41 research outputs found

    Large-Scale Analysis of the Accuracy of the Journal Classification Systems of Web of Science and Scopus

    Full text link
    Journal classification systems play an important role in bibliometric analyses. The two most important bibliographic databases, Web of Science and Scopus, each provide a journal classification system. However, no study has systematically investigated the accuracy of these classification systems. To examine and compare the accuracy of journal classification systems, we define two criteria on the basis of direct citation relations between journals and categories. We use Criterion I to select journals that have weak connections with their assigned categories, and we use Criterion II to identify journals that are not assigned to categories with which they have strong connections. If a journal satisfies either of the two criteria, we conclude that its assignment to categories may be questionable. Accordingly, we identify all journals with questionable classifications in Web of Science and Scopus. Furthermore, we perform a more in-depth analysis for the field of Library and Information Science to assess whether our proposed criteria are appropriate and whether they yield meaningful results. It turns out that according to our citation-based criteria Web of Science performs significantly better than Scopus in terms of the accuracy of its journal classification system

    The Research Space: using the career paths of scholars to predict the evolution of the research output of individuals, institutions, and nations

    Full text link
    In recent years scholars have built maps of science by connecting the academic fields that cite each other, are cited together, or that cite a similar literature. But since scholars cannot always publish in the fields they cite, or that cite them, these science maps are only rough proxies for the potential of a scholar, organization, or country, to enter a new academic field. Here we use a large dataset of scholarly publications disambiguated at the individual level to create a map of science-or research space-where links connect pairs of fields based on the probability that an individual has published in both of them. We find that the research space is a significantly more accurate predictor of the fields that individuals and organizations will enter in the future than citation based science maps. At the country level, however, the research space and citations based science maps are equally accurate. These findings show that data on career trajectories-the set of fields that individuals have previously published in-provide more accurate predictors of future research output for more focalized units-such as individuals or organizations-than citation based science maps

    Accelerated numerical simulations of a heaving floating body by coupling a motion solver with a two-phase fluid solver

    Get PDF
    © 2018 Elsevier Ltd This paper presents a study on the coupling between a fluid solver and a motion solver to perform fluid–structure interaction (FSI) simulations of floating bodies such as point absorber wave energy converters heaving under wave loading. The two-phase fluid solver with dynamic mesh handling, interDyMFoam, is a part of the Computational Fluid Dynamics (CFD) toolbox OpenFOAM. The incompressible Navier–Stokes (NS) equations are solved together with a conservation equation for the Volume of Fluid (VoF). The motion solver is computing the kinematic body motion induced by the fluid flow. A coupling algorithm is needed between the fluid solver and the motion solver to obtain a converged solution between the hydrodynamic flow field around and the kinematic motion of the body during each time step in the transient simulation. For body geometries with a significant added mass effect, simple coupling algorithms show slow convergence or even instabilities. In this paper, we identify the mechanism for the numerical instability and we derive an accelerated coupling algorithm (based on a Jacobian) to enhance the convergence speed between the fluid and motion solver. Secondly, we illustrate the coupling algorithm by presenting a free decay test of a heaving wave energy converter. Thirdly and most challenging, a water impact test of a free falling wedge with a significant added mass effect is successfully simulated. For both test cases, the numerical results obtained by using the accelerated coupling algorithm are in a very good agreement with the experimental measurements.keywords: Modelling and Simulation,Computational Theory and Mathematics,Computational Mathematics location: Ghent Univ, Ghent, BELGIUMstatus: publishe

    Avoiding obscure topics and generalising findings produces higher impact research

    Get PDF
    Much academic research is never cited and may be rarely read, indicating wasted effort from the authors, referees and publishers. One reason that an article could be ignored is that its topic is, or appears to be, too obscure to be of wide interest, even if excellent scholarship produced it. This paper reports a word frequency analysis of 874,411 English article titles from 18 different Scopus natural, formal, life and health sciences categories 2009-2015 to assess the likelihood that research on obscure (rarely researched) topics is less cited. In all categories examined, unusual words in article titles associate with below average citation impact research. Thus, researchers considering obscure topics may wish to reconsider, generalise their study, or to choose a title that reflects the wider lessons that can be drawn. Authors should also consider including multiple concepts and purposes within their titles in order to attract a wider audience
    corecore