4,703 research outputs found

    Exploring the Vacuum Geometry of N=1 Gauge Theories

    Get PDF
    Using techniques of algorithmic algebraic geometry, we present a new and efficient method for explicitly computing the vacuum space of N=1 gauge theories. We emphasize the importance of finding special geometric properties of these spaces in connecting phenomenology to guiding principles descending from high-energy physics. We exemplify the method by addressing various subsectors of the MSSM. In particular the geometry of the vacuum space of electroweak theory is described in detail, with and without right-handed neutrinos. We discuss the impact of our method on the search for evidence of underlying physics at a higher energy. Finally we describe how our results can be used to rule out certain top-down constructions of electroweak physics.Comment: 35 pages, 2 figures, LaTe

    Formalized proof, computation, and the construction problem in algebraic geometry

    Full text link
    An informal discussion of how the construction problem in algebraic geometry motivates the search for formal proof methods. Also includes a brief discussion of my own progress up to now, which concerns the formalization of category theory within a ZFC-like environment

    Universality theorems for inscribed polytopes and Delaunay triangulations

    Full text link
    We prove that every primary basic semialgebraic set is homotopy equivalent to the set of inscribed realizations (up to M\"obius transformation) of a polytope. If the semialgebraic set is moreover open, then, in addition, we prove that (up to homotopy) it is a retract of the realization space of some inscribed neighborly (and simplicial) polytope. We also show that all algebraic extensions of Q\mathbb{Q} are needed to coordinatize inscribed polytopes. These statements show that inscribed polytopes exhibit the Mn\"ev universality phenomenon. Via stereographic projections, these theorems have a direct translation to universality theorems for Delaunay subdivisions. In particular, our results imply that the realizability problem for Delaunay triangulations is polynomially equivalent to the existential theory of the reals.Comment: 15 pages, 2 figure

    Common transversals and tangents to two lines and two quadrics in P^3

    Get PDF
    We solve the following geometric problem, which arises in several three-dimensional applications in computational geometry: For which arrangements of two lines and two spheres in R^3 are there infinitely many lines simultaneously transversal to the two lines and tangent to the two spheres? We also treat a generalization of this problem to projective quadrics: Replacing the spheres in R^3 by quadrics in projective space P^3, and fixing the lines and one general quadric, we give the following complete geometric description of the set of (second) quadrics for which the 2 lines and 2 quadrics have infinitely many transversals and tangents: In the nine-dimensional projective space P^9 of quadrics, this is a curve of degree 24 consisting of 12 plane conics, a remarkably reducible variety.Comment: 26 pages, 9 .eps figures, web page with more pictures and and archive of computations: http://www.math.umass.edu/~sottile/pages/2l2s

    Multivariate Residues and Maximal Unitarity

    Full text link
    We extend the maximal unitarity method to amplitude contributions whose cuts define multidimensional algebraic varieties. The technique is valid to all orders and is explicitly demonstrated at three loops in gauge theories with any number of fermions and scalars in the adjoint representation. Deca-cuts realized by replacement of real slice integration contours by higher-dimensional tori encircling the global poles are used to factorize the planar triple box onto a product of trees. We apply computational algebraic geometry and multivariate complex analysis to derive unique projectors for all master integral coefficients and obtain compact analytic formulae in terms of tree-level data.Comment: 34 pages, 3 figure
    • …
    corecore