1,341 research outputs found

    Partial-indistinguishability obfuscation using braids

    Get PDF
    An obfuscator is an algorithm that translates circuits into functionally-equivalent similarly-sized circuits that are hard to understand. Efficient obfuscators would have many applications in cryptography. Until recently, theoretical progress has mainly been limited to no-go results. Recent works have proposed the first efficient obfuscation algorithms for classical logic circuits, based on a notion of indistinguishability against polynomial-time adversaries. In this work, we propose a new notion of obfuscation, which we call partial-indistinguishability. This notion is based on computationally universal groups with efficiently computable normal forms, and appears to be incomparable with existing definitions. We describe universal gate sets for both classical and quantum computation, in which our definition of obfuscation can be met by polynomial-time algorithms. We also discuss some potential applications to testing quantum computers. We stress that the cryptographic security of these obfuscators, especially when composed with translation from other gate sets, remains an open question.Comment: 21 pages,Proceedings of TQC 201

    Semantic Security and Indistinguishability in the Quantum World

    Get PDF
    At CRYPTO 2013, Boneh and Zhandry initiated the study of quantum-secure encryption. They proposed first indistinguishability definitions for the quantum world where the actual indistinguishability only holds for classical messages, and they provide arguments why it might be hard to achieve a stronger notion. In this work, we show that stronger notions are achievable, where the indistinguishability holds for quantum superpositions of messages. We investigate exhaustively the possibilities and subtle differences in defining such a quantum indistinguishability notion for symmetric-key encryption schemes. We justify our stronger definition by showing its equivalence to novel quantum semantic-security notions that we introduce. Furthermore, we show that our new security definitions cannot be achieved by a large class of ciphers -- those which are quasi-preserving the message length. On the other hand, we provide a secure construction based on quantum-resistant pseudorandom permutations; this construction can be used as a generic transformation for turning a large class of encryption schemes into quantum indistinguishable and hence quantum semantically secure ones. Moreover, our construction is the first completely classical encryption scheme shown to be secure against an even stronger notion of indistinguishability, which was previously known to be achievable only by using quantum messages and arbitrary quantum encryption circuits.Comment: 37 pages, 2 figure

    Quantum Fully Homomorphic Encryption With Verification

    Get PDF
    Fully-homomorphic encryption (FHE) enables computation on encrypted data while maintaining secrecy. Recent research has shown that such schemes exist even for quantum computation. Given the numerous applications of classical FHE (zero-knowledge proofs, secure two-party computation, obfuscation, etc.) it is reasonable to hope that quantum FHE (or QFHE) will lead to many new results in the quantum setting. However, a crucial ingredient in almost all applications of FHE is circuit verification. Classically, verification is performed by checking a transcript of the homomorphic computation. Quantumly, this strategy is impossible due to no-cloning. This leads to an important open question: can quantum computations be delegated and verified in a non-interactive manner? In this work, we answer this question in the affirmative, by constructing a scheme for QFHE with verification (vQFHE). Our scheme provides authenticated encryption, and enables arbitrary polynomial-time quantum computations without the need of interaction between client and server. Verification is almost entirely classical; for computations that start and end with classical states, it is completely classical. As a first application, we show how to construct quantum one-time programs from classical one-time programs and vQFHE.Comment: 30 page

    Unforgeable Quantum Encryption

    Get PDF
    We study the problem of encrypting and authenticating quantum data in the presence of adversaries making adaptive chosen plaintext and chosen ciphertext queries. Classically, security games use string copying and comparison to detect adversarial cheating in such scenarios. Quantumly, this approach would violate no-cloning. We develop new techniques to overcome this problem: we use entanglement to detect cheating, and rely on recent results for characterizing quantum encryption schemes. We give definitions for (i.) ciphertext unforgeability , (ii.) indistinguishability under adaptive chosen-ciphertext attack, and (iii.) authenticated encryption. The restriction of each definition to the classical setting is at least as strong as the corresponding classical notion: (i) implies INT-CTXT, (ii) implies IND-CCA2, and (iii) implies AE. All of our new notions also imply QIND-CPA privacy. Combining one-time authentication and classical pseudorandomness, we construct schemes for each of these new quantum security notions, and provide several separation examples. Along the way, we also give a new definition of one-time quantum authentication which, unlike all previous approaches, authenticates ciphertexts rather than plaintexts.Comment: 22+2 pages, 1 figure. v3: error in the definition of QIND-CCA2 fixed, some proofs related to QIND-CCA2 clarifie

    Classical Cryptographic Protocols in a Quantum World

    Get PDF
    Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers? Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world.Comment: Full version of an old paper in Crypto'11. Invited to IJQI. This is authors' copy with different formattin

    The Power of Natural Properties as Oracles

    Get PDF
    We study the power of randomized complexity classes that are given oracle access to a natural property of Razborov and Rudich (JCSS, 1997) or its special case, the Minimal Circuit Size Problem (MCSP). We show that in a number of complexity-theoretic results that use the SAT oracle, one can use the MCSP oracle instead. For example, we show that ZPEXP^{MCSP} !subseteq P/poly, which should be contrasted with the previously known circuit lower bound ZPEXP^{NP} !subseteq P/poly. We also show that, assuming the existence of Indistinguishability Obfuscators (IO), SAT and MCSP are equivalent in the sense that one has a ZPP algorithm if and only the other one does. We interpret our results as providing some evidence that MCSP may be NP-hard under randomized polynomial-time reductions

    Foundations and applications of program obfuscation

    Full text link
    Code is said to be obfuscated if it is intentionally difficult for humans to understand. Obfuscating a program conceals its sensitive implementation details and protects it from reverse engineering and hacking. Beyond software protection, obfuscation is also a powerful cryptographic tool, enabling a variety of advanced applications. Ideally, an obfuscated program would hide any information about the original program that cannot be obtained by simply executing it. However, Barak et al. [CRYPTO 01] proved that for some programs, such ideal obfuscation is impossible. Nevertheless, Garg et al. [FOCS 13] recently suggested a candidate general-purpose obfuscator which is conjectured to satisfy a weaker notion of security called indistinguishability obfuscation. In this thesis, we study the feasibility and applicability of secure obfuscation: - What notions of secure obfuscation are possible and under what assumptions? - How useful are weak notions like indistinguishability obfuscation? Our first result shows that the applications of indistinguishability obfuscation go well beyond cryptography. We study the tractability of computing a Nash equilibrium vii of a game { a central problem in algorithmic game theory and complexity theory. Based on indistinguishability obfuscation, we construct explicit games where a Nash equilibrium cannot be found efficiently. We also prove the following results on the feasibility of obfuscation. Our starting point is the Garg at el. obfuscator that is based on a new algebraic encoding scheme known as multilinear maps [Garg et al. EUROCRYPT 13]. 1. Building on the work of Brakerski and Rothblum [TCC 14], we provide the first rigorous security analysis for obfuscation. We give a variant of the Garg at el. obfuscator and reduce its security to that of the multilinear maps. Specifically, modeling the multilinear encodings as ideal boxes with perfect security, we prove ideal security for our obfuscator. Our reduction shows that the obfuscator resists all generic attacks that only use the encodings' permitted interface and do not exploit their algebraic representation. 2. Going beyond generic attacks, we study the notion of virtual-gray-box obfusca- tion [Bitansky et al. CRYPTO 10]. This relaxation of ideal security is stronger than indistinguishability obfuscation and has several important applications such as obfuscating password protected programs. We formulate a security requirement for multilinear maps which is sufficient, as well as necessary for virtual-gray-box obfuscation. 3. Motivated by the question of basing obfuscation on ideal objects that are simpler than multilinear maps, we give a negative result showing that ideal obfuscation is impossible, even in the random oracle model, where the obfuscator is given access to an ideal random function. This is the first negative result for obfuscation in a non-trivial idealized model

    Hardness vs. (Very Little) Structure in Cryptography: A Multi-Prover Interactive Proofs Perspective

    Get PDF
    The hardness of highly-structured computational problems gives rise to a variety of public-key primitives. On one hand, the structure exhibited by such problems underlies the basic functionality of public-key primitives, but on the other hand it may endanger public-key cryptography in its entirety via potential algorithmic advances. This subtle interplay initiated a fundamental line of research on whether structure is inherently necessary for cryptography, starting with Rudich\u27s early work (PhD Thesis \u2788) and recently leading to that of Bitansky, Degwekar and Vaikuntanathan (CRYPTO \u2717). Identifying the structure of computational problems with their corresponding complexity classes, Bitansky et al. proved that a variety of public-key primitives (e.g., public-key encryption, oblivious transfer and even functional encryption) cannot be used in a black-box manner to construct either any hard language that has NP\mathsf{NP}-verifiers both for the language itself and for its complement, or any hard language (and even promise problem) that has a statistical zero-knowledge proof system -- corresponding to hardness in the structured classes NP∩coNP\mathsf{NP} \cap \mathsf{coNP} or SZK\mathsf{SZK}, respectively, from a black-box perspective. In this work we prove that the same variety of public-key primitives do not inherently require even very little structure in a black-box manner: We prove that they do not imply any hard language that has multi-prover interactive proof systems both for the language and for its complement -- corresponding to hardness in the class MIP∩coMIP\mathsf{MIP} \cap \mathsf{coMIP} from a black-box perspective. Conceptually, given that MIP=NEXP\mathsf{MIP} = \mathsf{NEXP}, our result rules out languages with very little structure. Additionally, we prove a similar result for collision-resistant hash functions, and more generally for any cryptographic primitive that exists relative to a random oracle. Already the cases of languages that have IP\mathsf{IP} or AM\mathsf{AM} proof systems both for the language itself and for its complement, which we rule out as immediate corollaries, lead to intriguing insights. For the case of IP\mathsf{IP}, where our result can be circumvented using non-black-box techniques, we reveal a gap between black-box and non-black-box techniques. For the case of AM\mathsf{AM}, where circumventing our result via non-black-box techniques would be a major development, we both strengthen and unify the proofs of Bitansky et al. for languages that have NP\mathsf{NP}-verifiers both for the language itself and for its complement and for languages that have a statistical zero-knowledge proof system

    Indistinguishability Obfuscation from Well-Founded Assumptions

    Get PDF
    In this work, we show how to construct indistinguishability obfuscation from subexponential hardness of four well-founded assumptions. We prove: Let τ∈(0,∞),δ∈(0,1),ϵ∈(0,1)\tau \in (0,\infty), \delta \in (0,1), \epsilon \in (0,1) be arbitrary constants. Assume sub-exponential security of the following assumptions, where λ\lambda is a security parameter, and the parameters ℓ,k,n\ell,k,n below are large enough polynomials in λ\lambda: - The SXDH assumption on asymmetric bilinear groups of a prime order p=O(2λ)p = O(2^\lambda), - The LWE assumption over Zp\mathbb{Z}_{p} with subexponential modulus-to-noise ratio 2kϵ2^{k^\epsilon}, where kk is the dimension of the LWE secret, - The LPN assumption over Zp\mathbb{Z}_p with polynomially many LPN samples and error rate 1/ℓδ1/\ell^\delta, where ℓ\ell is the dimension of the LPN secret, - The existence of a Boolean PRG in NC0\mathsf{NC}^0 with stretch n1+τn^{1+\tau}, Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits exists
    • …
    corecore