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Abstract
Sizing and shape structural optimization problems are normally stated in terms of a minimum weight
approach with constraints that limit the maximum allowable stresses and displacements.
However, topology structural optimization problems have been traditionally stated in terms of a maxi-
mum stiffness (minimum compliance) approach. In this kind of formulations, the aim is to distribute a
given amount of material in a certain domain, so that the stiffness of the resulting structure is maximized
(the compliance, or energy of deformation, is minimized) for a given load case. Thus, the material mass
is restricted to a predefined percentage of the maximum possible mass, while no stress or displacement
constraints are taken into account.
In this paper we analyze and compare both approaches, and we present a FEM minimum weight with
stress constraints (MWSC) formulation for topology structural optimization problems. This approach
does not require any stabilization technique to produce acceptable optimized results, while no truss-like
final solutions are necessarily obtained. Several 2D examples are presented. The optimized solutions
seem to be correct from the engineering point of view, and their appearence could be considered closer
to the engineering intuition than the traditional truss-like results obtained by means of the widespread
maximum stiffness (minimum compliance) approaches.
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1 Introduction

Around four decades ago Schmidt [1] proposed a revolutionary idea that gave rise to a new discipline:
engineers, as a general rule, try to design minimum cost objects or systems that must withstand the max-
imum unfavorable estimated loads; therefore, (optimum) design could be systematically stated in terms
of constrained minimization problems; then, these problems could be solved by means of mathematical
programming techniques implemented in high speed digital computers. Sizing and shape structural opti-
mization problems have been thereafter mainly written in terms of minimum weight formulations, with
non linear constraints that limit the maximum allowable stresses and displacements [2, 3, 4].

However, since Bendsøe and Kikuchi proposed the basic concepts [5] in 1988, most of topology structural
optimization problems have been routinely stated in terms of minimum compliance (maximum stiffness)
approaches. In this kind of formulations, one tries to distribute a given amount of material within a given
domain, so that the stiffness of the resulting structure is maximized (the compliance is minimized) for a
given load case [6]. The traditional minimum compliance formulations offer some obvious advantages,
since one avoids dealing with a large number of highly non-linear constraints. This could be considered
crucial, if one takes into account the large number of design variables that is inherent to topology opti-
mization. However, one can also argue that this gives rise to several important drawbacks. Thus, multiple
load cases can not be considered, different solutions are obtained for different restrictions on the amount
of material, and the final design could be unfeasible in practice, since no constraints are imposed on
stresses and displacements. Moreover, the minimum compliance problem is said to be ill-posed, since
the solution oscillates as the discretization refinement is increased [7, 8], although this difficulty can be
partially overcome by introducing porous materials.

The SIMP (solid isotropic material with penalty) formulation [7, 8, 9] is the most widely used minimum
compliance approach, so far. In this formulation, one introduces a non-dimensional design variable per
element (the relative density, that is the one’s complement of the porosity), which value ranges from0
to 1. The aim is to compute the design variables (the amount of porous material that must be distributed
within each element) in such a way that a highly non-linear objective function is minimized (the compli-
ance, or energy of deformation), while a single linear constraint is satisfied (the total amount of material
is limited, by the so called filling factor, to occupy a predefined percentage of the domain volume). The
SIMP formulation is easy to implement in a FEM framework. Moreover, several explicit procedures have
been proposed to iterate the relative density of the elements [7, 8], what facilitates solving the minimiza-
tion problem. However, a spread porous material distribution is frequently considered an unwanted result,
and numerical instabilities do often occur. Therefore, additional penalization and stabilization techniques
must still be employed [7, 8]. On the other hand, an image filter is generally applied, in order to enable
the final interpretation of the results. These normally resemble truss-like structures [7].

But one could question these results, since the final design depends on so many arbitrary parameters
(filling factor, degree of discretization, applied penalization and stabilization techniques, image filter,
etc.) One could even say that the final results are somehow impelled to resemble truss-like structures,
since this is what one expects to obtain as a satisfactory final design. On the other hand, the final design
could be unfeasible in practice, since the formulation disregards the stress and displacement fields. And,
obviously, the stiffest design that can be built with a given amount of material will normally differ from
the cheapest (in cost of material) design that can support a set of given load cases.

Next, we present a FEM minimum weight with stress constraints (MWSC) approach for topology struc-
tural optimization problems [8, 10, 11].
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2 The Structural Analysis Model

2.1 The Structural Analysis Problem

Let Ωo be a domain in the material space originally occupied by a certain deforming body. Due to given
external loads the body is deformed onto a different domainΩ. Thus, every arbitrary pointP o in Ωo is
carried into a different positionP in Ω. Letrrrrrrrrrrrrrro andrrrrrrrrrrrrrr be the material coordinates vectors of pointsP o and
P , respectively. Our aim is to compute the displacements

uuuuuuuuuuuuuu(rrrrrrrrrrrrrro) = rrrrrrrrrrrrrr(rrrrrrrrrrrrrro)− rrrrrrrrrrrrrro, (1)

which are the key to obtain the deformationsεεεεεεεεεεεεεε(rrrrrrrrrrrrrro) and the stressesσσσσσσσσσσσσσσ(rrrrrrrrrrrrrro). In linear elasticity with small
displacements and small deformations the corresponding expressions are

εεεεεεεεεεεεεε = LLLLLLLLLLLLLLuuuuuuuuuuuuuu, σσσσσσσσσσσσσσ = DDDDDDDDDDDDDDεεεεεεεεεεεεεε. (2)

Let the external loads be the forcesbbbbbbbbbbbbbb(rrrrrrrrrrrrrro) per unit volume (of the body) in the domainΩo, andtttttttttttttt(rrrrrrrrrrrrrro) per
unit area on the surfaceΓo

σ. In these terms, the structural analysis problem can be written as [12, 13]

Find uuuuuuuuuuuuuu ∈ Hu such that a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) = (wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo + (wwwwwwwwwwwwww, tttttttttttttt)Γo
σ

∀wwwwwwwwwwwwww ∈ Hw

being a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) =
∫∫∫

Ωo

(LLLLLLLLLLLLLLwwwwwwwwwwwwww)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuu) dΩ,

(wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo =
∫∫∫

Ωo

wwwwwwwwwwwwwwTbbbbbbbbbbbbbb dΩ, (wwwwwwwwwwwwww, tttttttttttttt)Γo
σ

=
∫∫

Γo
σ

wwwwwwwwwwwwwwT tttttttttttttt dΓ,

(3)

where the trial functionsuuuuuuuuuuuuuu and the test functionswwwwwwwwwwwwww are required to satisfy the essential boundary condi-
tions (prescribed displacements) and their corresponding homogeneus boundary conditions, respectively.

2.2 The Finite Element Numerical Model

As a general rule, it will not be possible to obtain the exact solution of the above stated problem. Hence,
we will try to approximate the exact solution in a finite-dimensional context. Thus, we replace the func-
tion spacesHu andHw by their respective finite dimension subspacesHh

u andHh
w. Let uuuuuuuuuuuuuuh andwwwwwwwwwwwwwwh be

the discretized trial and test functions in the above mentioned subespaces. Letuuuuuuuuuuuuuup be a trial function
that satisfies the essential boundary conditions. And let{φi(rrrrrrrrrrrrrro)} and{wj(rrrrrrrrrrrrrro)} be conveniently selected
bases of discretized trial and test functions in the corresponding subespacesHh

u andHh
w, verifying the

homogeneus boundary conditions of our problem. In this terms we can write [12, 13]

uuuuuuuuuuuuuuh(rrrrrrrrrrrrrro) = uuuuuuuuuuuuuup(rrrrrrrrrrrrrro) +
N∑

i=1

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi(rrrrrrrrrrrrrro)ααααααααααααααi, ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi(rrrrrrrrrrrrrro) = φi(rrrrrrrrrrrrrro)IIIIIIIIIIIIII3,

wwwwwwwwwwwwwwh(rrrrrrrrrrrrrro) =
N∑

j=1

WWWWWWWWWWWWWW j(rrrrrrrrrrrrrro)ββββββββββββββj , WWWWWWWWWWWWWW j(rrrrrrrrrrrrrro) = wj(rrrrrrrrrrrrrro)IIIIIIIIIIIIII3.

(4)

In a FEM formulation the unknownααααααααααααααi is the nodal displacements vector of node numberi. Moreover,
the domainΩo is discretized in such a way that

Ω̄o =
nelem⋃
e=1

Ēe, Ee1

⋂
Ee2 = ∅ ∀e1 6= e2, (5)
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beingEe the so-called finite elements. On the other hand, in solid mechanics one normally resorts to a
Galerkin type formulation, by taking the same base for both, the trial and the test functions. Thus,

wj(rrrrrrrrrrrrrro) = φj(rrrrrrrrrrrrrro). (6)

Therefore, the FEM numerical model of structural analysis can be written as

Find αααααααααααααα = {ααααααααααααααi}, i = 1, . . . , N such that
N∑

i=1

KKKKKKKKKKKKKKjiααααααααααααααi = ffffffffffffff j , j = 1, . . . , N

being KKKKKKKKKKKKKKji = a(ΦΦΦΦΦΦΦΦΦΦΦΦΦΦj ,ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi), ffffffffffffff j = (ΦΦΦΦΦΦΦΦΦΦΦΦΦΦj , bbbbbbbbbbbbbb)Ωo + (ΦΦΦΦΦΦΦΦΦΦΦΦΦΦj , tttttttttttttt)Γo
σ
− a(ΦΦΦΦΦΦΦΦΦΦΦΦΦΦj , uuuuuuuuuuuuuu

p).

(7)

The required terms can be computed on an element by element sequence. Thus,

KKKKKKKKKKKKKKji =
nelem∑
e=1

KKKKKKKKKKKKKKe
ji, ffffffffffffff j =

∫∫
Γo

σ

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦT
j tttttttttttttt dΓ +

nelem∑
e=1

ffffffffffffffe
j , (8)

being the element contributions

KKKKKKKKKKKKKKe
ji =

∫∫∫
Ee

(LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦj)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦi) dΩ, ffffffffffffffe
j =

∫∫∫
Ee

(
ΦΦΦΦΦΦΦΦΦΦΦΦΦΦT

j bbbbbbbbbbbbbb− (LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦj)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuup)
)

dΩ. (9)

Once the solutionαααααααααααααα to problem (7) is found, we can compute at any pointrrrrrrrrrrrrrro ∈ Ωo the aproximations

uuuuuuuuuuuuuuh(rrrrrrrrrrrrrro) = uuuuuuuuuuuuuup(rrrrrrrrrrrrrro) +
N∑

i=1

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi(rrrrrrrrrrrrrro)ααααααααααααααi, εεεεεεεεεεεεεεh(rrrrrrrrrrrrrro) = LLLLLLLLLLLLLLuuuuuuuuuuuuuuh(rrrrrrrrrrrrrro), σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro) = DDDDDDDDDDDDDDεεεεεεεεεεεεεεh(rrrrrrrrrrrrrro). (10)

3 MWSC Formulation

3.1 The Structural Analysis Problem with Relative Density

Let the domainΩo be occupied by a porous material. Letρ(rrrrrrrrrrrrrro) be the relative density of the material
(one’s complement of the porosity, which adimensional value must range from0 to 1) at pointPPPPPPPPPPPPPP o of
material coordinatesrrrrrrrrrrrrrro. For a given distribution of (porous) material, defined by the relative density field
ρ(rrrrrrrrrrrrrro), our aim is to compute the displacements (1) and the associated deformations and stresses (2). We
assume again the linear elasticity hypothesis, what implies small displacements and small deformations.

Let dΩ be the volume of a differential region in the vicinity of pointP o. By definition, the volume
occupied by the porous material within the differential region will beρ(rrrrrrrrrrrrrro)dΩ. Therefore, the structural
analysis problem (3) can be written as [8]

Given ρ(Ωo) find uuuuuuuuuuuuuu ∈ Hu such that a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) = (wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo + (wwwwwwwwwwwwww, tttttttttttttt)Γo
σ

∀wwwwwwwwwwwwww ∈ Hw

being a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) =
∫∫∫

Ωo

(LLLLLLLLLLLLLLwwwwwwwwwwwwww)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuu) ρ dΩ,

(wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo =
∫∫∫

Ωo

wwwwwwwwwwwwwwTbbbbbbbbbbbbbb ρ dΩ, (wwwwwwwwwwwwww, tttttttttttttt)Γo
σ

=
∫∫

Γo
σ

wwwwwwwwwwwwwwT tttttttttttttt dΓ.

(11)

Notice that, in comparison with the original statement (3), the modifications are reduced to taking into
account porosity effect in the integration. In fact, once the displacements are known, the deformation and
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stress fields are computed with the same expressions, independently of the actual material distribution.
However, we must exclude the case in which the relative densitity is locally null, since the concepts of
displacement, deformation and stress become meaningless.

It is worthy to reflect on the physical meaning of the stressσσσσσσσσσσσσσσ(rrrrrrrrrrrrrro) computed by means of expressions
(2). It really represents the stress tensor of the deforming body. However, we recall that in the vicinity of
each point there are probably regions occupied by material, as much as empty ones. Therefore, if we try
to analyze the forces equilibrium in a finite subdomain, we should operate with the so-called effective
stress, by multiplying the stressσσσσσσσσσσσσσσ(rrrrrrrrrrrrrro) by the relative densityρ(rrrrrrrrrrrrrro).

3.2 The Finite Element Numerical Model with Relative Density

Let ρe be the relative density of element numbere, what is assumed constant within the element. Let
ρρρρρρρρρρρρρρ = {ρe} (e = 1, . . . , nelem) be the relative densities vector, that will constitute the design variables of
the topology optimization problem. For a givenρρρρρρρρρρρρρρ, the structural analysis problem to be solved is:

Find αααααααααααααα(ρρρρρρρρρρρρρρ) such that
N∑

i=1

KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ)ααααααααααααααi(ρρρρρρρρρρρρρρ) = ffffffffffffff j(ρρρρρρρρρρρρρρ), j = 1, . . . , N, (12)

The required terms can be computed on an element by element sequence. Thus

KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ) =
nelem∑
e=1

KKKKKKKKKKKKKKe
ji(ρe), ffffffffffffff j(ρρρρρρρρρρρρρρ) =

∫∫
Γo

σ

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦT
j tttttttttttttt dΓ +

nelem∑
e=1

ffffffffffffffe
j(ρe), (13)

being the element contributions

KKKKKKKKKKKKKKe
ji(ρe) =

∫∫∫
Ee

(LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦj)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦi) ρe dΩ, ffffffffffffffe
j(ρe) =

∫∫∫
Ee

(
ΦΦΦΦΦΦΦΦΦΦΦΦΦΦT

j bbbbbbbbbbbbbb− (LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦj)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuup)
)

ρe dΩ. (14)

Once the solutionαααααααααααααα(ρρρρρρρρρρρρρρ) to problem (12) is found, we can compute at any arbitrary pointrrrrrrrrrrrrrro ∈ Ωo the
aproximations

uuuuuuuuuuuuuuh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = uuuuuuuuuuuuuup(rrrrrrrrrrrrrro) +
N∑

i=1

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi(rrrrrrrrrrrrrro)ααααααααααααααi(ρρρρρρρρρρρρρρ), εεεεεεεεεεεεεεh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = LLLLLLLLLLLLLLuuuuuuuuuuuuuuh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ), σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = DDDDDDDDDDDDDDεεεεεεεεεεεεεεh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ). (15)

By comparing (15) with (10) we observe that displacements, deformations and stresses are still computed
in the usual way. Therefore, if we wish to adapt an existing FEM numerical model of structural analysis
as a component of a topology optimization system, we only have to modify the element contributions
(9) computation. Moreover, the required adjustment is quite simple, since we only need to introduce the
relative density in the integration of the corresponding expressions (14). Furthermore, computing contri-
butions (14) is fairly straightforward, since we assume that the relative density is constant within each
element. Thus, we just have to multiply the original results (9) by the corresponding relative densities.
On the other hand, the original results (9) give the first order derivatives of contributions (14) with respect
to the design variables. Moreover, all the other first and higher order derivatives are obviously null.

We conclude that we do not have to modify the source at the lower level for adapting an existing FEM
code into a topology optimization system. In practice, only slightly adjustments must be implemented
in the data flow between the higher level routines. In fact, any conventional code should contain all the
basic tools to perform the required new computations and the associated sensitivity analysis.
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3.3 Statement of the Stress Constraints

The valuesσσσσσσσσσσσσσσh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) computed by means of (15) are numerical approximations of the actual stress tensor
components of the material being deformed. Thus, the allowable values of the stress referenceσ̂(σσσσσσσσσσσσσσ) at
pointrrrrrrrrrrrrrro

j can be limited by introducing constraints type

gj(ρρρρρρρρρρρρρρ) = σ̂
(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)
− σ̂max ≤ 0, or gj(ρρρρρρρρρρρρρρ) = σ̂min − σ̂

(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)
≤ 0, (16)

whereσ̂max andσ̂min are the corresponding upper and lower limits. However, since we are dealing with
a porous material, we could state alternative expressions in terms of the effective stress. As a general
rule, this is as simple as multiplying the above expressions by the relative densityρ(rrrrrrrrrrrrrro

j), what gives

g(ρρρρρρρρρρρρρρ) =
[
σ̂
(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)
− σ̂max

]
ρ(rrrrrrrrrrrrrro

j) ≤ 0, or g(ρρρρρρρρρρρρρρ) =
[
σ̂min − σ̂

(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)]

ρ(rrrrrrrrrrrrrro
j) ≤ 0. (17)

It is obvious that expressions (16) and (17) are equivalent, unless the relative density is null. This is a
singular but conceptually important case, since it happens when all the material has been removed in the
vicinity of the point being considered. Apparently, the difference between both ways of imposing the
constraints seems to be insignificant. However, this could become a critical point, with unforeseeable
effects on the performance of the optimization algorithm and the final result.

To clarify this point we resort to an academic conceptual problem. Figure 1 (left) shows the rectangular
solid section of a beam with height2c and widthb. Let σe be the elastic stress limit of the material. The
section supports the bending mommentMf = 2bc2σe/3, that is the maximum that can be applied without
exceeding the elastic stress limit. We add an upper layer and a lower layer of porous material, both with
heightηc (η << 1), and we keep the same value of the bending momment. In these conditions we state
the following (trivial) topology optimization problem:find the relative densityρ of the material in the
upper and lower layers such that the weight is minimized and the elastic stress limit is not exceeded. It
seems obvious that the exact solution of this problem must beρ = 0.

A quite simple strenght of materials analysis [11] shows that the stress constraint type (16) associated to
this problem can be written as

g(ρ) =
[
η − (3η + 3η2 + η3)ρ
1 + (3η + 3η2 + η3)ρ

]
σe ≤ 0. (18)

Figure 1 (right) shows that this constraint is not satisfied for values of the relative density underρ ≈ 1/3.
Moreover, the constratint is more severely violated as we get closer to the exact solutionρ = 0! It seems
clear that we are facing a situation in which reaching the optimum calls for removing all the material.
However, in the vicinity of the optimum (that is for any value ofρ slightly greater than0) the constraint is
largely violated. Furthermore, its gradient is negative. This is even worse, since any consistent non linear
programming algorithm will try to raise the value of the relative density, what precludes convergence to
the exact solution of the problem. At the best of times we could only obtain a non global optimum.

If we rewrite constraint (18) in terms of the effective stress (that is, multiplying the above inequality by
the relative density) we obtain the alternative stress constraint type (17)

g(ρ) =
[
η − (3η + 3η2 + η3)ρ
1 + (3η + 3η2 + η3)ρ

]
ρ σe ≤ 0. (19)

Figure 1 (right) shows that this constraint is still not satisfied for values of the relative density under
ρ ≈ 1/3. However, the reformulated constraint is strictly verified at the solutionρ = 0. And, most

6
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Figure 1: Layout (left) of an academic conceptual topology optimization problem, and comparison (right)
of constraint (18) [�] with constraint (19) [•]. (Notes:η=0.1; the constraint is scaled byσe.)

important, the gradient is now positive in the vicinity of this point. Therefore, for initial values ofρ not
too far from the exact solution (less than 1/6 approximately) any consistent non linear programming
algorithm will try to reduce the value of the relative density, what allows to achieve convergence.

This is a critical aspect of these formulations. The challenge is to find a convenient way for limiting the
stress, without overestimating the strenght nor trending to fill in regions that should actually be hollowed
out. The statement type (17) fulfills partially these requirements. However, it seems to slow down the
converge. We have performed a few numerical tests, and this seems to be a quite promising line, although
the results are not yet conclusive. A more detailed discussion on this topic can be found in [8].

3.4 The Optimization Problem

Let γmat be the density of the material. We define the objective function

F (ρρρρρρρρρρρρρρ) =
∫

Ω
ρ

1
p γmat dΩ =

nelem∑
e=1

(ρe)
1
p

∫
Ee

γmat dΩ, (20)

wherep is a tuning parameter that can be used to favor a mainly compact (p > 1) or a mainly porous
(p < 1) distribution of material. In this terms, the topology optimization problem can be written as

Find ρρρρρρρρρρρρρρ = {ρρρρρρρρρρρρρρe}, e = 1, . . . , nelem

that minimizes F (ρρρρρρρρρρρρρρ)

verifying gj(ρρρρρρρρρρρρρρ) ≤ 0, j = 1, . . . ,m

0 < ρmin ≤ ρe ≤ 1, e = 1, . . . , nelem

(21)

where the stress constraintsgj (at the corresponding pointsrrrrrrrrrrrrrro
j ) must be stated accordingly to the previ-

ously exposed concepts, and the stress valuesσσσσσσσσσσσσσσh(rrrrrrrrrrrrrro
j , ρρρρρρρρρρρρρρ) are computed by means of the proposed numer-

ical model. Obviously, we can consider displacement constraints too. On the other hand, we introduce a
lower limit for the relative density, since the entire hollowing out of some elements could cause a sin-
gular stiffness matrix and stall the optimization process. We emphasize that this topology optimization
aproach is a kind of sizing optimization from the operational point of view, since the design variables do
not modify the shape of the elements. The above stated formulation has been imlemented by following
the general methodology [3], and applying the sensitivity analysis techniques [4] and the improved SLP
algorithm with quadratic line-search [14] developed by the authors.
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4 Application Examples

The examples presented below are bidimensional, the width of the structures is constant, and we perform
a plane stress analysis. However, the results are represented as 3-D images [8], being the false width pro-
portional to the relative density of each element. Figures 2 and 3 show the results for a simply supported
structure, with small and large height/length ratio respectively, both for sliding and fixed supports. The
domain containing the structure is a prism that bears a concentrated 9000 KN load (vertical, downwards)
in the center of the upper side. We analyze half of the structure, because of symmetry. The supports
are not optimized. The domain is discretized in 24 times 8 elements (8-node quadrilateral). The mate-
rial density isγmat=7650 Kg/m3. Type (16) constraints are imposed at the center of all the elements, in
accordance with the standard NBE EA-95 [15] in terms of the Von Mises reference stressσvm

σvm ≤ σe; σI ≤ 2σe; σIII ≥ −2σe. (22)

In figure 2 the domain is 32 m long, 1.5 m high and 1 m wide, and the material is steel with elastic stress
limit σe=230000 KN/m2. We notice that the result obtained in the first case is a clear double T shaped
beam with variable section. The width of the wings increases from the supports to the center of the span,
where the load is applied. The result obtained in the second case is similar. However, the central section
is closer to a T shaped beam. Actually, the lower wing nearly disappears, since the tension due to the
bending is balanced with the compression due to the fixed supports. In figure 3 the domain is 32 m long,
12 m high and 1 m wide, and the material is fictitious with elastic stress limitσe=8000 KN/m2. We notice
that the result obtained in the first case is clearly a cable stayed arch. The result obtained in the second
case is an arch too, but the tie looses itsraison d’̂etreand it disappears, since the supports are fixed.

Figure 2: MWSC topology optimization of a simply supported structure, with small height/length ratio,
considering sliding (left) and fixed (right) supports. Concentrated load applied in the center of the upper
side. (Note: only half of the structure is represented in order to display the central section.)
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Figure 3: MWSC topology optimization of a simply supported structure, with large height/length ratio,
considering sliding (left) and fixed (right) supports. Concentrated load applied in the center of the upper
side. (Notes: the supports are not optimized; the entire hollowing out of the elements is not allowed.)

5 Conclusions

In this paper we present a minimum weight with stress constraints (MWSC) approach for topology
structural optimization problems. The formulation is derived by introducing minimal modifications to a
FEM model for linear elasticity problems with small displacements and small deformations. Although
the objective function is simple, as a general rule, this approach leads to more complicated optimiza-
tion problems with more computational requirements than the maximum stiffness formulations, since a
large number of highly non-linear constraints must be taken into account to limit the maximum allow-
able displacement and stress. In return, the physical meaning of the optimization statement is closer to
the engineering point of view, while any kind of constraint can be included and multiple load cases can
be considered. The formulation has been implemented in a topology optimization system, and several
application examples have been solved. The experience shows that this approach does not require nei-
ther stabilization nor penalty techniques to produce acceptable results. The optimized solutions seem to
be correct from the engineering point of view and their appearence could be considered closer to the
engineering intuition than the traditional truss-like results obtained by the maximum stiffness approach.
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