
University of Central Florida University of Central Florida 

STARS STARS 

Retrospective Theses and Dissertations 

1978 

Realization of a Fast Automatic Correlation Algorithm for Realization of a Fast Automatic Correlation Algorithm for 

Registration of Satellite Images Registration of Satellite Images 

John E. Kassak 
University of Central Florida, jkassak@cfl.rr.com 

 Part of the Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/rtd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, 

please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Kassak, John E., "Realization of a Fast Automatic Correlation Algorithm for Registration of Satellite 
Images" (1978). Retrospective Theses and Dissertations. 293. 
https://stars.library.ucf.edu/rtd/293 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/293?utm_source=stars.library.ucf.edu%2Frtd%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


• 

REALIZATION OF A FAST 
AUTOMATIC CORRELATION ALGORITIDI 

FOR REGISTRATION OF SATELLITE IMAGES 

BY 

JOHN E. KASSA]( 
VANDERBILT illIIVERSITY, 1962 

RESEARCH REPORT 

Submitted in partial fulfillment of the requirements 
for the degree of Master of Scienc~ in Engineering 

in the Graduate Studies Program of the College of Engineering 
of Florida Technological University 

Orlando, Florida 
1978 



• 

REALIZATION OF A FAST 
AUTOHATIC CORREL~TION ALGCRITHH 

FOR REGISTRATION OF SATELLITE IIIAGES 

BY 

JOHN E. KASSAI< 

ABSTRACT 

The requirement for a fast automated correlation algorithm for 

registration of satellite images 1s discussed . An Qvervie\o.' of cur-

rent registration techniques is presented indicating a correlatoTl 

matching binary maps compressed from the orig1nal imagery, may 

provide the required throughput when implemented with a dedicated 

hardware/processor. An actual registration problem utilizing GOES 

digitally processed imagery is chosen and defined. The realization 

of a fast correlator, matching image input data with sampled data 

base reference image data in real time is considered. 

Director of Research Report 
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CHAPTER I 

REGISTRATION CONCEPT 

A. Need For Satellite Image Registration 

Satellites provide researchers and investigators "lith a data 

source unmatched at comparable spatial and temporal coverage by 

any existing or practical alternate source. The data has been 

particularily advantageous in the study of Synoptic Heteorolob'Y, 

1 
Atmospheric Profiling, and Heasure ment of Surface Features. 

Imagery from meteorological satellites and Landsat Earth 

Resources Satellite is ideally suited for both subjective enhan-

cement via-time-lapse display and for obj eeti ve measuremen ts 'vi th 

time. This imagery is particularily useful for temporal studies 

because sequential surface views of a certain geographic area can 

be register~d H'ith minimum geometric error. The images are trans-

nutted on succeeding orbital passes by scanning radiometer s ensors 

aboard earth resources or meteorological satellites. The images 

are recorded at earth receiving stations . Very few investigations, 

to date, have reported on theme enhancement through temporal pro-

cessing. Temporal analysis is often neglected because the facilities 

and techniques required to create well-registered multi-date 

2 
sequences are somewhat specialized and not generally available . 

1 
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Preparation of evcn a simple movie-loop is annoyingly time consuming 

and then one is still left with the problem of extracting quantita-

tive data . Each image or frame must be registered or aligned before 

photographed or stored so that there is no relative movement of 

fixed subjects ~.;rhen the images are viewed sequentially. Each image 

may occupy one or more frame periods (1/25 seconds) this movie-loop 

technique is preferred since. spatially related trends are difficult 

to £0110\\1' when operating from digital tapes. 

The initial studies have shonn that just as still photos are 

virtually indispensable when working with individual images, there 

is a basic need for some form of animated imagery as the workhorse 

tool for guidance in temporal studies. Nothing else seems to com-

municale the message to a human quite so quickly or clearly as time-

lapse sequences, flicker comparisons, and the like. 
3 

Currently, satellite pictures are either registered by hand 

or auto:natically by use of large computer systems. t.;rhat is meant 

by the term registration? If we have t~yO images A and B, let X
A

, 

Y 8 dafine a pixel element in image A and X
B

, "iB define a pi~el in 

image R. Both images represent the same basic information but are 

displaced or captured from different camera stations. Assume that 

x , Y and X , Y represent the same fixed reference point on the 
A A B B 

surface of the earth, but are not the same horizontal element or 

vertical line with reference to the upper left corner of CR.ch pic-

ture or image. If sequential images are to be viewed as a motion 

picture, then all points such XA, YA and XB, YB must always be 
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vi~ved at co~stant distance from the vi~1ng field reference bound­

aries; otherwise 5 tationary subj ect matter will appear to move or 

jitter . Then one image must be moved relative to the other until 

ul1 stationary points in the viewing field are alig'led. The re­

sulting image field can be no larger than the matched area of the 

subject images. Unmatched data cannot be used for tem~oral analysis. 

If two images have only a small segment which overlaps, then very 

little data is available for time comparisons. 

Most weather field stations and many television weather sta­

tions register the picture electronically by means of video-analog 

comparative techniques. Only at Goddard Space Flight Center are 

satellite images completely registered by use of computers. The 

computational time js, however, considerable. 4 

B. Reviet ... of Applicable Regis tration Hethods 

Registration is basic to any image processing system. When 

it is desired to detect changes or perform a ma'pping of two similar 

images , it is necessary for meaningful results to have the images 

registered. If the pictures do not differ in magnification and 

rota.tion, then the best translational fit will yield the required 

registration . The problem is then to find a trenslation registra­

tion algorithm which can be implemented with a special purpose 

processor to provide automatic registration of images which are 

digitally processed and stored. 

A search was made of existing automatic registration techniques 

in order to find a candidate algprithm which could be iJ1plemented 
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with a dedicated processing system. The goal being registration at 

the input frame rate , thus providing the required movie sequence . 

A full Geostationary Operating Environmental Satellite (GOES) image 

or frame is raceived every thirty minutes and requires fifteen min­

utes for transmission. The goal here is to correlate the incoming 

data points with a refer~nce image at the actual data input rate. 

This means that a full image shall be registered 1n thirty minutes 

or less. Time must also be allotted for image enhancement and/or 

other data transformation before processing the next image. 

A new image is thus processed and recorded every thirty 

minutes. This image is added to the sequence of previously trans­

mitted satellite images providing a current movie loop of no more 

than thirty minutes delay. The image can be stored sequentially 

on an analog video disc and played back through a television rnoni-

tor to produce the animated loop. 

Three basic correlation methods exist : (1) Correlation, 

(2) Fast Fourier Transform Correlation, and (3) Binary Correlation 

(see Fig. 1). Let two images S (search area) and W (Window), a 

subimage of S, be defined as shown in Figure 1. S is taken as an 

Lxt array of digital picture elements which may assume one of K gray 

5 levels; 1. e . 

o < S(U+i-l. V+j-l) < K-l 

1.::. U,V ~ L-Mtl 

W is consider~d to be an 1"001, H smaller than L array of digital 

picture elements having the same gray scal e range: 
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L 
Window 
Subset 

Search area (Data base reference) - S 

1 (i,j) 

1 
Wir.dcH-W 

(i=M) 
(j=M) 

6 Fig. 1 Window and search area relationship 

5 



6 

• o ~ ,)(1,j) ~ K-1 

1 < i ,J < N 

It will be ass umed that enough a priori information is known 

about the dislocation between the window and the search area so that 

the parame t e rs Land M may be selected with the virtual guarantee 

that at registration a complete suhimage is contained in the search 

area (LxL) as shO\ro in figure 1. Translational registration , there-

fore~ is a search over some subset of the allowed range of reference 

points to find a point (U*, V*) which indicates a subimage in 5 

that is most similar to the given wind~w . 

The measure of similarity is based on the Euclidean distance 

between two vectors (refer to Appendix A). As a result, one can 

use the normalized cross correlation as a measure of match. Cor-

relation between two random variables of difference processes is 

by definition the expected value of their prod~ct7 or 

E(II ,S) = f dW f WS P(II,S)dS (1) 

where P(\-1 , S) is equal to the joint probability of random \Oariables 

Wand S. Normalized cross correlation or normalized cross- covar-

iance function can be defined as : 

p (V , V) = E{(W-M ) (S- M )} ( 2) 
ws w s 

E{(W-M )2) E{(S- M )2) 
w s 



p (U, V) 
ws 

(J (J 
s w 

7 

(3) 

where 11 ; the mean value of the process and a = standard deviation 

of a Gaussian distributed random process. 

Note that OW is constant in the correlation process since it 

is not a function of U and V, but as is dependent on U and V in 

the general case , Also, if both processes are Gaussian distributed 

with zero mean (Ms~Mw=O) and both processes are Ergodic, then 

[Rws<U , V) :::: TWS(U,V)] where TH5 is equal to the spatial average 

of variables Wand S . Then 

EO,S) = r f \,(x,y) S (lM-U ,y+V)dxdy 
t 

(4 ) 

The resulting normalized cross correlation equation for two 

analog images 1s : 

p ws(U,V) = = 
rrw(x,y) S(x+U,y+V)dxdy 
i IIS2(XfO,y+V)dxdy 

(5) 

,,,here a == standard deviation of the S process . s 

, 

The integrals are replaced with the summation signs for the 

discrete case. Current methods used for calculating the normalized 

cross correlation surface on most large machines are direct inte-

gration and shifting (dis!:rete convolution) and Fast Fou~ier 'frans-

form (FFT) in Appendix B. Discrete convolution method~'require 

considerable computational time. The FFT is a highly efficient 

procedure for computing the Direct Fourier Transform (OFT) of a time 

series . It can cut computer time by a factor (log2N)/N , where N is 

the numher of terms in each fourier series. Conventional techniques 
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require complex multiply and add operations proportional to N2 . 

The FFT makes application of an efficient computational technique 

8 
called decimination in tjme which has been analyzed by Cochran . 

The choice of a similarity detecting algorithm should be 

justified by its probability of error and its computational com-

plexity rather than by tradition. The reason gener~lly given for 

using the correlation method is that correlation appears to be a 

natural solution for the mean-square error criteria. Therefore, 

correlation algorithms with lower computational compl exity appear 

9 
to be a more fitting choice. 

TABLE I 

RUNNING TI~m VERSUS CORRELATION ARRAY SIZE
10 

Running Time in 60-1 Seconds/Times Slower 
Than Binary Correlation 

Array Size Binary Correlation FFT Correlation Correlation 

25 by 25 58 585/10.09 2450/42.24 
29 by 29 124 1267/10 . 22 4465/36.01 
33 by 33 230 983/ 4 . 27 7532/32.75 
37 by 37 381 1778/ 4 . 67 11962/31. 4 
41 by lol 559 18097/32.37 
45 by 45 850 
49 by 49 1167 
53 by 53 1710 
57 by 57 2377 
81 by 81 8371 

101 by 101 

c. Bimuy Cross Correlation Ir.troduction 

A method which generates a correlation function by the con-
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volution of binary templates which have been compressed from the 

original dlgiti7.ed K gray scale images is kno~~ as binary cross 

correlation. This technique still guarantees a unique solution 

but is much simpler 1n terms of computational complexity . Binary 

images are formed by preprocessing both the data base reference 

10 

map and the incoming satellite image to form binary (1 or 0) valued 

images. The assignment of image pixels is based on a predeter-

mined signature, i.e., edges, contours, spatial frequency, texture, 

etc. The preprocessing algorithm used, depends on the statistics 

of the data contained in the satellite image and is further dis­

cussed in chapter two. The general equation (5) still applies , 

but Sand Ware now only binary valued. 

Figure 2 is a graph of correlation array size (L=2M per Fig . 

1) versus running time for three basic correlation methods (see 

Table I) . The comparison was made by running times from an internal 

running clock on an IBM-7044 computer. It was demonstrated by 

Andrusll that the binary correlation scheme is superior to FFT #7 

and direct correlation with respect to actual running time . Also, 

the binary data base map reduces memory storage requirements com-

pared to the required by a K level gray scale image. 

The following is a summary of the advantages of the binary 

12 
correlation scheme: 

1. Binary maps can represent the time independent shapes 

of ground features , whereas, the image qualities of 

tone or gray level and texture can change. 



dramatically with time. 

2. Binary maps compress the data used as input 

for statistical correlation of temporal pairs 

resulting in 

a . Hinimizing confusion caused by extraneous 

tone and texture data which would give 

equal weight in the decision making of 

a gray level registration system . 

b. Hinimizing computer storage and processing 

time . 

The correlation probability for the discrete case is then 

described by14 

1800 2048 
E E "(i,j) S(U-l+i,V-l+j) 

p (U,V ) 1=1 

11 

j=i 
wSn = 1800 2048 (6) 1/2 

E E [S ~U-l+i , V-l+j) 1 
j=i i=l 

which 1s of the form of a discrete normalized cross correlation of 

equation (5). 

Since the data 1s to be registered at the input frame rate, 

each incoming processed pixel , W(i,j), wi ll be matched against 

the elements in the expec.ted search range and each correla.tion 

point thus updated sequentially . This point will appear clearer 

after further discussion in chapter two . 
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D. Registration by Sub frame Partitioning 

As the dislocation U*V,'c is derived empirically, it 1s 

proposed that the incoming image W(i,j) be matched in sub frames 

thus giving n U*V* estimates for consideration. This yields 

the opportunity of applying a least squares solution to the n 

8ubframe estimates U*V* giving a rotation estimate for the entire 

test image (see fig. 3). This method will also reduce the cor-

r elation function memory size required and will also increase 

throughput by allowing correlation and search algorithms to be 

executed simultaneously . 

Equation (6) becomes: 

lOOn 2048 
E E W(1,j) S(U-l+i,V-l+j) 

j=lOO(n-l)+l i=l 
p (UIV) = 
ws n lOOn 2048 ~ 

E E [S2(U-l+l,V-l+j) 1 
j=lOO(n-l)+l 1=1 

where each frame consists of 100 lines (see Chapter II) and 

hence 18 ~s (U,V) are calculated for the full 1800 lines . 
n 

(7) 

To accomplish the digital processing efficiently requires 

careful attention to the hardware and software design. Because 

of the large amount of computer time involved in image process-

ing, consideration should be given to dedicated hardware . The 

next chapter will evaluate an actual registration problem with 

the intent of producing a dedicated correlator to accomplish the 

task . 
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i 1 . 1 - ,1-
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CHAPTER II 

PROBLEM SPECIFICATION 

A. Preprocessing and Format of Input Data 

A brief discussion of the classification and preprocessing 

concepts 1s necessary so that the nature of the data available 

for determination of the correlation surface is understood. As 

discussed in chapter one, a binary correlation scheme will be 

chosen for implementation. It is first necessary to segment the 

picture into specific regions or parts . In order to extract an 

object from a picture explicitly, we must somehow mark the points 

that belong to the object in a special way . This marking process 

can be thought of as creating a mask or overlay, congruent with 

the picture, in which there are marks at positions corresponding 

to object points. We can regard this overlay as a two-valued 

picture (e.g., l i s at object points , O's elsewhere); the overlay 

thus has the value 1 for points belonging to the object and value 

o elsewhere. (There are many other ways of representing objects 

in regions. e.g., using the boundaries or skeletons). 

Two basic methods: 15 (I) thresholding, (2) edge detection 

pxist to segment an image map . Thresh~ldin& techniques are 

primarily designed to extract objects that have characteristic 

gray level ranges or textures; in other words, they yield objects 

14 
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that have some type of uniformity. Another important approach to 

picture segmentation is based on the detection of discontinuity, 

i . e ., of places where there is more or less abrupt change in gray 

level or in texture, indicating the end of one region and the begin-

uing of another . For l ow altitude high resolution satellite images 

16 (Landsat), binary boundary maps are sucessfully used. For low 

resolution high altitude weather satellites (the type considered 

in this report), the thresholding classification scheme where the 

surface terrain can be classified as either land or water is more 

appropriate. Fine structured high spatial frequency data is usu-

ally not present in GOES data, as can be seen from examination of 

a GOES weather satellite image in Appendix C. If an image of this 

type is classified by an intensity amplitude thresholded pre-

processing scheme, then large uniform features may be extracted 

for matching. As shown in Appendix C, a tl is .first selected 

which detects clouds, then a t2 is selected which extracts or 

detects land mass . A resultant binary image may then be classified 

into large uniform objects with land::: 1 and water::: o. Further-

more , matching tHO GOES weather maps which have been preprocessed 

by the thresholding technique t·rill generate a low frequency cor-

relation function. This will allow a sampled correlation algorithm 

to be used which will greatly reduce computation time . For the 

above rationale, the selection of thresholded GOES weather satellite 

images 'vas chosen as input data for the binary correlation algorithm 

discussed in this report. 
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The.. output from the preprocessor will consist of a 2 hit word 

which will contain the following information where W(i,j) has a 

gray level range (zl,zk) and t is any number between zl and zk : 

~ 

o if W(i,j) 
1 if W(i,j) 

bit 1 = W 1 if W(i,j) 
- - t2(i,j) ~ 0 if W(i,j) 

~ 

tl---cloud or noise 
tl---data nolse free 

t2---1and 
t2---water 

Bit 0 indicates the presence of a noise pixel (cloud). As 

seen in Appendix C, cloud pixels are usually of the highest illten-

aity and can be easily detected by picking some threshold tl above 

t2. If cloud pixels are detected, the input data, lHi,j), will no t 

be considered in calculation of the correlation function array. 

The new data, W(i,j), will be available at the input data rate, but 

delayed due to preprocessing time. The preprocessed reference image 

S will have been thresholded by t2 (the same as for w) and will be 

available "a priori" from the data base memory. Also, the refer-

ence image S will contain no noise or cloud pixels. 

The following weighting scheme will be used to calculate the 

values to be incremented to the correlation estimates Rws (U,V). 
n 

1. If cloud present--no operation (add HO" to 

RwS (U,V) data) . 
n 

2 . If S(U+i-l,V+j-1) and W(i,j) match--increment 

Rws (U,V) by + 1. 
n 

• 



3. If S(U+i-l ,V+j-l) and W(i,j) do not match--decrement 

R (U,V) by 1. 
wSn 

The concept of awarding matches as well as penalizing for 

17 

mismatches delineates the need to normalize every correlation point 

since every data base pixel is used for every shift in the search 

range. The normalizing factor thus becomes equal to the window 

array size minus the number of noise pixels in the window, and 

is a constant for each subframe . See example shown in Appendix A2. 

B. Timing Requirements 

The timing constraint is probably the one most challenging 

feature of this research report--correlation and subsequent reg-

istration a t incoming data rate . The satellite image size will 

hereby be defined as 2048 pixels by 1800 scan lines. The exper.ted 

dislocation and resultant correlation surface array size can be 

seen in figure 4. The mean time between sample points is equal 

to approximately 250 microseconds. The correlation surface array 

size of RWS
n 

(U,V) is seen to be 1024 by 1024. Thus, approximately 

6 10 correlation data points must be updated every 250 microseconds 

based on the value comparison between incoming data point W(i,j) 

and the value of the reference search range S = S(U-l+i,V-l+j) . 

where l<U,V,~1024 (the expected search range shifts with each tlew 

data pixel W(i,j) . The represents a considerable computational 

task. Let us define the computational interval as T Ir where T = a a 

the total time available (250 microseconds) and r = number of 

coruputation points (106). In this case T = 250 microseconds, and a 



18 

• 

W(i:1, :1) 

t 512 

2048 pixels 

W(i , j) 
512 512 

< >- 1800 lines < :> 

Satellite 
Imape 

e
12 

Search area 
(Reference Data 
Base) 
S (U- Hi V-H;) 

Fig . 4 Satel li t e i mage uncer t ainty 
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r = 106 representing a required computational interval of 0 . 250 

nanoseconds. This data rate is unreasonable for any comput~tional 

method knovm by this writer (fastest cycle time available being 

60 to 100 nsees). At this point, it becomes necessary to make 

application of the sampled correlation concept (see Fig. 5). Let 

us sample the correlation function at every thirty-second data 

base point. Equation (7) is now replaced by: 

weighted p~s (U' ,V') 
n ~ 

weighted R' (U',V') 
ws 

n (8) 
2048 x 100-P

n 

lOOn 2048 
E E [W (i,j)-I, (i,j)] [S(U'-l+i,V'-l+j)-

t2 t2 j~lOO(n-l)+l i~l 

S(U'-l+i,V'-l+j)] [I'tl (i,j)] 

2048 x 100-Pn 

where the numerator i s the mathematical expression representing 

1 of N, parallel computed , course sampled, weighted correlation 

estimates; Q=the sample cycle; l<U' ,V'21024; 1~Q~32/N; 1~~J2; 

U'c32(Qu-l)N; V'=32(Qv-1); Pn=constant and is the number of noise 

pixels in W per subframe. The R' referred to in the rest of 
wSn 

4 this chapter is the weighted function. Equation (8) is employed 

18 t~es as 1 <n<18 as per figure 3. The correlation surface array 

size is reduced to 1024 (32x32) leaving a 240 llc1nOSp.cond computa-

tional interval. It appears that even when employing a course 

• 
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(U=l. V=l) 

U :>-
Pixel DATA BASE 
Reference 
Index 
(1 .j) 
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, 
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32 32 32 32 32 32 

* ~ SEARCH RANGE 
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32 

I 
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• • 
• 

~=32 -
I 

" 

A given search range is governed by 1024 by 1024 
elements, where the upper left corner is referred 
t o as the beginning reference address for a partic­
ular pixel . 

Note : The data base memory architec ture will be assumed ::0 be 
configured 60 that the left most address will unload N 
horizontal samples to the right inclusively. Each node 
represents a data base sample . 

Fig. 5 Sampled correlation func tion g~id pattern 

• 
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sampled correlation function conc~pt, a multi-processing scheme 

lnust also be considered to realize a solution . 

The time allowed per computational interval can be increased 

by using a multi-processing scheme where the computational interval 

now becomes Ta = N/r where N a the number of synchronous multi-

processors. If N ~ 16, for example, then the computational interval 
-6 

is equal to 250 x 10 x 16/1024 "'" 3900 nanoseconds. If one 

assumes a 100 nanosecond clock cycle or 100 nanoseconds per ins truc-

tion (state of current technology), the 3900n5/10005 = 39 ins truc-

tions that could be performed per computational interval. The data 

throughput is thus defined as riTa' 

C. Memory Requirements and Dynamic Range 

The memory requirements for storage of the data base reference 

map requires both large capacity and high performance . The data 

base map is binary valued (3072 x 2824 bits) and hence , approximately 

nine megabits must be stored. Also, the data computational inter-

val discussed in the last section must also be divided between 

memory access time and control of the system resources. The access 

time allowed per computational interval can be improved by increas-

ing the number. of parallel processors . The tradeoff is either 

using fast memory or increasing the number of parallel computational 

modules. Due to the extent of the memory required, it is believed 

by this writer that utilization of fast memory (current RAH memories 

offer access times vf 60ns or less) would invoke the greatest cost 

to the system . Bubble memories offer bulk storage but do not 
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present the high performance (access time) requirement needed here. 

Access time for Bubble memory is 4 microseconds or greater . The 

configuration of the data base memory and control is not being 

discussed in this report. 

The other significant memory requirement is that for the 

storage of the correlation array R' (U. V) . 
wSn 

This memory requires 

only 1024 addressable locations. The dynamic range is determined 

by the condition where the binary images Wand S are aligned and 

204,800 possible increments are possible . The dynamic r ange of 

the correlation function determines that the data bus and memory 

word length by 18 bits (there are 217 <2048 x 100<2
18 

possible 

comparisons per subframe) . Note that this memory word size would 

be increased 18 tImes if not for the use of the subframe matching 

concept . 

D. Organization of the Required Operations 

The flmv diagrams for the correlation and max search algorithms 

are shown in figures 6 and 7·. These outline the basic tasks to be 

done. An analysis of the problem requires organizing the flow chart 

inLo two phases : Phase I and Phase II. This is primarily brought 

about by the relative frequency of operations per subframe . Phase I 

computes the numerator of the algorithm equation (8), while Phase II 

searches for the maximum correlation estimate R~s (U*,V*). This 
n 

allows Phase I and Phase II to operate in parallel. 

The Phase I of the algorithm waits for a pixel to be r eceived 

which initiates the correlation array update cycle. N data base 
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Fig. 6 Flow chart of Phase I, registration scheme 
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Fig. 7 Flow chart of Phase II , registration scheme 



25 

reference pixels are then simultaneously compared with the binary 

value of the classified input pixel W(i,j). On the basis of this 

comparison, N correlation estimates ~s (U,V) are fetched, incre­
n 

mented/decremented and stored. This computational cycle is repeated 

for 2400 x 100 pixels (one suhframe) or to the end of each 100 line 

subframe. At this time Phase II is implemented while the second 

sub frame is in Phase I processing mode. Each Phase II cycle is 

entered 18 times since the image is subdivided into 18 subframes . 

The choice of 18 sub frames is arbitrary and one could choose some 

other sub-partitioning scheme , if desired. 

Phase II of the algorithm consists of fetching the 1024 

correlation estImates from the correlation array memory. Each 

estimate in turn is compared to the previous estimate . Only the 

current max estimate is retained in a specified temporary register 

(max). The memory array address is also retained in a specified 

temporary register (loc). When the search is complete (loc) con-

tains the address for ~s (U*,V*). 
n 

R I (U*, V*) represents only 
wSn 

the approximate determination of the correlatjon peak (only every 

thirty-second reference data point is sampled) and resultant sub 

image translation. The contents of (loc) are transferred to a 

host computer which calculates the translation estimate (U*,V*)n ' 

At the end of the frame, the 18 (U*,V*)n are used by the host 

computer to calculate the rotation of W with respect to S by 

fitting the n translation estimates to a straight line and 

determining slope M. 
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The over all timing and application of the two phase algorithm 

is shown in Table II. Eighteen} 50 second subframes exist (100 

lines x 50 Msec. per line). Phase I is used 204 , 800 times per 

subframe . Phase II is really only entered once and performs 1024 

computational intervals per subframe . 

The fetching , incrementing and storage of correlation esti-

mates suggest a microporcessor based architectural scheme be 

investigated. 

Consideration of the timing and word size requirements of 

the GOES registration problem suggests a micro programmable micro-

processor and/or special purpose hardware be considered for 

implementation of the correlation algorithm. The micro programmable 

CPU is best applied ,yhere high speed computation and control are 

r equir ed. Typical instruction cycle times of 100 ns and 20 bit 

word lengths are realizable with current Bipol ar Schottky LSI 

17 
Technology. Also , the concept of N parallel computational 

modules, calculating N corr elation estimates is facilitated . 
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CHAPTER III 

SYNOPSIS 

A. Summary and Conclusions 

The object of this research report was to investigate and 

select a suc~essful registration concept and consider the possi­

bility of electronically realizing a fast, dedicated correlator 

for use in registering weather satellite images . In chapter one 

a comparison of current registration methods ~""a5 made which 

indicated that binary correlation would provide the greatest 

computational savings with respect to speed and still yield the 

same registration result as correlating two K gray scale images. 

It was concluded that a binary correlation algorithm should be 

chosen for implementation. Computing the correlation of n image 

subframes will yield n translation estimates. This data can be 

used to determine image frame rotation by least squares solution. 

The second chapter examined the input data and quantified the 

basic parameters of the registration problem which was to be 

implemented with the binary correlation algorithm. Weather 

satellite images, which conlain low resolution and low spatial 

frequency data, lend themselves to classification or preprocessing 

by thresholding techniques. Large uniform features may be extracted 

and classified. Corrleation surfaces generated from matching two 

28 
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images which have been preclassified by this technique will yield 

8 low frequency correlation function. Data of this form was chosen 

dS the input for the correlator, enabling the implementation of a 

fast course (sampled) correlation algorithm . It was decided to 

generate a course sampled correlation function since the amount of 

expected image dislocation and the size of the image array were 

large. These parameters are realistic and representative of many 

satellite imaging problems today. The correlation array was 

generated by sampling every thirty-second data base point. This 

sampling will yield an approximate translation (U*,V*)n ' In many 

cases, this may be accurate enough. If registration within one 

pixel is required, the exact location of the correlation peak may 

be estimated by assuming a known surface function. Examination of 

the correlation surface suggests that a two dimensional conical 

approximation could be used. 

The correlation algorithm was organized into two phases. Phase 

I calculates the correlation estimates for a subframe while Phase II 

searches for the II1aximum correlation estimate of the previous sub­

frame and transfers translation data to a host computer. The final 

translation/rotation and resultant registration would be performed 

by the host ~omputer that is inputing, processing , sequencing and 

displaying the images . It is recommended that microprogrammable 

microprocessor hardware be investigated for implementation of Phases 

I and II. 
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B. Extensions 

The correlation algorithm discussed in this paper has general 

application. Although the high speed algorithm produced a coarae 

or sampled correlation array , it could easily be modified to 

directly produce a fine or non-sampled correlation function. This 

would be required 1f one were sampling, for example , binary edge 

images processed from Landsat image data which contains high spa­

tial frequency data. In the general case, it appears that many 

registration problems must be divided into two correlation opera­

tions. If one wanted to register Landsat images with considerable 

dislocation, one might threshold certain large objects to obtain 

a course registration, and then use binary edge images of the 

immediate arca to obtain the fine registration. Haps where spatial 

frequency or texture were classified to obtain either a "1" for 

a certain texture, and 1r0" for everything else , might be used to 

provide a low frequency correlation function so that the fast 

sampling correIa tor can be used. Different image sizes, dislocation 

and transmission data rates would only require modifications to 

memory and I/O sizes, number of computational modules used , memory 

access time, etc . 

The process is also adaptive to determining rotation since the 

registration is accomplished in 18 subframes . It would also be 

possible to weight the estimate of each subframe translation vith 

respect to the presence of noise, which determines the likelihood 

of success. If one test subframe contained excessive noise pixels, 
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it may be completely disregarded . One subframe may be sufficient 

to register the image if rotation is not present. In some par­

ticular applications, it may be possible to introduce "a priori" 

information about the image and reduce the amount of memory storage 

r equired . For example, one knows the State of Florida is a curved 

~urface and a continuous edge is being sought out . This concept 

falls under the realm of pattern recognition and is beyond the 

scope of this paper. 

• 
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APPENDIX A 

MATCHING BY CROSS- CORRELATION1B 

1. Theory 

IlMatching of patterns against pictures is of importance in 

many types of applications . The fol l owing are a few examples : 

(a) The pattern to be matched may be a simple pattern 

s uch as a step or ramp , i.e. , an edge. Other 

examples of such simple patterns are lines , 

spots J etc. 

(b) The pattern may be a II templatell representing a 

known object. For example , we can match templates 

of characters against pictures of printed pages ; 

temp l ates of tar gets against pictures obtained by 

reconnaissance systems ; or templates of landmarks 

against pictures obtained by navigation systems, 

e . g . J templa t es of star- patterns against pictures 

of t he sky . 

( c) The pattern may Itself be a piece of picture, Le., 

we may want to match a pi ece of one picture against 

anothe r picture. For example , if we have two 

pictures of the same scene t aken from different 

viavpoints , and we can identify the par ts of t he 

32 



two pictures that som., the same piece of 

the scene , we can then measure stereoscopic 

parallax and detercine the heights or depths 

of objects in the scene . Similarily, if we 

have two pictures taken at different times, 

we can use this information to measure the 

relative motions of objects in the scene (cars 

on a road, clouds in the sky, etc.). If we 

have two differently distorted pictures of the 

scene, we can use such piecewise matching to 

determine the relative distortion, so that it 

can be corrected if desired. 11 
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"There are many possible ways of measuring the degree of match 

o r mismatch between two functions, f and g , over a region t. For 

example, one can use as mismatch measures such expressions as: 

maxtlf-gl or ff1lf-gl orff1(f-g)2 

and so on (where the integrals become sums in the digital case). 

It is easily verified that these expressions arE:'. all "distance 

measures" or metrics . 

If we use II(f-g)2 as a measure of mismatch, we can derive 

a useful measure of match from it . Note, in fact , that 

ff(f-g) D fff2 + ffg2_ 2fffg 

Thus if IIf2 + IIg2 are fixed, the mismatch measure 11{£_g)2 is 

l arge if, and only if, Iltg is small . In other words, for given 

IIf2 and IIg2 we can use Ilfg as a measure of match. 
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The same conclusion can be r eached by making use of the wel1-

known Cauchy-Schwarz inequality, which states that for f and g 

non-negative, we always have 

with equality holding if and only if g ~ cf for some constant . 

(The analogous result in the digital case is 

E E f(i,j) g(i,j) ~ IE 
i j i 

E f(i,j)2 E E g(i,j)2 
j 

with equality holding if and only if g(i,j) = cf(i,j) for all i,j). 

Thus when fff2 and ffg 2 are given, the size of fffg is a measure 

of t.he degree of match between f and g (up to a constant factor). 

Suppose now that if f is a template, g a picture, and we 

want to find pieces of g that match f (We are tacitly assuming 

t hat f is small compared to g, i.e., f is zero outside a small 

region 1 , and we are interested onl y in matching the nonzero part 

of f against g . ), we can do this by shifting f into all possible 

positions relative to gf and computing fI£g for each such shift 

(U ,V). the Cauchy-Schwarz inequality, we have 

Since f is zero outside ! the left-hand side is equal to 

f f (x ,y) g(x+U ,y+V)dxdy 

which is just the cross-correlation Cfg of f and g. 



Note that on the right-hand side, while fff2 is a constant ffg 2 

is not, since it depends on U and V. Thus we cannot simply use 

Cfg as a measure of match; but we can use instead the normalized 

cross correlation 

Cfg/ Iff ~g2 (X+U,Y+V)dxdy 
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This quoti ent takes on its maximum possible value (namely,lff~f2 ) 

for displacements (U, V) at which g = cf." 



2 . Consider the following search area S and Window W (f=ty, g::S 

per A .1). 

(U+1-1) -
(V+j-1)=1 

2 
3 
4 
5 
6 
7 
9 

12345678 
o 0 0 0 0 000 
000 1 1 0 0 0 
o 0 0 0 0 0 0 0 
010 110 1 0 
01011010 
o 0 0 0 0 0 0 0 
000 1 1 0 0 0 
0000000 .0 

s 

1=1234 
j=l 0 0 0 0 

2 0 110 
3 0 1 1 0 
40000 

W 
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The following arrays result for the normalized cross - correlation 

dp..scrioed in A.I : 

(a) 
U=l 2 3 4 5 

V=l 0 1 2 1 0 
2 1 1 2 1 1 
J 224 2 2 
4 l1211 
5 01210 

(d) 

U=l 2 
V=l 0.00 0.45 

2 0.45 0 . 35 
3 1.00 0 . 82 
4 0 . 45 0 . 35 
5 0 . 00 0.45 

(b) 

3 
1. 00 
0.82 
2 . 00 
0.82 
1.00 

2p(U , V) 

Un1 2 3 4 5 
3 5 4 5 3 
5 8 6 8 5 
46464 
5 8 6 8 5 
35453 

4 5 
0.45 0 . 00 
0.35 0.45 
0 . S2 1.00 
0.35 0.45 
0 . 45 0.00 

(c) 
U=l 2 J 4 5 

V=l 3 5 4 5 3 
2 15/s/6/s/5 
3 11,/6/4/6/4 
4 15 Is 16/8/5 
5 1315141513 

(0) 

U =1 2 3 4 5 
0 . 00 0.22 0 . 50 0.22 0.00 
0 . 22 0.17 0.41 0 . 17 0 . 22 
0.50 0 . 17 1.00 0.41 0 . 50 
0 . 22 0 . 17 0.41 0 . 17 0 . 50 
0 . 00 0 . 22 0.50 0 . 22 0 . 00 

p(U ,V) 

Note ILEW2 = 2 

• 



The following functions or arrays for the case \vhere ReU , V) 

1s incremented + 1 for a match and decremented by 1 for no match 

result : 

(f) (g) 

U =1 2 3 4 5 
V=l 2 2 S 2 2 

2 2 - 4 4 -4 2 
3 S 4 16 4 S 
4 2 -4 4 -4 2 
5 2 2 S 2 2 

weighted R(U , V)=W*S+W*S-W*S­

W*S= (W-W)*(S-S) 

U =1 2 3 4 5 
11 S -;"1""/S.--.'1/""'2,...-,loi/r,;"s-;1-7/S· 
lIS -1 /4 114 - 1/4 lIS 
112 1/4 1 1/4 1/2 
lIS -1/4 114 -1/4 lIS 
lIS lIS 112 lIS lIS 

p(U ,V)=R(u,v)/16 

Locations of W with respect to S where little or no correlation 
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exists, but random matches of Wand S occur, would be averaged to 

o by the subtraction of the Wand S mismatch occurrences . The need 

tc normalize every point in the R(U , V) array is hence eliminated . 

The normalization is thus performed to provide an upper bound of 

1. TIle R(U,V) calcul ated in (f) is referred to as the weighted 

correlation func t ion in chapter two . Note , lv, S refer to the com-

pliment of the respective image W, S; i.e ., 0's are replaced 

by l ' s and lIs are replaced by Q's. 
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APPENDIX B 

The following will illustrate that the Fast Fourier Transform 

can save considerable calculations when performing a correlation 

operation . 

1. If Ak is a sequence of terms such as a digitally sampled 

function of N terms, then by definition the jth Fourier coefficient 

x(j) of the sequence is: 

N-l jk 
x (j) = liN E A(k) I, for j = 0,1, . .. N-I. 

k=D 

2rri/N 
where \V "" e the A(k) ' s are the complex coefficien ts of the 

sequence ~J and N is the number of terms in the sequence . If 

the x(j)s are expanded in the order indicated by the right side 

of the above equation , then N2 operations are required . lbe above 

descirbes the DFT or Direct Fourier Transform of a time series. If 

the expansion is regrouped as described by Cochran19 
J then the 

OFT calculation leads to a number of complex additions and multi-

plications which is proportional to Nlog2N. This is con~ider~bly 

fewer operations than would be required by expanding the above 

equation directly. However , N=2m, and N = large must be satisfied 

to realize computational savings. The following examples estimate 

the relative number of operacions required to convolve two sequences 
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of length N by direct convolution, DFT and FFT . The results are 

approximate and serve to scope the operations required for compara-

tive purposes. The one dimensional analysis can be extended to two 

20 
dimensional applications and is discussed by Cochran . 

2 . If one wished to convolve two sampled functions of N=16 . , 

Tne following operations result: 

Direct Convolution 
N 

Multiply and shift 2 En: 2N(N+l) 

DFT 

FFT 

fl~fl,fi'F2 

F xF 
1 2 

fl *f2+Fl xF2 

f *f -<-F xF 
1 2 1 2 

n>=:1 2 

2Nlog N 
2 

272 multiply-adds 

+ 16 

+ 256 

784 multiply-adds 

: 256 

+ 16 

+128 

400 multiply-adds 

3. The following example illustrates the condition when N=256 . 

Direct Convolution 

N 
Mul tiply and shift 2 E 

n=1 
n : 2N(N+1) 

2 

: 65,792 multiply-adds 



DFT 

FFT 

4. Summary 

\XF2 

f *f +F xF 
1 2 1 2 

2xN2 131,072 

2x2Nlog N 
2 

+ 256 

+ 65,536 

196,864 multiply-adds 

8,192 

256 

4,096 

12,544 multiply-adds 

40 

It becomes apparent from the above example that the DFT would 

never be practical to use, and that FFT offers significant computa-

tiona! savings for large sequences. Also, when convolving two 

sequences by use of the DFT or FFT computational technique, the 

vector/array of fl and £2 must be equal . 
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APPENDIX C 

Photo 1 is a typical image frame received from the Geo­

stationary Operating Environmental Satellite (GOES). The scene 

was provided by a scanning radiometer aboard the satellite which 

is a transd~cer sensitive to rcf)ected radiation in the visible 

band. White represents the brightest optical intensity~ and 

black the lowest. As the scene is scanned, it is seen that 

the land mass is characterized by a difference in texture and 

optical intensity than the ocean. The land features can then 

be classified or identified by the relative difference of optical 

intensity between land and water. Likewise, clouds are repre­

sented by the highest optical intensity in the scene and are 

distinguishable from both land or water. 

The original images was input uSing a TV camera. Statisti­

cal data for determining threshold tl and t2 were measured using 

the GE !}~GE 100 Processing System. Figures 8 and 9 are image 

intensity histo£rams with tl and t2 selected. Classification 

or selection of the thresholds was made by the visual identifi­

cation of modes (peaks) in the image intensity histograms and 

the correspondence with the orlginal image was verified by 

displaying rixels associated vlith the particular mode on the 

system CRT (Photo 1 and 2). 



Photo 1. Typical imagery from Geostationary Operating Satellite ( Y.I: mile 

resolution ). 
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Photo 2. Cloud detection with t1 

Photo 2. Land detection with t2 
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SYMBOL LIST 

N: number of parallel processors. 

R: cross correlation. 

Rws : cross correlation generated by the convolutions 
Wand S. 

p: 

Pws: 

S: 

normalized cross correlation. 

normalized cross correlation of R ws 

search area or reference picture. 

W: a sub image of S or piece of picture which matches 
S at (U*,V*). 

(x , y) : coordinates of analog suhimage W. 

(i,j): array of coordinates of digital picture elements of 
W. 

(U,V) : coordinates of W shifted relative to S. 

(u*,v*) : coordinates of the maximum value of a correlation 
array 

n : subframe number of W. 

Rws : c ross co r relation array generated by the convolution 
D nth subframe of Wand the search range of S. 

Pws: normalized Rws cor relation array . 
n n 

R' ws: course sampled cross correlation function Rws 
gener ated by the convolution of Wand every 
32nd pixel of S in the search r3nge. 

p1ws normalized R' ws correlation array . 
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, 
p ws 

n 

(U', V*)n: 

course sampled cross correlation function of Rws 
generated by the convolution of the nth sub- n 
fr ame of Wand ever y 32nd data pixel of S in the 
search range. 

normalized R' correlation array . 
W6 

n 
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coordinates of the maximum value of the nth sub frame 
correlation array 

Ta : time available between input data samples. 

r: number of data points or pixels in the search range . 

Qu : horizontal sample cycle. 

Qv : vertical sample cycle . 

weighted 
R' . 

wSn ' 

weighted 
p ' 

wSn 

the weighted cross correlation 1s a function which 
increments R'ws (U,V) for a match of Wand S, 
and decrements It , \';50 (U. V) for a mismatch of 10J 

and S. The mathematical ~ression which repre­
sents this function is (W-W) convolved with 
(5-8). The concept can he thought of a~ vir­
tually convolving two bi- valued images where 
l and=l and Y.'ater=-l. The resulting correlation 
array does not require nOrmAlization of every 
point in order to determine the location of the 
peak. Locations of tv with respect to S where 
little or no correlation exists would pr oduce 
a function output equal to 0 since the sum of the 
matches between Wand S which occur would be 
r andom. 

R' divided by the expected dynamic r ange of the wSn 
correlation array . 
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