Indistinguishability Obfuscation from Well-Founded Assumptions

Abstract

In this work, we show how to construct indistinguishability obfuscation from subexponential hardness of four well-founded assumptions. We prove: Let τ(0,),δ(0,1),ϵ(0,1)\tau \in (0,\infty), \delta \in (0,1), \epsilon \in (0,1) be arbitrary constants. Assume sub-exponential security of the following assumptions, where λ\lambda is a security parameter, and the parameters ,k,n\ell,k,n below are large enough polynomials in λ\lambda: - The SXDH assumption on asymmetric bilinear groups of a prime order p=O(2λ)p = O(2^\lambda), - The LWE assumption over Zp\mathbb{Z}_{p} with subexponential modulus-to-noise ratio 2kϵ2^{k^\epsilon}, where kk is the dimension of the LWE secret, - The LPN assumption over Zp\mathbb{Z}_p with polynomially many LPN samples and error rate 1/δ1/\ell^\delta, where \ell is the dimension of the LPN secret, - The existence of a Boolean PRG in NC0\mathsf{NC}^0 with stretch n1+τn^{1+\tau}, Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits exists

    Similar works