16,600 research outputs found

    Hierarchical search strategy for the detection of gravitational waves from coalescing binaries: Extension to post-Newtonian wave forms

    Get PDF
    The detection of gravitational waves from coalescing compact binaries would be a computationally intensive process if a single bank of template wave forms (i.e., a one step search) is used. In an earlier paper we had presented a detection strategy, called a two step search}, that utilizes a hierarchy of template banks. It was shown that in the simple case of a family of Newtonian signals, an on-line two step search was about 8 times faster than an on-line one step search (for initial LIGO). In this paper we extend the two step search to the more realistic case of zero spin 1.5 post-Newtonian wave forms. We also present formulas for detection and false alarm probabilities which take statistical correlations into account. We find that for the case of a 1.5 post-Newtonian family of templates and signals, an on-line two step search requires about 1/21 the computing power that would be required for the corresponding on-line one step search. This reduction is achieved when signals having strength S = 10.34 are required to be detected with a probability of 0.95, at an average of one false event per year, and the noise power spectral density used is that of advanced LIGO. For initial LIGO, the reduction achieved in computing power is about 1/27 for S = 9.98 and the same probabilities for detection and false alarm as above.Comment: 30 page RevTeX file and 17 figures (postscript). Submitted to PRD Feb 21, 199

    Arcfinder: An algorithm for the automatic detection of gravitational arcs

    Full text link
    We present an efficient algorithm designed for and capable of detecting elongated, thin features such as lines and curves in astronomical images, and its application to the automatic detection of gravitational arcs. The algorithm is sufficiently robust to detect such features even if their surface brightness is near the pixel noise in the image, yet the amount of spurious detections is low. The algorithm subdivides the image into a grid of overlapping cells which are iteratively shifted towards a local centre of brightness in their immediate neighbourhood. It then computes the ellipticity for each cell, and combines cells with correlated ellipticities into objects. These are combined to graphs in a next step, which are then further processed to determine properties of the detected objects. We demonstrate the operation and the efficiency of the algorithm applying it to HST images of galaxy clusters known to contain gravitational arcs. The algorithm completes the analysis of an image with 3000x3000 pixels in about 4 seconds on an ordinary desktop PC. We discuss further applications, the method's remaining problems and possible approaches to their solution.Comment: 12 pages, 12 figure

    All-sky search algorithms for monochromatic signals in resonant bar GW detector data

    Get PDF
    In this paper we design and develop several filtering strategies for the analysis of data generated by a resonant bar Gravitational Wave (GW) antenna, with the goal to assess the presence (or absence) in them of long duration monochromatic GW signals, as well as their eventual amplitude and frequency, within the sensitivity band of the detector. Such signals are most likely generated in the fast rotation of slightly asymmetric spinning stars. We shall develop the practical procedures, together with the study of their statistical properties, which will provide us with useful information on each technique's performance. The selection of candidate events will then be established according to threshold-crossing probabilities, based on the Neyman-Pearson criterion. In particular, it will be shown that our approach, based on phase estimation, presents better signal-to-noise ratio than the most common one of pure spectral analysis.Comment: 17 pages, 10 PS figures, psbox, MNRAS TeX, submitted to MNRAS, revised 22-june-1998, full quality figures available compressed at ftp://fismat.ffn.ub.es/pub/papers/gr-qc/fig_9804026.zi

    Cotunneling and non-equilibrium magnetization in magnetic molecular monolayers

    Full text link
    Transport and non-equilibrium magnetization in monolayers of magnetic molecules subject to a bias voltage are considered. We apply a master-equation approach going beyond the sequential-tunneling approximation to study the Coulomb-blockade regime. While the current is very small in this case, the magnetization shows changes of the order of the saturation magnetization for small variations of the bias voltage. Inelastic cotunneling processes manifest themselves as differential-conductance steps, which are accompanied by much larger changes in the magnetization. In addition, the magnetization in the Coulomb-blockade regime exhibits strong signatures of sequential tunneling processes de-exciting molecular states populated by inelastic cotunneling. We also consider the case of a single molecule, finding that cotunneling processes lead to the occurrence of magnetic sidebands below the Coulomb-blockade threshold. In the context of molecular electronics, we study how additional spin relaxation suppresses the fine structure in transport and magnetization.Comment: 8 pages, 8 figures, version as publishe

    Conceptual mechanization studies for a horizon definition spacecraft attitude control subsystem, phase A, part II, 10 October 1966 - 29 May 1967

    Get PDF
    Attitude control subsystem for spin stabilized spacecraft for mapping earths infrared horizon radiance profiles in 15 micron carbon dioxide absorption ban

    Post-merger evolution of a neutron star-black hole binary with neutrino transport

    Get PDF
    We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of a disk after a black hole-neutron star merger. We use as initial data an existing general relativistic simulation of the merger of a neutron star of 1.4 solar mass with a black hole of 7 solar mass and dimensionless spin a/M=0.8. Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron to proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that the remnant is less neutron-rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects. Over the short timescale evolved, we do not observe purely neutrino-driven outflows. However, a small amount of material (3e-4Msun) is ejected in the polar region during the circularization of the disk. Most of that material is ejected early in the formation of the disk, and is fairly neutron rich. Through r-process nucleosynthesis, that material should produce high-opacity lanthanides in the polar region, and could thus affect the lightcurve of radioactively powered electromagnetic transients. We also show that by the end of the simulation, while the bulk of the disk is neutron-rich, its outer layers have a higher electron fraction. As that material would be the first to be unbound by disk outflows on longer timescales, the changes in Ye experienced during the formation of the disk could have an impact on the nucleosynthesis outputs from neutrino-driven and viscously-driven outflows. [Abridged]Comment: 29 pages, 25 figure
    • …
    corecore