationship if

we use point values for v, $, and p. It is only approximate if we use

spatial averages·,
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VIII. The GLR and MM Algorithm Using Presence Detector Data

The system described in the preceding section for computing estimates

of spatial mean densities and velocities was combined with the GLR and

MM algorithms, with the estimates produced by the former being used as

the measurements for the latter. This combined system was then tested

using the same microscopic simulations as described in Section V, although

in this case detector data were used directly. As discussed in Section II,

the GLR and MM systems were modified slightly by using larger values for

measurement noise variances to account for the errors in the estimates

of p and v provided by our detector data pre-processing algorithm.

As one might expect the additional errors introduced by the

increased uncertainties in our derived measurements of p and v lead to

a slight increase in the minimum flow at which incidents can be detected.

However, these algorithms still detected incidents in flows down to

1000 cars/hour/lane. Recall the Algorithm #7 required flows of at least

1400 cars/hour/lane in our simulations.

Aside from this increase in minimum flow required for detection, the

simulation results using presence detector data are extremely similar

to the results obtained using aggregate measurements directly computed

from the microsimulat;on. Compare Figures 8.1, 8.2 with Figures 5.5, 5.6.
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IX. Discussion

In this paper we have described the application of modern estimation

and detection techniques to the problem of detecting incidents on

freeways. The algorithms we have developed have shown promise of pro-

viding performance improvements over existing algorithms. Moreover,

the extremely simple system we have developed for estimating aggregate

traffic variables from presence detector data should be of interest in

traffic surveillance applications other than incident detection. We

feel that the work described herein represents a good example of the

successful interfacing of advanced systems techniques with the constraints

and non-ideal nature of a real world problem.

While the techniques that we have developed have yielded

encouraging results, a number of further questions must be addressed:

(1) The system described in Section VII provides good estimates
of p but rather poor ones of v. Alternate methods for es-
timating velocity should be investigated. For example, in
[20] it is shown that the actual presence detector signal
(which is not simply O's and l's) can be used to estimate
vehicle length. Having vehicle length, one can estimate
vehicle velocity by measuring the length of time that the
vehicle is over the detector. These individual velocities
can be averaged to form a time-averaged estimate of
velocity at a fixed spatial location. Then, much as dis-
cussed in Section VII, under homogeneous conditions we
can use the results in [23,36] to transform this quantity
to an estimate of spatial-average velocity at a fixed time.
The development of a system as in Section VII that will
also work under inhomogeneous conditions remains for the
future.

C2) Alternatively, to overcome the problem of the poor
estimate of v, we could consider using p and 4 as the
basic variables in the design of the GLR and MM systems.
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This would require some design modifications but might
lead to a more effective detection algorithm.

(3) One problem that must be attacked is that of sensor
failures. As discussed in Sections V and VIII, the GLR
techniques has some difficulties in distinguishing in-
cident hypotheses and some of the sensor bias models.
The main point involved in alleviating this problem is
the observation that macroscopic sensor failure models
have very little to do with the actual failure of a presence
detector. Thus, one might expect better performance
from a system that includes more realistic models.
For example, if a presence detector on link i fails,
it is reasonable to expect the "measurements" of both

Pi and vi to be faulty. Thus, instead of considering

these separately, we might want to consider an hypothesis
representing such a simulataneous failure. Examining
Figures 5.6 and 8.2, we see that it is only the log-
likelihood for a link 4 density bias that is comparable
to that for the actual incident hypothesis. Since a
link 4 velocity bias is less likely, it seems reasonable
to expect that an algorithm based on a simultaneous
failure model would have an easier time distinguishing
this from an incident.

(4) The idea expressed in (3) above may very well work,
but whatever is done along those lines, one always
will have the problem that macroscopic sensor failure
models do not accurately represent actual physical
phenomena. Thus it might be preferable to perform
sensor failure detection directly on the presence
detector data. Fail to zero or full-on failures are
not difficult to detect using simple logic directly
on detector outputs. Also, it may be possible to
design a GLR system, much as that discussed in
Section VII, for the detection of sensor failures.

(5) Work is needed in the development of useful detection
rules, based on the MM probabilities or GLR-log-
likelihood ratios. Persistence requirements (i.e.

i or A. remaining above a threshold for a period of

time) are clearly needed, and such a feature will eli-
minate many problems such as the transient response
of GLR and MM in the simulation containing two slowly
moving vehicles (see Figures 5.7,5.8). In addition,
we may wish to consider flow-scheduled thresholds,
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as were used in our aggregate variable estimation system.
Here, one could use higher thresholds in high flows to
avoid false alarms caused, for example, by compression
waves. One would not be sacrificing very much in terms
of detection performance, as the effect of an incident
in heavy traffic is much larger than in light traffic.
Conversely, a lower threshold in light traffic would
improve detection performance without any drastic ef-
fect on the false alarm rate, since large amplitude
spatial inhomogeneities do not occur under normal con-
ditions when traffic is light. The tradeoff in terms
of false alarm probability vs. detection delay must
be considered for any such decision rule.

(6) The inclusion of additional hypotheses (and the de-
letion of some of the present ones should be inves-
tigated for both the GLR and MM systems. For
example, we may wish to have a "traveling incident"
model. Basically, we should aim to include hypotheses
for events that we want to detect plus hypotheses for
events, such as slowly moving vehicles, which may
confuse the detection algorithms unless accounted for.
Clearly further thought and experimentation is needed
in order to determine a preferred set of hypotheses.

(7) Computational issues in the implementation of the MM
and GLR systems must be considered. For example, we
may wish to consider a dual-mode system, in which the
presence detector data processing system is used to
signal an initial alarm (i.e. a GLR detection), and
the GLR and MM systems are only engaged subsequent to
such a detection. Also, the decentralization of our
systems must be considered. The technique for con-
verting presence detector data to measurements of ag-
gregate variables is already decentralized (only
adjacent detector stations need communicate with each
other) and computationally very simple. The decentra-
lization of the Kalman filters, using adjacent data
can also be accomplished (see [13]), and the GLR
algorithm we have developed is decentralized in that
an incident on link i leads to non-zero signatures
only on links i-l,i, and i+l, (see [25]). A similar
decentralization should be possible for the MM algorithm.
At this juncture, it appears that the GLR system may
offer substantial computational advantages over the MM
algorithm in that only a single Kalman tracking filter
is required, and the basic GLR calculations, consisting
of correlating observed tracking errors with several
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innovations signatures, may be performed efficiently
using fast correlatiQon-convolution method 1391,

(8) Finally, after the issues mentioned above have been
addressed, the MM and GLR systems should be tested
on real traffic data. It is clear that these
algorithms are somewhat more complex than existing
systems, and such tests will provide the basis for
deciding if this increase in complexity is justified
by a commensurate improvement in detection performance.
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