12,398 research outputs found

    A characterization of switched linear control systems with finite L 2 -gain

    Get PDF
    Motivated by an open problem posed by J.P. Hespanha, we extend the notion of Barabanov norm and extremal trajectory to classes of switching signals that are not closed under concatenation. We use these tools to prove that the finiteness of the L2-gain is equivalent, for a large set of switched linear control systems, to the condition that the generalized spectral radius associated with any minimal realization of the original switched system is smaller than one

    Balanced truncation for linear switched systems

    Full text link
    In this paper, we present a theoretical analysis of the model reduction algorithm for linear switched systems. This algorithm is a reminiscence of the balanced truncation method for linear parameter varying systems. Specifically in this paper, we provide a bound on the approximation error in L2 norm for continuous-time and l2 norm for discrete-time linear switched systems. We provide a system theoretic interpretation of grammians and their singular values. Furthermore, we show that the performance of bal- anced truncation depends only on the input-output map and not on the choice of the state-space representation. For a class of stable discrete-time linear switched systems (so called strongly stable systems), we define nice controllability and nice observability grammians, which are genuinely related to reachability and controllability of switched systems. In addition, we show that quadratic stability and LMI estimates of the L2 and l2 gains depend only on the input-output map.Comment: We have corrected a number of typos and inconsistencies. In addition, we added new results in Theorem

    Multi-Step Knowledge-Aided Iterative ESPRIT for Direction Finding

    Full text link
    In this work, we propose a subspace-based algorithm for DOA estimation which iteratively reduces the disturbance factors of the estimated data covariance matrix and incorporates prior knowledge which is gradually obtained on line. An analysis of the MSE of the reshaped data covariance matrix is carried out along with comparisons between computational complexities of the proposed and existing algorithms. Simulations focusing on closely-spaced sources, where they are uncorrelated and correlated, illustrate the improvements achieved.Comment: 7 figures. arXiv admin note: text overlap with arXiv:1703.1052

    Uplink Multiuser MIMO Detection Scheme with Reduced Computational Complexity

    Get PDF
    The wireless communication systems with multiple antennas have recently received significant attention due to their higher capacity and better immunity to fading channels as compared to single antenna systems. A fast antenna selection scheme has been introduced for the uplink multiuser multiple-input multiple-output (MIMO) detection to achieve diversity gains, but the computational complexity of the fast antenna selection scheme in multiuser systems is very high due to repetitive pseudo-inversion computations. In this paper, a new uplink multiuser detection scheme is proposed adopting a switch-and-examine combining (SEC) scheme and the Cholesky decomposition to solve the computational complexity problem. K users are considered that each users is equipped with two transmit antennas for Alamouti space-time block code (STBC) over wireless Rayleigh fading channels. Simulation results show that the computational complexity of the proposed scheme is much lower than the systems with exhaustive and fast antenna selection, while the proposed scheme does not experience the degradations of bit error rate (BER) performances

    Conversion from linear to circular polarization in FPGA

    Full text link
    Context: Radio astronomical receivers are now expanding their frequency range to cover large (octave) fractional bandwidths for sensitivity and spectral flexibility, which makes the design of good analogue circular polarizers challenging. Better polarization purity requires a flatter phase response over increasingly wide bandwidth, which is most easily achieved with digital techniques. They offer the ability to form circular polarization with perfect polarization purity over arbitrarily wide fractional bandwidths, due to the ease of introducing a perfect quadrature phase shift. Further, the rapid improvements in field programmable gate arrays provide the high processing power, low cost, portability and reconfigurability needed to make practical the implementation of the formation of circular polarization digitally. Aims: Here we explore the performance of a circular polarizer implemented with digital techniques. Methods: We designed a digital circular polarizer in which the intermediate frequency signals from a receiver with native linear polarizations were sampled and converted to circular polarization. The frequency-dependent instrumental phase difference and gain scaling factors were determined using an injected noise signal and applied to the two linear polarizations to equalize the transfer characteristics of the two polarization channels. This equalization was performed in 512 frequency channels over a 512 MHz bandwidth. Circular polarization was formed by quadrature phase shifting and summing the equalized linear polarization signals. Results: We obtained polarization purity of -25 dB corresponding to a D-term of 0.06 over the whole bandwidth. Conclusions: This technique enables construction of broad-band radio astronomy receivers with native linear polarization to form circular polarization for VLBI.Comment: 11 pages 8 figure

    On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters

    Get PDF
    Copyright [2002] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we investigate the stochastic stabilization problem for a class of bilinear continuous time-delay uncertain systems with Markovian jumping parameters. Specifically, the stochastic bilinear jump system under study involves unknown state time-delay, parameter uncertainties, and unknown nonlinear deterministic disturbances. The jumping parameters considered here form a continuous-time discrete-state homogeneous Markov process. The whole system may be regarded as a stochastic bilinear hybrid system that includes both time-evolving and event-driven mechanisms. Our attention is focused on the design of a robust state-feedback controller such that, for all admissible uncertainties as well as nonlinear disturbances, the closed-loop system is stochastically exponentially stable in the mean square, independent of the time delay. Sufficient conditions are established to guarantee the existence of desired robust controllers, which are given in terms of the solutions to a set of either linear matrix inequalities (LMIs), or coupled quadratic matrix inequalities. The developed theory is illustrated by numerical simulatio
    • …
    corecore