3,362 research outputs found

    Conversations on Empathy

    Get PDF
    In the aftermath of a global pandemic, amidst new and ongoing wars, genocide, inequality, and staggering ecological collapse, some in the public and political arena have argued that we are in desperate need of greater empathy — be this with our neighbours, refugees, war victims, the vulnerable or disappearing animal and plant species. This interdisciplinary volume asks the crucial questions: How does a better understanding of empathy contribute, if at all, to our understanding of others? How is it implicated in the ways we perceive, understand and constitute others as subjects? Conversations on Empathy examines how empathy might be enacted and experienced either as a way to highlight forms of otherness or, instead, to overcome what might otherwise appear to be irreducible differences. It explores the ways in which empathy enables us to understand, imagine and create sameness and otherness in our everyday intersubjective encounters focusing on a varied range of "radical others" – others who are perceived as being dramatically different from oneself. With a focus on the importance of empathy to understand difference, the book contends that the role of empathy is critical, now more than ever, for thinking about local and global challenges of interconnectedness, care and justice

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Resilience of 3-Majority Dynamics to Non-Uniform Schedulers

    Get PDF

    Minimum algorithm sizes for self-stabilizing gathering and related problems of autonomous mobile robots

    Full text link
    We investigate a swarm of autonomous mobile robots in the Euclidean plane. A robot has a function called {\em target function} to determine the destination point from the robots' positions. All robots in the swarm conventionally take the same target function, but there is apparent limitation in problem-solving ability. We allow the robots to take different target functions. The number of different target functions necessary and sufficient to solve a problem Π\Pi is called the {\em minimum algorithm size} (MAS) for Π\Pi. We establish the MASs for solving the gathering and related problems from {\bf any} initial configuration, i.e., in a {\bf self-stabilizing} manner. We show, for example, for 1≀c≀n1 \leq c \leq n, there is a problem Πc\Pi_c such that the MAS for the Πc\Pi_c is cc, where nn is the size of swarm. The MAS for the gathering problem is 2, and the MAS for the fault tolerant gathering problem is 3, when 1≀f(<n)1 \leq f (< n) robots may crash, but the MAS for the problem of gathering all robot (including faulty ones) at a point is not solvable (even if all robots have distinct target functions), as long as a robot may crash

    Seeing is Believing: Detecting Sybil Attack in FANET by Matching Visual and Auditory Domains

    Full text link
    The flying ad hoc network (FANET) will play a crucial role in the B5G/6G era since it provides wide coverage and on-demand deployment services in a distributed manner. The detection of Sybil attacks is essential to ensure trusted communication in FANET. Nevertheless, the conventional methods only utilize the untrusted information that UAV nodes passively ``heard'' from the ``auditory" domain (AD), resulting in severe communication disruptions and even collision accidents. In this paper, we present a novel VA-matching solution that matches the neighbors observed from both the AD and the ``visual'' domain (VD), which is the first solution that enables UAVs to accurately correlate what they ``see'' from VD and ``hear'' from AD to detect the Sybil attacks. Relative entropy is utilized to describe the similarity of observed characteristics from dual domains. The dynamic weight algorithm is proposed to distinguish neighbors according to the characteristics' popularity. The matching model of neighbors observed from AD and VD is established and solved by the vampire bat optimizer. Experiment results show that the proposed VA-matching solution removes the unreliability of individual characteristics and single domains. It significantly outperforms the conventional RSSI-based method in detecting Sybil attacks. Furthermore, it has strong robustness and achieves high precision and recall rates.Comment: 7 pages, 9 figures, 1 tabl

    Population Protocols with Unordered Data

    Get PDF
    Population protocols form a well-established model of computation of passively mobile anonymous agents with constant-size memory. It is well known that population protocols compute Presburger-definable predicates, such as absolute majority and counting predicates. In this work, we initiate the study of population protocols operating over arbitrarily large data domains. More precisely, we introduce population protocols with unordered data as a formalism to reason about anonymous crowd computing over unordered sequences of data. We first show that it is possible to determine whether an unordered sequence from an infinite data domain has a datum with absolute majority. We then establish the expressive power of the "immediate observation" restriction of our model, namely where, in each interaction, an agent observes another agent who is unaware of the interaction

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    Exploiting Process Algebras and BPM Techniques for Guaranteeing Success of Distributed Activities

    Get PDF
    The communications and collaborations among activities, pro- cesses, or systems, in general, are the base of complex sys- tems defined as distributed systems. Given the increasing complexity of their structure, interactions, and functionali- ties, many research areas are interested in providing mod- elling techniques and verification capabilities to guarantee their correctness and satisfaction of properties. In particular, the formal methods community provides robust verification techniques to prove system properties. However, most ap- proaches rely on manually designed formal models, making the analysis process challenging because it requires an expert in the field. On the other hand, the BPM community pro- vides a widely used graphical notation (i.e., BPMN) to design internal behaviour and interactions of complex distributed systems that can be enhanced with additional features (e.g., privacy technologies). Furthermore, BPM uses process min- ing techniques to automatically discover these models from events observation. However, verifying properties and ex- pected behaviour, especially in collaborations, still needs a solid methodology. This thesis aims at exploiting the features of the formal meth- ods and BPM communities to provide approaches that en- able formal verification over distributed systems. In this con- text, we propose two approaches. The modelling-based ap- proach starts from BPMN models and produces process al- gebra specifications to enable formal verification of system properties, including privacy-related ones. The process mining- based approach starts from logs observations to automati- xv cally generate process algebra specifications to enable veri- fication capabilities

    Microcredentials to support PBL

    Get PDF

    Optical ground receivers for satellite based quantum communications

    Get PDF
    Cryptography has always been a key technology in security, privacy and defence. From ancient Roman times, where messages were sent cyphered with simple encoding techniques, to modern times and the complex security protocols of the Internet. During the last decades, security of information has been assumed, since classical computers do not have the power to break the passwords used every day (if they are generated properly). However, in 1984, a new threat emerged when Peter Shor presented the Shor’s algorithm, an algorithm that could be used in quantum computers to break many of the secure communication protocols nowadays. Current quantum computers are still in their early stages, with not enough qubits to perform this algorithm in reasonable times. However, the threat is present, not future, since the messages that are being sent by important institutions can be stored, and decoded in the future once quantum computers are available. Quantum key distribution (QKD) is one of the solutions proposed for this threat, and the only one mathematically proven to be secure with no assumptions on the eavesdropper power. This optical technology has recently gained interest to be performed with satellite communications, the main reason being the relative ease to deploy a global network in this way. In satellite QKD, the parameter space and available technology to optimise are very big, so there is still a lot of work to be done to understand which is the optimal way to exploit this technology. This dissertation investigates one of these parameters, the encoding scheme. Most satellite QKD systems use polarisation schemes nowadays. This thesis presents for the first time an experimental work of a time-bin encoding scheme for free-space receivers within a full QKD system in the second chapter. The third and fourth chapter explore the advantages of having multi-protocol free-space receivers that can boost the interoperability between systems, polarisation filtering techniques to reduce background. Finally, the last chapter presents a new technology that can help increase communications rates
    • 

    corecore