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ABSTRACT 

 
This paper reports on the Pacific Northwest National Laboratory (PNNL) DOE Initiative in Image Science and 
Technology (ISAT) research, which is developing algorithms and software tool sets for remote sensing and biological 
applications.  In particular, the PNNL ISAT work is applying these research results to the automated analysis of real-
time cellular biology imagery to assist the biologist in determining the correct data collection region for the current state 
of a conglomerate of living cells in three-dimensional motion.  The real-time computation of the typical 120 MB/sec 
multi-spectral data sets is executed in a Field Programmable Gate Array (FPGA) technology, which has very high 
processing rates due to large-scale parallelism.  The outcome of this artificial vision work will allow the biologist to 
work with imagery as a creditable set of dye-tagged chemistry measurements in formats for individual cell tracking 
through regional feature extraction, and animation visualization through individual object isolation/characterization of 
the microscopy imagery.  

 
Keywords:  real-time, FPGA-hardware, image analysis, automated blob-analysis, cellular biology, confocal 
microscopy. 
 

1. INTRODUCTION 
 
The dramatic changes in Microbial and Cellular Biology over the last five years has provided a microscopic imagery 
analysis of living cells that is on the order of the image analysis performed in the National Technical Means (NTM) 
satellite imagery.  Furthermore, the “datacube” created in multi-modal and multi-spectral imaging cellular biology 
systems is in three spatial dimensions (i.e., 3-D, in z-axis of depth-of-field slicing of full Mpixel-sized images), with 
time sequencing, and a number of spectral fluorescence emission bands (colors), forming a 5D hypercube for analysis.  
The ability to reliably extract quantitative information about cellular biology from this data stream is a current challenge 
to the research community.  Contrary to NTM image analysis functions, such as automatically locating and 
characterizing “target” signals of interest in the environmental terrain clutter (e.g., remote sensing, RS), cellular image 
analysis requirements vary with instrumentation, sample type, and research objectives.  The functions must clearly 
involve removing microscopy artifacts of optics, lighting, and camera pixel registration, including removal of camera 
skew due to the complex optical axes used in multispectral instruments.  These image regulation artifacts can be 
dynamic, due to thermal fluctuations of the instrument.  They also must deal with radiometric computations across the 
modalities of the data using ratio computations at the pixel level.  More macro-level computations might involve 
segmentation of the image into individual cell regions and cell components, including the definition of cell membranes, 
cell counting and tracking of 3-D movement over time in living cell microscopy, and using extracted feature values for 
quantitative representation of the dynamic chemistry1,2,3,4. 
 
Many of these functions can utilize feature extraction algorithms in an automated manner, which must also be accurate 
when compared to a human analyst’s results.  However, because these are living cells, one must make a rapid assessment 
of where the “action” of the experiment is occurring in 3-D, in order to have the imagery resolution in the region of 
interest before the laser light photobleaches the dyes and/or kills the cells.  Hence, unlike in the NTM domain, local, 
real-time image analysis is required.  Developing these algorithms and software running in efficient and low cast 
hardware can also have an impact on the overall cost of future optical cellular microscopy instrumentation.  This paper 
presents work performed under the Pacific Northwest National Laboratory (PNNL) DOE initiative in Imaging Science 
and Technology (ISAT) to establish an approach for accomplishing these goals, and describes the similarity of NTM 
imagery with cellular biology (CB) imagery.  Example imagery is presented with some example analysis, along with a 
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unique, real-time data processing implementation approach.  The potential quality of this automated approach in 
artificial vision measurements can even be used in supporting the simulation and modeling of cellular biology for 
understanding the systemology of living cells. 
 

2. BACKGROUND 
 

Biological samples can be living or fixed, and span an increasing size range from individual microbial cells (~1 micron 
dia.), individual mammalian cells (~10 microns), microbial cellular communities, and cell agglomerates or tissues.  The 
sample size and desired information dictate the imaging modality and sample handling required for study.  There is a 
diverse range of biological imaging instrumentation available, which provides complementary anatomical, chemical, 
physical, and transport information.  Present focus is on the development of image-processing capabilities for optical 
methods.  This encompasses a large range of microscopy techniques, including various implementations of white-light 
microscopy and fluorescence microscopy, and provides anatomical and chemical information with ~1 micron spatial 
resolution over a ~1mm maximum field of view (FOV).  
 
2.1 DOE Genomes to Life Program 
 
The DOE Genomes to Life (GTL) Program has identified important imaging requirements to capture the complexity of 
microbial and cell-cell interactions and cell environmental response.  In the November 2002 report5, a number of 
important image analysis functions are cited, which pertain to taxonomy of “the complex 3-D microbial communities 
and their environments and which characterize the physical, chemical, and biological interactions occurring in them,” 
and some are listed in Table 1. 

Table 1.  GTL declared image functions and image analysis techniques5, 6 
Imaging Function Image Analysis Technique
1) Determine structural and functional properties of 
multicellular systems (p 22)

regional segmentation with fluorescence functional 
tagging through spectral analysis

2) Determine how the microbial community and physical 
environment are arranged (p 26)

taxonomy of regional segmentation

3) Determine how microbes interact among themselves and with 
their community (p 26)

spatio-temporal analysis of regional taxonomy

4 ) Monitor the flow of energy and elements through the 
community and how that flow is regulated (26)

correlated, temporal-analysis of image sequence for 
spectral migration over regions

5) Identify the activation state of signaling networks triggered 
by environmental perturbation (p 26)

monitor regional spectrally tagged states with noted 
environmental changes

6) Determine cell culture stability and composition, and 
parametric monitoring (p 23)

track spatio-temporal region changes with spectral 
density and coloration

7) Combine wide-field and high resolution technologies for cell 
tracking in 2D and 3D space, and in time (p 23)

track regional structures inside membranes with 
extracted feature characterization

8) Determine spatial and temporal concentration measurements 
of signaling molecules and metabolites at the intra- and extra-
cellular level (p 26)

combine function 6 and 7

9) Characterize the physical and chemical properties of 
interfaces (p 26)

characterize features from inside and outside 
membranes  

 
Many of these goals apply equally well for the study of mammalian cells and cell systems, e.g., cell-cell interactions are 
believed to play an important roll in “bystander effects,” where cells react indirectly to their irradiated neighbors7.  
Preliminary ISAT biological imaging issues include automated 3-D image registration for multiple-camera 
instrumentation, using 3-D registration approaches from RS work.  These instruments have several CCD cameras with 
separate optical paths, and thus it is necessary to account for differing camera alignment (e.g., rotation/scale orientation 
and skew), plus the effects of thermal expansion due to temperature fluctuation.  Figure 1 shows current image co-
registration data collected for a dual-camera confocal fluorescent microscope.  Simultaneously acquired images for a few 
fluorescent-labeled beads provide the minimal amount of information to co-register the images.  A more detailed 
fluorescent fiduciary sample will be devised, which will allow for the correction of normal nonlinear optical distortions 



(lens warp or pin-cushioning) and proper 3-D spatial co-registration.  Subsequent monitoring of the image registration 
during experiments will employ the automated analysis of sample images.   
 
Also, methods will be investigated for the rapid, coarse 3-D visualization of the entire sample.  This will serve to rapidly 
identify features of interest for further detailed imaging, and minimize the image-degrading effects of photobleaching.  
Finally, a parallel instrument interface will be developed from which to visualize the 3-D image data in real time, and 
issues of improved hardware synchronization will be investigated.  
 
 

 
 

Figure 1.  Image co-registration for a dual-camera confocal fluorescent microscope.  Top: Simultaneously acquired images 
(488 and 568 nm emission bands) for a few fluorescent-labeled 16-micron-diameter beads.  Bottom: Overlay of pseudo-colored 

co-registered images. 

2.2 Morphological characterization/classification 
 
The morphological characterization of cells involves the determination and classification of cell size and shape.  It is 
used for the recognition and classification of cells as normal, precancerous, and cancerous (e.g., for conventional Pap 
smear analysis of fixed cells for cervical cancer screening).  Figure 2 shows a white-light microscopy image of a fixed 
tissue sample, stained to yield better feature contrast.  The same stained regions of the original image regions are 
regrouped, after using an ISAT tool for performing an automated segmentation tiling and classification procedure.  In 
vitro, morphological change detection can be monitored using another ISAT tool from RS applications; e.g., cells 
generally dissociate from the microscope slide and become round before undergoing cell division.  This regrouping 
forms segmented image regions clustered together with a similar appearance. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Automated object recognition in white light cell imagery.  Left: original image.  Right: segmented image into similar 

structures with the arrows relating the clusters.  Note that the text is automatically isolated. 

2.3 Intercellular communication and interaction  
 
Biological applications include the study of cell-cell interactions and intercellular signaling, such as the cue from 
neighboring cells to stop growing when there is no room for further growth.  This is of direct relevance to cancer 
research, where a miscommunication of cells leads to continued cell replication.  Another important intercellular 
interaction involves the cooperative interaction of cells to form tissues.  Here, detection of one channel is optimized to 
detect the receptor emission or a volume-filling nonspecific dye, while a second detector is optimized to detect a contrast 
agent specific to a fluorescent-labeled ligand of a compound of interest.  Figure 3 shows superimposed confocal  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.  Superimposed confocal fluorescence images for Chinese hamster ovary (CHO) cells showing the chemical 
interaction between cell-receptors/growth-factors associated with intercellular communication for 3-D cell agglomeration. 
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fluorescence images for Chinese hamster ovary (CHO) cells beginning to form three-dimensional agglomerates.  The 
image of Figure 3 was acquired from a 3-D cell sample on a microscope slide from the bottom-most layer of cells.  The 
green pseudo-color component shown represents cells that have been exposed to an epidermal growth factor (EGF) and 
are beginning to organize into a 3-D cell cluster.  The remaining (red) cells were not exposed to EGF and remain as 
individual cells. These green and red pseudo-color components represent fluorescent tracers detected at emission 
frequencies of 488 nm and 568 nm respectively.  The FOV is approximately 250 µm × 600 µm with an isotropic inplane 
resolution of 1 µm.  Red/green overlap is shown in yellow.  These receptor–mediated cell-cell interactions trigger 
biochemical pathways that lead to an appropriate cell response, or improper response in the case of cell malfunction.  
The research challenge for ISAT is to develop an automatic representation of the cell structure and communication from 
3-D image data sets, where the chemical dynamics of the living cell may be discerned. 

2.4 Intracellular transport 
 
Image analysis of intracellular transport processes such as intracellular calcium release and propagation in mammalian 
cells is even more challenging due to the short distances and, thus, short propagation times.  A relevant biological 
example is calcium release and propagation within a cell.  Here, multiple channel detection is useful, where each channel 
is optimized to detect the emission from a particular subcellular feature such as the cytoplasm, cytoskeleton or specific 
organelles like the mitochondria or nucleus, and another channel is dedicated to monitoring the trafficking of a particular 
contrast agent or a chemical process of interest.  This type of study requires the highest attainable spatial and temporal 
resolution, e.g., 1-micron spatial resolution over a 100 micron FOV and 120 frames per second from each channel, 
resulting in a data stream rate of 1.2 Mpixels per second per channel.  Figure 4 shows a representation of intracellular-
extra cellular particle trafficking, in which an image of polydisperse, auto-fluorescent europium nanoparticles (color 
contour map) is superimposed onto the grayscale image of a 20-micron-diameter mammalian cell.  This image represents 
a single time point in a high-temporal-resolution intracellular transport experiment.   For the ISAT Initiative, the 
automated image analysis challenge in artificial vision is to track particle formation and migration over time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Single time point for intracellular nano-particle transport (color) in a single mammalian cell (black/white). The 
contour levels indicate the particle concentrations. The FOV is approximately 20 microns (one cell diameter) per side. 

 
 
 
 
 



3. APPROACH 
 

3.1 CB image analysis algorithms 
 
As an example of the use of the ISAT toolset useful for cellular analysis, the combined cellular image of Figure 3 is 
processed for each of its component images, in order to isolate cell regions.  Figure 5 shows the two initial gray-scale 
cell images from each color component.  These images are first analyzed for forming binary images by histogram-based 
thresholding.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Image components from composite image in fig. 3.  Left: Red Component.  Right: Green Component. 
 
Figure 6 shows the histograms of this data used in automatically establishing the proper threshold for binarizing the 
image, as the first step in blob analysis (described in more detail in a later section).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Histograms of the respective images of fig. 5.  Left: Red Component.  Right: Green Component. 
 
The histogram thresholding algorithm is adaptive, as each image will have a varying intensity and cell structure shown in 
the histograms of Figure 6.  The thresholded images are then processed with run-length encoding (RLE), connectivity 
analysis (CA), blob analysis (BA) with area thresholding, morphological clean-up, and finally recombined as a 
replication of Figure 3, shown in Figure 7.  Notice the common regions of color with those of Figure 3, only one must 
realize that this analysis represents a reduction in data of over a thousand-fold, and that each individual, connected-pixel 
blob region is absolutely located and capable of including feature measurements from the original imagery.  The 
construction of these algorithms is in the form of open-source software that is transportable between various forms of 
computational engines. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  The recreation of the fig. 3 “image” by blob analysis of the spectral components. 
 
3.2 Software architectural issues 
 
The ISAT algorithm development was conducted in the “C” language as an RS toolset, free of routines for input/output 
(I/O) or graphical user interface (GUI).  This was to ensure the maximal portability of the core algorithms.  Based on 
common data structures, the C cores were then adapted to run in different environments by either plugging them into 
proprietary GUIs, or wrapping them into the Java-based ImageJ from the National Institutes for Health (NIH).  The 
computer-based processing can be enhanced using other programs written in C, such as used in the development of the 
ISAT toolset, and based on additional “tools” or algorithms contained in the Image Processing Library 98 (IPL98) 
routines available as an open-source freeware8,9. 
 
Algorithms were developed for seven RS functions, including nonlinear edge enhancement, auto-registration in 2D, 
change detection, spatial resolution extrapolation, spectral mixing from different resolutions, automated image object 
segmentation (Figure 2), and semi-automated registration fiducial location.   Many of these algorithms prove to be also 
useful in CB microscopy.   These routines can be used for the quick prototyping of an algorithm to evaluate its 
performance in extracting features of interest in the imagery. 
 
3.3 Software 
 
Software tasks also center on the need for high-dimensional image processing, implemented online whenever possible.  
Current ISAT 3-D object image fiducial registration tools will be modified for use in the cellular biology domain.  For 
example, this will permit the co-registration of voxel spaces as well as stacks of two-dimensional imagery.  Locations 
within individual images that correlate with prior and subsequent images will be stored as metadata to the archive 
imagery.  Other metadata can be the result of feature extraction.  The extracted features can then be submitted to an 
identification process, either automated or manual.  In addition, the segmentation of 3-D volumes will be necessary in 



order to be able to extract volumetric features such as those resulting from multiply sliced cells or MRI data.  This type 
of processing will likely remain a post-processing step, due to the algorithmic complexity and possibly for the likely 
need for a human to interactively guide the segmentation process.  
 
Fundamental artificial vision algorithms used in industry (e.g., machine vision, MV) include: thresholding, convolution, 
binary mapping, motion and spectral filtering, edge detection, run-length encoding, etc.  These processing steps, when 
performed online, can dramatically reduce the time needed to manually post process images.  Figures 8 and 9 below 
demonstrate this type of basic image processing for cell isolation that can be performed online, in real-time, which will 
be very useful to cellular biologists. 
 

     
 

Figure 8.  Cell Colony Unprocessed.                                            Figure 9.  Cell Colony Processed. 
 
3.3.1 FPGA real-time computing 
 
As the algorithms developed using the C-based ISAT toolbox are tested and found to perform satisfactorily, the C code 
will be handed off to the migration into the real-time field programmable gate array (FPGA) hardware environment.  The 
C code will be transported to Handel-C®, from which it will be compiled into an electronic data interchange file (EDIF) 
and placed-and-routed into a downloadable binary configuration (or .bit) file.  Here a software “compiler” product,   
DK1®, is used for implementation in an FPGA-based hardware system10, 11.  The DK Design Suite® is a product from 
Celoxica® that compiles C code directly into FPGA compatible “load modules” in EDIF format.  Handel-C® will be used 
for online analysis program (OLAP) FPGA development11, so that stand-alone algorithms may be designed as 
combinations of load modules, which can be loaded into the FPGA system for execution.  Performance of the hardware 
implementation will be carefully compared to the software results to verify that the hardware is correctly configured for 
the algorithm processing of data. 
 
A critical issue in the development of MV algorithms for both software and hardware implementation is the use of 
floating-point versus fixed-point.  For both implementation size and speed considerations, it is very desirable to perform 
all operations in fixed-point hardware.  Therefore, it is essential that the co-development of the software and hardware 
algorithms be carefully coordinated to allow for as much fixed-point processing as possible. 

 
3.3.2 Run length encoding and blob analysis 
 
The algorithms will typically consist of the application of a series of fundamental processing steps contained in the 
toolbox, but with adaptively modified, algorithm parameter values.  An example of such an application is given as 
follows for any one of the selected spectral bands showing tagged chemistry in the imagery: 



 
1. Invert the image grayscale using a look-up table (LUT) so that all processing will work from the low pixel 

values (black) to the high pixel values (white). 
2. Enhance the edges of the resulting image. 
3. Create a histogram of the image. 
4. Stretch the histogram using an LUT. 
5. Search for peaks (modes) in the histogram.  Select the largest modes which are closest to black and white. 
6. Find the valleys in the histogram between the modes and sort by depth relative to the maximum mode value. 
7. Find a threshold value, d = F(x1,x1, …, xi; x1,x1, …, xj),  which is a function of the valley and peak values and 

threshold the image. 
8. Mask the original image using the thresholded image to isolate the cells from the background.  The resulting 

image can then be enhanced to further isolate structure in the cells by repeated applications of steps 1-7. 
9. Find the number of potential cells from the image produced in step 7.  Erosion and dilation operators can be 

used to clean up the image and remove island pixels. 
10. Begin blob analysis on the cells by applying run-length encoding (RLE) to the image to segment the blobs. 
11. Perform connectivity analysis (CA) on the blobs. 
12. Perform projection analysis on the blobs. 
13. Extract binary features from the blobs such as mean, variance, eccentricity, area, etc. 
14. Extract grayscale features from the blobs, using the projection, histogram, and BA/CA techniques. 

 
From this example it is clear that a relatively small set of fundamental operations are used to perform the feature 
extraction process.  These include: 
 

1. Pixel value mappings (LUTs). 
2. Histogram modification/equalization. 
3. Edge enhancement. 
4. Masking (image multiplication with a binary masking image). 
5. Min/Max finding. 
6. Erosion/dilation operators. 
7. Run-length encoding. 
8. Connectivity analysis. 
9. Projection analysis. 
10. Feature extraction. 

 
3.3.3 MV functions 
 
Figure 10 is a flow diagram of these simple ten functions, operating under a host computer’s control, with continual 
changes in parameter settings for each function through “scratch memory” and intermediate image “framing.”  The 
general architecture for MV applied to blob processing is a set of enhancement, thresholding, frame multiplications, and 
other functions shown in the above example and using the architecture of Figure 10.  It consists of seven major image-
processing functions: pixel mapping, convolution operator (e.g., edge enhancement with a kernel, and a built in absolute 
value function), morphological operator (e.g., which has a built in min/max function), run-length encoding, profile 
projections, moment functions, and histogram processing.  These processing functions are combined in many different 
ways to extract from the input image the desired information about the biological cells under investigation.  It is 
therefore desirable to construct a flexible real-time implementation, which allows each of the functions to be used, 
possibly iteratively, in any order to achieve the desired result.  Also note in Figure 10 the redundant single and dual 
frame “piping” to/from the frame memories, which in the CB application are on the order of 20 MB for single, two-color 
sets, and over 100 MB for sequences.  This is a formidable research issue for efficient algorithm implementation.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Machine vision functions. 
 
One approach to implement this architecture is to use an FPGA processor, which can implement, in parallel, each of the 
processing functions.  As data is read into the FPGA processor from RAM storage, a central controller routes the data for 
processing by the desired function.  After the data is processed, it is then routed to the next processing function.  Since 
information extraction algorithms are a series of paths through these operators, each algorithm can be pipelined to take 
advantage of the parallelism of the FPGA and produce results at extremely high speed. 
 
The intent is to preprocess the streaming data, incorporate the output as a metadata file, and send this information to the 
archive, along with the normal image data archiving.  Then, using the offline image archive analysis tools developed 
under the ISAT program and available at the PNNL High Performance Computing (HPC) Center, the metadata can be 
analyzed as a CB measurement to use for analysis and simulation input, and for tagged searches to retrieve and post-
process the archived imagery using the same existing and future ISAT tools operating in the HPC Parallel Computational 
Environment for Imaging Science (PiCEIS).  Here, the biologist will use a set of visualization tools to determine if the 
parameters of the tool set are appropriate, and if necessary, new parameters can be determined, and a new OLAP/FPGA 
ISAT processing module can be formulated for download to the online processor.  The post-processed imagery can also 
be reintroduced to the data stream for further analysis.  Note that the advantage of the automated measurements is in the 
trade-off of having an exactness of analysis of maybe up to 95% by a human on only 100 images, vs. the automated 
analysis measurements that might have an 80% exactness on over 10,000 images.  The latter will better support a 
statistical average for modeling, and provide a return to the original images for further analysis by the biologist, with the 
automated data as a guide.  Figure 11 illustrates this process flow, where the dark gray shading indicates the ISAT work 
being integrated into the HPC activities (in light gray shading) and the Cellular Biology activities (in medium gray 
shading). 
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Figure 11.  ISAT cellular biology process flow diagram. 
 

4. DISCUSSION 
 
While the individual base-functions of the algorithms are well known and readily available, the implementation of those 
algorithms in an FPGA environment is a new concept.  Colorado State University’s Cameron Project12 has an ongoing 
project quite similar to this intended approach, as is used for image analysis to discover military targets from remotely 
sensed imagery.  The excerpt below is from the final report of the research implementing some of the algorithms needed 
for blob analysis. They were impeded by the fact they were transferring the entire image data in and out of the FPGA 
system for each operation, in addition to reloading the appropriate algorithm into the FPGA when the operation changed.  
They also were not able to use parallel architecture in the implementation beyond the parallelism available in each 
processing operation, i.e., multiple processing steps were not pipelined in the same FPGA configuration.  In the included 
table, SA-C refers to the FPGA-based computation. 
 
“The SA-C programs were compiled using the November, 2000 version of the SA-C compiler and run on an Annapolis Microsystems 
StarFire with Xilinx XV-1000 FPGAs. The C programs were run on a 450MHz Pentium II. (The Xilinx XV-1000 is roughly 
contemporaneous with the 450MHz Pentium II.) The run-times are given in the table below. The erode and dilate times are for a 
single operation. (Times for the sequence of four operations are given later.) 
 

Routine C Exec. SA-C Exec. RCS Data 
Download 

RCS Config. 
Download 

Frequency 
(MHz) 

RCS Data Upload 

Downsample 0.05 0.009761 0.033738 0.161508 29.963 0.012556 
Erode (cross) 0.08 0.006102 0.008709 0.161871 28.279 0.012576 
       
Erode (box) 0.08 0.006332 0.008712 0.161397 27.254 0.012562 
Dilate (cross) 0.08 0.005499 0.008551 0.161516 31.383 0.012392 
Dilate (box) 0.08 0.006198 0.008709 0.161615 27.842 0.012584 
Bit wise AND 0.03 0.003136 0.016633 0.161510 38.877 0.012414 
Pos. Diff. 0.03 0.003170 0.016405 0.161532 38.445 0.012370 
Maj. Thresh 0.03 0.005396 0.008589 0.161505 31.977 0.012370 
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In general, execution times on the reconfigurable system are about ten times faster. The downside, however, is the cost of 
downloading the circuit configuration onto the FPGA, and of transporting the data back and forth between the RCS system and the 
host processor. In general, the time it takes to download a configuration swamp all other costs. As a result, it is only feasible to 
accelerate one operator per FPGA, since they cannot be quickly reconfigured and must therefore be pre-loaded. Given this, the gain in 
speed of the reconfigurable processor justifies the cost of downloading and uploading the image data for every routine except 
downsample (which gets the largest images), although the total improvement is reduced to a factor of four.” 
 
Initial testing of the ISAT registration tool in FPGAs has shown a similar increase in processing speed.  For example, 
multiple parallel convolutional operators were designed to process images at one pixel/clock at clock speeds exceeding 
26 MHz on a previous generation FPGA with maximum clock rate of 80 MHz.  This equates to almost a 25 (1k x 1k 
pixel image) frames/s processing speed.  State-of-the-art processors can be clocked at speeds up to 420 MHz, providing 
the potential of real-time processing at the expected maximum frame rate of 30 frames/s. 
   
The sheer volume of the data captured by the cellular biologists is daunting.  A day’s worth of data can add up to 
gigabytes of imagery and metadata, which is on the order of NTM data sets in RS.  To avoid the situation of sitting on a 
mountain of inaccessible data, as generated by the results of analysis of the image in Figure 3 at a rate of 30 cells/sec, 
procedural improvements are needed at each procedural stage in data acquisition and storage, with real-time analysis.   
 
Figure 12 provides a projection of the expected improvements in real-time CB image analysis using this ISAT 
OLAP/FPGA technology, which potentially could exceed human analysis in FY04.  These projected data are based on 
the processing times from the Cameron Project, modified by the procedures proven in the ISAT tool work and an 
assumption of a continuation of Moore’s Law growth in transistor density and clock speed.  The increase in the 
processing throughput in the FPGA-based system beyond Moore’s Law growth is due to the ability to include more of 
the processing steps into a single reconfiguration of the FPGA system as FPGA gate count increases over time. 
 
The ultimate goal should be to collect, analyze and perform an initial assessment of voluminous, multidimensional 
data—all during the same day or less!  Clearly, this information needs to be processed at the highest rate possible, 
meaning that much of the more mundane processing can and should be moved upstream and performed online.  Once the 
needed information has been extracted from the data stream, the image information can be moved in to the archive, 
where it can be called upon later for downstream post processing.  The ISAT research agenda and available tools will be 
developed as necessary to be able to handle the 3-D and higher data set analysis. 
 

 

 
 
 

 

 

 

 
 
 
 
 

Figure 12.  Expected CB automated image analysis with OLAP/FPGA technology developments. 
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