research

Cotunneling and non-equilibrium magnetization in magnetic molecular monolayers

Abstract

Transport and non-equilibrium magnetization in monolayers of magnetic molecules subject to a bias voltage are considered. We apply a master-equation approach going beyond the sequential-tunneling approximation to study the Coulomb-blockade regime. While the current is very small in this case, the magnetization shows changes of the order of the saturation magnetization for small variations of the bias voltage. Inelastic cotunneling processes manifest themselves as differential-conductance steps, which are accompanied by much larger changes in the magnetization. In addition, the magnetization in the Coulomb-blockade regime exhibits strong signatures of sequential tunneling processes de-exciting molecular states populated by inelastic cotunneling. We also consider the case of a single molecule, finding that cotunneling processes lead to the occurrence of magnetic sidebands below the Coulomb-blockade threshold. In the context of molecular electronics, we study how additional spin relaxation suppresses the fine structure in transport and magnetization.Comment: 8 pages, 8 figures, version as publishe

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020