180,603 research outputs found

    Comparison of Theoretical and High-Fidelity Aerostructural Solutions

    Get PDF
    As contemporary aerostructural research in aircraft design trends toward high-fidelity computational methods, aerostructural solutions based on theory are often neglected or forgotten. In fact, in many modern aerostructural wing optimization studies, the elliptic lift distribution is used as a benchmark in place of theoretical aerostructural solutions with more appropriate constraints. In this paper, we review several theoretical aerostructural solutions that could be used as benchmark cases for wing design studies, and we compare them to high-fidelity solutions with similar constraints. Solutions are presented for studies with 1) constraints related to the wing integrated bending moment, 2) constraints related to the wing root bending moment, and 3) structural constraints combined with constraints on either wing stall or wing loading. It is shown that for each set of design constraints, the theoretical optimum lift distribution consistently shows excellent agreement with high-fidelity results. It follows that theoretical optimum lift distributions can often serve as a good benchmark for higher fidelity aerostructural wing optimization methods. Moreover, a review of solutions for the optimum wingspan and corresponding drag reveals important insights into the effects of viscosity, aeroelasticity, and compressibility on the aerodynamic and structural coupling involved in wing design and optimization

    Comparison of Theoretical and Multi-Fidelity Optimum Aerostructural Solutions for Wing Design

    Get PDF
    As contemporary aerostructural research for aircraft design trends toward high-fidelity computational methods, aerostructural solutions based on theory are often neglected or forgotten. In fact, in many modern aerostructural wing optimization studies, the elliptic lift distribution is used as a benchmark in place of theoretical aerostructural solutions with more appropriate constraints. In this paper, we review several theoretical aerostructural solutions that could be used as benchmark cases for wing design studies, and we compare them to high-fidelity solutions with similar constraints. Solutions are presented for studies with 1) constraints related to the wing integrated bending moment, 2) constraints related to the wing root bending moment, and 3) structural constraints combined with operational constraints related to either wing stall or wing loading. It is shown that for each set of design constraints, the theoretical optimum lift distribution is consistently in excellent agreement with high-fidelity results. It follows that theoretical optimum lift distributions can often serve as a good benchmark for higher fidelity aerostructural wing optimization methods. Moreover, a review of solutions for the optimum wingspan and corresponding drag reveals important insights into the effects of viscosity, aeroelasticity, and compressibility on the aerodynamic and structural coupling involved in wing design and optimization

    Structural design using equilibrium programming formulations

    Get PDF
    Solutions to increasingly larger structural optimization problems are desired. However, computational resources are strained to meet this need. New methods will be required to solve increasingly larger problems. The present approaches to solving large-scale problems involve approximations for the constraints of structural optimization problems and/or decomposition of the problem into multiple subproblems that can be solved in parallel. An area of game theory, equilibrium programming (also known as noncooperative game theory), can be used to unify these existing approaches from a theoretical point of view (considering the existence and optimality of solutions), and be used as a framework for the development of new methods for solving large-scale optimization problems. Equilibrium programming theory is described, and existing design techniques such as fully stressed design and constraint approximations are shown to fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated

    On the Sample Size of Random Convex Programs with Structured Dependence on the Uncertainty (Extended Version)

    Full text link
    The "scenario approach" provides an intuitive method to address chance constrained problems arising in control design for uncertain systems. It addresses these problems by replacing the chance constraint with a finite number of sampled constraints (scenarios). The sample size critically depends on Helly's dimension, a quantity always upper bounded by the number of decision variables. However, this standard bound can lead to computationally expensive programs whose solutions are conservative in terms of cost and violation probability. We derive improved bounds of Helly's dimension for problems where the chance constraint has certain structural properties. The improved bounds lower the number of scenarios required for these problems, leading both to improved objective value and reduced computational complexity. Our results are generally applicable to Randomized Model Predictive Control of chance constrained linear systems with additive uncertainty and affine disturbance feedback. The efficacy of the proposed bound is demonstrated on an inventory management example.Comment: Accepted for publication at Automatic

    A minimum weight with stress constraints FEM approach for topology structural optimization problems

    Get PDF
    WCCM V, Fifth World Congress on Computational Mechanics, July 7–12, 2002, Vienna, Austria[Abstract] Sizing and shape structural optimization problems are normally stated in terms of a minimum weight approach with constraints that limit the maximum allowable stresses and displacements. However, topology structural optimization problems have been traditionally stated in terms of a maximum stiffness (minimum compliance) approach. In this kind of formulations, the aim is to distribute a given amount of material in a certain domain, so that the stiffness of the resulting structure is maximized (the compliance, or energy of deformation, is minimized) for a given load case. Thus, the material mass is restricted to a predefined percentage of the maximum possible mass, while no stress or displacement constraints are taken into account. In this paper we analyze and compare both approaches, and we present a FEM minimum weight with stress constraints (MWSC) formulation for topology structural optimization problems. This approach does not require any stabilization technique to produce acceptable optimized results, while no truss-like final solutions are necessarily obtained. Several 2D examples are presented. The optimized solutions seem to be correct from the engineering point of view, and their appearence could be considered closer to the engineering intuition than the traditional truss-like results obtained by means of the widespread maximum stiffness (minimum compliance) approaches.Ministerio de Ciencia y Tecnología; TIC-98-0290Xunta de Galicia; PGIDT-99MAR1180

    The Maximum Flow Problem for Oriented Flows

    Get PDF
    In several applications of network flows, additional constraints have to be considered. In this paper, we study flows, where the flow particles have an orientation. For example, cargo containers with doors only on one side and train coaches with 1st and 2nd class compartments have such an orientation. If the end position has a mandatory orientation, not every path from source to sink is feasible for routing or additional transposition maneuvers have to be made. As a result, a source-sink path may visit a certain vertex several times. We describe structural properties of optimal solutions, determine the computational complexity, and present an approach for approximating such flows

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners
    • …
    corecore