6,677 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationStochastic methods, dense free-form mapping, atlas construction, and total variation are examples of advanced image processing techniques which are robust but computationally demanding. These algorithms often require a large amount of computational power as well as massive memory bandwidth. These requirements used to be ful lled only by supercomputers. The development of heterogeneous parallel subsystems and computation-specialized devices such as Graphic Processing Units (GPUs) has brought the requisite power to commodity hardware, opening up opportunities for scientists to experiment and evaluate the in uence of these techniques on their research and practical applications. However, harnessing the processing power from modern hardware is challenging. The di fferences between multicore parallel processing systems and conventional models are signi ficant, often requiring algorithms and data structures to be redesigned signi ficantly for efficiency. It also demands in-depth knowledge about modern hardware architectures to optimize these implementations, sometimes on a per-architecture basis. The goal of this dissertation is to introduce a solution for this problem based on a 3D image processing framework, using high performance APIs at the core level to utilize parallel processing power of the GPUs. The design of the framework facilitates an efficient application development process, which does not require scientists to have extensive knowledge about GPU systems, and encourages them to harness this power to solve their computationally challenging problems. To present the development of this framework, four main problems are described, and the solutions are discussed and evaluated: (1) essential components of a general 3D image processing library: data structures and algorithms, as well as how to implement these building blocks on the GPU architecture for optimal performance; (2) an implementation of unbiased atlas construction algorithms|an illustration of how to solve a highly complex and computationally expensive algorithm using this framework; (3) an extension of the framework to account for geometry descriptors to solve registration challenges with large scale shape changes and high intensity-contrast di fferences; and (4) an out-of-core streaming model, which enables developers to implement multi-image processing techniques on commodity hardware

    Evolvable hardware system for automatic optical inspection

    Get PDF

    Realization of a Fast Automatic Correlation Algorithm for Registration of Satellite Images

    Get PDF
    The requirement for a fast automated correlation algorithm for registration of satellite images is discussed. An overview of current registration techniques is presented indicating a correlator, matching binary maps compressed from the original imagery, may provide the required throughput when implemented with a dedicated hardware/processor. An actual registration problem utilizing GOES digitally processed imagery is chosen and defined. The realization of a fast correlator, matching image input data with sampled data base reference image data in real time is considered

    Three--dimensional medical imaging: Algorithms and computer systems

    Get PDF
    This paper presents an introduction to the field of three-dimensional medical imaging It presents medical imaging terms and concepts, summarizes the basic operations performed in three-dimensional medical imaging, and describes sample algorithms for accomplishing these operations. The paper contains a synopsis of the architectures and algorithms used in eight machines to render three-dimensional medical images, with particular emphasis paid to their distinctive contributions. It compares the performance of the machines along several dimensions, including image resolution, elapsed time to form an image, imaging algorithms used in the machine, and the degree of parallelism used in the architecture. The paper concludes with general trends for future developments in this field and references on three-dimensional medical imaging

    Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6

    Get PDF
    A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored

    DPP-PMRF: Rethinking Optimization for a Probabilistic Graphical Model Using Data-Parallel Primitives

    Full text link
    We present a new parallel algorithm for probabilistic graphical model optimization. The algorithm relies on data-parallel primitives (DPPs), which provide portable performance over hardware architecture. We evaluate results on CPUs and GPUs for an image segmentation problem. Compared to a serial baseline, we observe runtime speedups of up to 13X (CPU) and 44X (GPU). We also compare our performance to a reference, OpenMP-based algorithm, and find speedups of up to 7X (CPU).Comment: LDAV 2018, October 201

    Real-Time Image Analysis of Living Cellular-Biology Measurements of Intelligent Chemistry

    Get PDF
    This paper reports on the Pacific Northwest National Laboratory (PNNL) DOE Initiative in Image Science and Technology (ISAT) research, which is developing algorithms and software tool sets for remote sensing and biological applications. In particular, the PNNL ISAT work is applying these research results to the automated analysis of real-time cellular biology imagery to assist the biologist in determining the correct data collection region for the current state of a conglomerate of living cells in three-dimensional motion. The real-time computation of the typical 120 MB/sec multi-spectral data sets is executed in a Field Programmable Gate Array (FPGA) technology, which has very high processing rates due to large-scale parallelism. The outcome of this artificial vision work will allow the biologist to work with imagery as a creditable set of dye-tagged chemistry measurements in formats for individual cell tracking through regional feature extraction, and animation visualization through individual object isolation/characterization of the microscopy imagery
    corecore