13,410 research outputs found

    Optimization of inhomogeneous electron correlation factors in periodic solids

    Full text link
    A method is presented for the optimization of one-body and inhomogeneous two-body terms in correlated electronic wave functions of Jastrow-Slater type. The most general form of inhomogeneous correlation term which is compatible with crystal symmetry is used and the energy is minimized with respect to all parameters using a rapidly convergent iterative approach, based on Monte Carlo sampling of the energy and fitting energy fluctuations. The energy minimization is performed exactly within statistical sampling error for the energy derivatives and the resulting one- and two-body terms of the wave function are found to be well-determined. The largest calculations performed require the optimization of over 3000 parameters. The inhomogeneous two-electron correlation terms are calculated for diamond and rhombohedral graphite. The optimal terms in diamond are found to be approximately homogeneous and isotropic over all ranges of electron separation, but exhibit some inhomogeneity at short- and intermediate-range, whereas those in graphite are found to be homogeneous at short-range, but inhomogeneous and anisotropic at intermediate- and long-range electron separation.Comment: 23 pages, 15 figures, 1 table, REVTeX4, submitted to PR

    Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion

    Get PDF
    Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of predicting and simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred

    On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations

    Full text link
    In this paper we describe how MAP inference can be used to sample efficiently from Gibbs distributions. Specifically, we provide means for drawing either approximate or unbiased samples from Gibbs' distributions by introducing low dimensional perturbations and solving the corresponding MAP assignments. Our approach also leads to new ways to derive lower bounds on partition functions. We demonstrate empirically that our method excels in the typical "high signal - high coupling" regime. The setting results in ragged energy landscapes that are challenging for alternative approaches to sampling and/or lower bounds

    A Bayesian approach to the modelling of alpha Cen A

    Full text link
    Determining the physical characteristics of a star is an inverse problem consisting in estimating the parameters of models for the stellar structure and evolution, knowing certain observable quantities. We use a Bayesian approach to solve this problem for alpha Cen A, which allows us to incorporate prior information on the parameters to be estimated, in order to better constrain the problem. Our strategy is based on the use of a Markov Chain Monte Carlo (MCMC) algorithm to estimate the posterior probability densities of the stellar parameters: mass, age, initial chemical composition,... We use the stellar evolutionary code ASTEC to model the star. To constrain this model both seismic and non-seismic observations were considered. Several different strategies were tested to fit these values, either using two or five free parameters in ASTEC. We are thus able to show evidence that MCMC methods become efficient with respect to more classical grid-based strategies when the number of parameters increases. The results of our MCMC algorithm allow us to derive estimates for the stellar parameters and robust uncertainties thanks to the statistical analysis of the posterior probability densities. We are also able to compute odds for the presence of a convective core in alpha Cen A. When using core-sensitive seismic observational constraints, these can raise above ~40%. The comparison of results to previous studies also indicates that these seismic constraints are of critical importance for our knowledge of the structure of this star.Comment: 21 pages, 6 figures, to be published in MNRA

    Quantum states cannot be transmitted efficiently classically

    Get PDF
    We show that any classical two-way communication protocol with shared randomness that can approximately simulate the result of applying an arbitrary measurement (held by one party) to a quantum state of nn qubits (held by another), up to constant accuracy, must transmit at least Ω(2n)\Omega(2^n) bits. This lower bound is optimal and matches the complexity of a simple protocol based on discretisation using an ϵ\epsilon-net. The proof is based on a lower bound on the classical communication complexity of a distributed variant of the Fourier sampling problem. We obtain two optimal quantum-classical separations as easy corollaries. First, a sampling problem which can be solved with one quantum query to the input, but which requires Ω(N)\Omega(N) classical queries for an input of size NN. Second, a nonlocal task which can be solved using nn Bell pairs, but for which any approximate classical solution must communicate Ω(2n)\Omega(2^n) bits.Comment: 24 pages; v3: accepted version incorporating many minor corrections and clarification
    corecore