2,399 research outputs found

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    On the possible Computational Power of the Human Mind

    Full text link
    The aim of this paper is to address the question: Can an artificial neural network (ANN) model be used as a possible characterization of the power of the human mind? We will discuss what might be the relationship between such a model and its natural counterpart. A possible characterization of the different power capabilities of the mind is suggested in terms of the information contained (in its computational complexity) or achievable by it. Such characterization takes advantage of recent results based on natural neural networks (NNN) and the computational power of arbitrary artificial neural networks (ANN). The possible acceptance of neural networks as the model of the human mind's operation makes the aforementioned quite relevant.Comment: Complexity, Science and Society Conference, 2005, University of Liverpool, UK. 23 page

    On the relevance of the neurobiological analogue of the finite-state architecture

    Get PDF
    We present two simple arguments for the potential relevance of a neurobiological analogue of the finite-state architecture. The first assumes the classical cognitive framework, is well-known, and is based on the assumption that the brain is finite with respect to its memory organization. The second is formulated within a general dynamical systems framework and is based on the assumption that the brain sustains some level of noise and/or does not utilize infinite precision processing. We briefly review the classical cognitive framework based on Church-Turing computability and non-classical approaches based on analog processing in dynamical systems. We conclude that the dynamical neurobiological analogue of the finite-state architecture appears to be relevant, at least at an implementational level, for cognitive brain systems

    Information Processing, Computation and Cognition

    Get PDF
    Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both – although others disagree vehemently. Yet different cognitive scientists use ‘computation’ and ‘information processing’ to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are the same thing. In this paper, we address this unsatisfactory state of affairs by presenting a general and theory-neutral account of computation and information processing. We also apply our framework by analyzing the relations between computation and information processing on one hand and classicism and connectionism/computational neuroscience on the other. We defend the relevance to cognitive science of both computation, at least in a generic sense, and information processing, in three important senses of the term. Our account advances several foundational debates in cognitive science by untangling some of their conceptual knots in a theory-neutral way. By leveling the playing field, we pave the way for the future resolution of the debates’ empirical aspects

    Computation vs. Information Processing: Why Their Difference Matters to Cognitive Science

    Get PDF
    Since the cognitive revolution, it’s become commonplace that cognition involves both computation and information processing. Is this one claim or two? Is computation the same as information processing? The two terms are often used interchangeably, but this usage masks important differences. In this paper, we distinguish information processing from computation and examine some of their mutual relations, shedding light on the role each can play in a theory of cognition. We recommend that theorists of cognition be explicit and careful in choosing\ud notions of computation and information and connecting them together. Much confusion can be avoided by doing so

    Notes on the Mathematical Foundations of Analogue Computation

    Get PDF
    Digital computing has its mathematical foundations in (classical) recursion theory and constructive mathematics. The implicit, working, assumption of those who practice the noble art of analog computing may well be that the mathematical foundations of their subject is as sound as the foundations of the real analysis. That, in turn, implies a reliance on the soundness of set theory plus the axiom of choice. This is, surely, seriously disturbing from a computation point of view. Therefore, in this paper, I seek to locate a foundation for analog computing in exhibiting some tentative dualities with results that are analogous to those that are standard in computability theory. The main question, from the point of view of economics, is whether the Phillips Machine, as an analog computer, has universal computing properties. The conjectured answer is in the negative.
    • 

    corecore