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Abstract

Digital computing has its mathematical foundations in (classical) recursion
theory and constructive mathematics. The implicit, working, assumption of
those who practice the noble art of analog computing may well be that the
mathematical foundations of their subject is as sound as the foundations of the
real analysis. That, in turn, implies a reliance on the soundness of set theory
plus the axiom of choice. This is, surely, seriously disturbing from a computation
point of view. Therefore, in this paper, I seek to locate a foundation for analog
computing in exhibiting some tentative dualities with results that are analogous
to those that are standard in computability theory. The main question, from
the point of view of economics, is whether the Phillips Machine, as an analog
computer, has universal computing properties. The conjectured answer is in the
negative.
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1 Introductory Notes

"More speci�cally, do computer trajectories �correspond�to ac-
tual trajectories of the system under study? The answer is some-
times no. In other words, there is no guarantee that there exists a
true trajectory that stays near a given computer-generated numeri-
cal trajectory. ....
Therefore, the use of an ODE solver on a �nite-precision com-

puter to approximate a trajectory of a .... dynamical system leads
to a fundamental paradox. .... Under what conditions will the com-
puted trajectory be close to a true trajectory of the model?"
[14], p.961.

There are two caveats, from an analog computing point of view, that should
be remembered: one, the �computer trajectories�, referred to above, are those
generated by a digital computer; secondly, the �fundamental paradox�should not
be relevant for an analog computer (subject, of course, to machine precision,
which is di¤erent from �nite-precision in a digital computer).
But there could be other paradoxes between the mathematical theory of an

analog computing machine and its theoretical limits and its actual trajectories.
The aim of this paper is to pave an introductory path towards a discussion of
this possible paradox, in the context of the actual functioning philosophy and
epistemology of a Phillips Machine.
There is a clear acknowledgement �albeit somewhat belated �to the long

and rich tradition of considering computability and complexity of models de-
�ned over <, in a variety of recursive and computable analytic frameworks, by
Smale, a leading advocate of side-stepping the Turing model of computation for
computation over the reals, in [16], p.61:

"Indeed, some work has now been done to adapt the Turing machine
framework to deal with real numbers........ Thus, the foundations
are probably being laid for a theory of computation over the real
numbers."

This acknowledgement comes in 1991 after almost six decades of work by
recursive and computable analysts to adapt the Turing model to domains over
<: Weihrauch, himself a notable contributor to this adapting tradition refutes
what I can only call a �preposterous�claim in [1], p.23 (italics added):

"A major obstacle to reconciling scienti�c computation and com-
puter science is the present view of the machine, that is the digital
computer. As long as the computer is seen simply as a �nite or
discrete object, it will be di¢ cult to systematize numerical analysis.
We believe that the Turing machine as a foundation for real number
algorithms can only obscure concepts."

I can only endorse, wholeheartedly, Weihrauch�s entirely justi�able claim
that the theory presented in his book, [18], p.268, �refutes [the above] statement.�
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But even the gods �nod�, sometimes! Systematizing numerical analysis is one
thing; computing over the reals may well be quite another thing �especially since
the de�nition of real numbers can be approached from a variety of mathematical
and logical points of view. If we concentrate on computing over the reals, then
the long and noble analog computing tradition, using only a �nite number of
discrete objects, can accomplish �at least theoretically �anything that can be
achieved by taking the numerical analysis route.
One of the recurrent themes in the work by Smale and his co-workers on

Real Number Computation ([1]) is the need for a model of computation over the
reals so that the classic problems of mathematical physics, or applied mathe-
matics, like those posed by the need to solve, numerically, ordinary di¤erential
equations, de�ned over R, can be achieved in a theoretically satisfactory way.
Consider the following system of nonlinear ordinary di¤erential equations, the
so-called Rössler System:

dx

dt
= � (y + z)

dy

dt
= x+ 0:2y

dz

dt
= 0:2 + z (x� 5:7)

Suppose a General Purpose Analogue Computer (GPAS )1 is de�ned in terms
of the usual adders, multipliers and integrators as the elementary units, analo-
gous to the elementary operations de�ning a Turing Machine or a partial recur-
sive function (��recursion, minimalization, etc.,). Then it can be shown that
a GPAS consisting of 3 adders, 8 multipliers and 3 integrators (the symbolic
de�nitions are given in the next section) can simulate the above Rössler System
(see Figure 1). The intermediate step of having to use a numerical algorithm
to implement a computation, as in a Turing Machine model, is circumvented in
the analog computation model.
In implementing a particular computation in the Phillips Machine, there

is no need for the intermediate step of writing an algorithm for the numerical
computation of the dynamics of the di¤erential equation. The di¤erential equa-
tion, in turn has the dual purpose of being a model of the economy and that
of the dynamics of the machine. In the case of the Phillips Machine a linear
di¤erential equation model plays this dual role. However, despite the ingenuity
with which Phillips constructed his machine, so that the dynamics of the �ows
and the stocks can be approximated by linear di¤erential equations, the actual
functioning of the Phillips Machine remains stubbornly nonlinear.
Is it not better, then, to avoid the linearizations and try to model, directly

and faithfully, the nonlinear dynamics of the machine? If this is done, and with
the added advantage of circumventing the intermediate step of implementing
a numerical algorithm, would not the model dynamics, as represented, in real
time, by the analog machine � in our case, the Phillips Machine �depict the

1See the formal de�nition in the next section.
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Figure 1: Rossler System
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actual dynamics of the modelled economy? If this is so, the only problems an
analog computing adherent needs to face are those that have been faced, and
largely resolved, by the recursion theorist.
This is the reason for seeking the mathematical foundations of analog com-

putation from the point of view of classical computability theory.

2 Theoretical Notes

"Church�s thesis, that all reasonable de�nitions of �computabil-
ity�are equivalent, is not usually thought of in terms of computabil-
ity by a continuous computer, of which the general-purpose analog
computer (GPAC) is a prototype."
[13], p. 1011

Consider the linear, second order, di¤erential equation that once formed the
fountainhead of Keynesian, endogenous, macroeconomic theories of the cycle
(indeed the kind of equation used in the Phillips di¤erential equation model of
the macroeconomy):

a�x+ b _x+ kx = F (1)

Solving, as in elementary textbook practice, for the second order term, �x :

�x =
1

a
F � k

a
x� b

a
_x (2)

Integrating (2) gives the value for _x to be replaced in the third term in the
above equation.
Integrating _x, gives the value for x, and the system is �solved�2 . Thus, three

mechanical elements have to be put together in the form of a machine to imple-
ment a solution for (2):

� A machine element that would add terms, denoted by a circle;

� An element that could multiply constants or variables by constants, de-
noted by an equilateral triangle;

2This is the reason why analogue computing is sometimes referred to as resorting to �boot-
strap�methods. But it is more relevant, especially in computability contexts, to refer to this
aspect as �self-reference�. Recall Goodwin�s perceptive observation, more than half a century
ago:

"A servomechanism regulates its behaviour by its own behaviour in the light
of its stated object and therein lies the secret of its extraordinary �nesse in
performance. .... It is a matter of considerable interest that Walras�conception
of and term for dynamical adjustment - tâtonner, to grope, to feel one�s way -
is literally the same as that of modern servo theory." (cf.[7] ; italics added)
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Figure 2: Linear Second Order Di¤erential Equation

� An element that could �integrate�, in the formal mathematical sense, with-
out resorting to sums and limiting processes, denoted by a �funnel-like�
symbol;

One adder, three multipliers and two integrators, connected as in Figure 2,
can solve the above equation3 :
Note several distinguishing features of this analogue computing circuit dia-

gram. First of all, there are no time-sequencing arrows, except as an indicator
of the �nal output, the solution, because all the activity, the summing, multi-
plication and integration, goes on simultaneously. Secondly, no approximations,
limit processes of summation, etc., are involved in the integrator; it is a nat-
ural physical operation, just like the operations and displays on the odometer

3One must add rules of interconnection such as each input is connected to at most one
output, feasibility of feedback connections, and so on. But I shall leave this part to be
understood intuitively and refer to some of the discussion in [11], pp. 9-11; observe, in
particular, the important remark that (ibid, p.10, italics in the original):

"[F]eedback, which may be conceived of as a form of continuous recursion,
is permitted."
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in a motor car or the voltage meter reading in your home electricity supplier�s
measuring unit. Of course, there are the natural physical constraints imposed
by the laws of physics and the limits of precision mechanics and engineering,
something that is common to both digital and analogue computing devices, so
long as physical realizations of mathematical formalisms are required.
In principle, any ODE can be solved using just these three kinds of ma-

chine elements linked appropriately because, using the formula for integrating
by parts, a need for an element for di¤erentiating products can be dispensed
with. However, these machine elements must be supplemented by two other
kinds of units to take into account the usual independent variable, time in most
cases, and one more to keep track of the reals that are used in the adder and
the multiplier. This is analogous to Turing�s �notes to assist the memory�, but
play a more indispensable role. Just as in Turing�s case, one can, almost safely,
conclude that �these elements, appropriately connected, including "bootstrap-
ping" - i.e., with feedbacks - exhaust the necessary units for the solving of an
ODE�. Accepting this conjecture pro tempore, in the same spirit in which one
works within the Church-Turing Thesis in Classical Recursion Theory, a �rst
de�nition of an analogue computer could go as follows:

De�nition 1 A General Purpose Analogue Computer (GPAC) is machine made
up of the elemental units: adders, multipliers and integrators, supplemented by
auxiliary units to keep track of the independent variable and real numbers that
are inputs to the machine process, and are interconnected, with necessary feed-
backs between or within the elemental units to function simultaneously.

Recalling the fertile and mutual interaction between partial recursive func-
tions and Turing Machines, one would seek a de�nition, if possible by construc-
tion, of the class of functions that are analog computable by GPACs. These are
precisely the algebraic di¤erential equations ([11], p.7, [12], p.26, [15], pp.340-3).

De�nition 2 An algebraic di¤erential polynomial is an expression of the form
:

nX
i=1

aix
riyq0i (y0)

q1i ::::
�
y(ki)

�qkii
(3)

where ai is a real number, ri; q0i; ::::::; qkii are non�negative integer valued
and y is a function of x:

De�nition 3 Algebraic di¤erential equations (ADEs) are ODEs of the form:

P
�
x; y; y0; y00; :::::; y(n)

�
= 0 (4)

where P is an algebraic di¤erential polynomial not identically equal to zero.
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De�nition 4 Any solution y(x) of an ADE is called di¤erentially algebraic
(DA); otherwise they are called transcendentally-transcendental ([12]) or hyper-
transcendental ([15]).

Clearly, the de�nition of ADEs includes all the usual sets of simultaneous
systems of linear and nonlinear di¤erential equations that economists routinely
- and non-routinely - use. So, we are guaranteed that they are solvable by means
of GPACs. Now one can pose some simple questions, partly motivated by the
traditions of classical recursion theory:

� Are the solutions to ADEs, generated by GPACs, computable?

� Is there a corresponding concept to universal computation or a universal
computer in the case of analogue computation by GPACs?

� Is there a �x point principle in analogue computing by GPACs that is
equivalent or corresponds to the classic recursion theoretic �x point theo-
rem?

� Is there a �Church-Turing Thesis�for analogue computing by GPACs?

The reason I ask just these questions is that an economist who indiscrimi-
nately and arbitrarily formulates dynamical hypotheses in terms of ODEs and
attempts to theorise, simulate and experiment with them must be disciplined in
some way - in the same sense in which recursion theory and numerical analysis
discipline a theorist with warnings on solvability, uncomputability, approxima-
bility, etc. It is all very well that the Bernoulli equation underpins the Solow
growth model or the Riccati equation underpins the use of control theory mod-
elling environments or the Rayleigh, van der Pol and Lotka-Volterra systems are
widely invoked in endogenous business cycle theories. Their use for simulations
calls forth the conundrums mentioned above for digital computers and they may
require other kinds of constraints to be respected in the case of simulations by
GPACs. There will, of course, be engineering constraints: precision engineering
requirements on the constructions of the adders, multipliers and the integrators
can only achieve a certain level of precision, exactly as the thermodynamic con-
straints of heat irreversibilities in the integrated circuits of the digital computer.
I do not attempt to deal with these latter issues in this paper.
The answer, broadly speaking, to the �rst question is in the a¢ rmative ([11],

op.cit, §4, pp.23-27 and [13], Theorems 1 and 1�, p.1012).
The answer to the second question is easier to attempt if the question is posed

in a slightly di¤erent way, in tems of the relation between Turing Machines and
Diophantine equations (cf. [9]).

De�nition 5 A relation of the form

D (a1; a2; :::::; an; x1; x2; :::; xm) = 0 (5)
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where D is a polynomial with integer coe¢ cients with respect to all the
variables a1; a2; :::::; an; x1; x2; :::; xm separated into parameters a1; a2; :::::; an
and unknowns x1; x2; :::; xm, is called a parametric diophantine equation.

A parametric diophantine equation, D, de�nes a set F of the parameters for
which there are values of the unknowns such that:

ha1; a2; :::::; ani 2 F () 9x1; x2; :::; xm [D (a1; a2; :::::; an; x1; x2; :::; xm) = 0]
(6)

One of the celebrated mathematical results of the 20th century was the
(negative) solution to Hilbert�s Tenth Problem [9]. In the eventual solution of
that famous problem two crucial issues were: the characterisation of recursively
enumerable sets in terms of parametric diophantine equations and the relation
between Turing Machines and parametric Diophantine equations. The former
is, for example, elegantly exempli�ed by the following result ([8], Lemma 2,
p.407):

Lemma 6 For every recursively enumerable set W , there is a polynomial with
integer coe¢ cients given by Q (n; x1; x2; x3; x4), i.e., a parametric diophantine
equation, such that, 8n 2 N,

n 2W () 9x1;8x2;9x3;8x4 [Q (n; x1; x2; x3; x4) 6= 0] (7)

The idea is to relate the determination of membership in a structured set
with the (un)solvability of a particular kind of equation. If, next, the (un)solvability
of this particular kind of equation can be related to the determined behaviour
of a computing machine, then one obtains a connection between some kind of
computability, i.e., decidability, and solvability and set membership. This is
sealed by the following result:

Proposition 7 Given any parametric Diophantine equation it is possible to
construct a Turing Machine M , such that M will eventually halt, beginning
with a representation of the parametric n � tuple, ha1; a2; :::::; ani iff (16) is
solvable for the unknowns x1; x2; :::; xm.

Suppose we think of ODEs as Parametric Diophantine Equations; recursively
enumerable sets as the domain for continuous functions and GPACs as Turing
Machines. Can we derive a connection between ODEs, continuous functions and
GPACs in the same way as above? The a¢ rmative answer is provided by the
following proposition, which I shall call Rubel�s Theorem:

Theorem 8 (Rubel�s Theorem): There exists a nontrivial fourth-order, univer-
sal, algebraic di¤erential equation of the form:
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P (y0; y00; y000; y0000) = 0 (8)

where P is a homogeneous polynomial in four variables with integer coe¢ -
cients.
The exact meaning of �universal�is the following:

De�nition 9 A universal algebraic di¤erential equation P is such that any con-
tinuous function '(x) can be approximated to any degree of accuracy by a C1

solution, y(x); of P: In other words:

8 positive continuous "(x), 9y(x) s:t j y (x)� ' (x) j< � (x) , 8x 2 (�1;1)
(9)

Recent developments (cf. [3],[2]) have led to concrete improvements in that
it is now possible to show the existence of Cn, 8n; (3 < n < 1); for example,
the following is a speci�c Universal algebraic di¤erential equation:

n2y0000y02 � 3n2y000y0 + 2n (n� 1) y002 = 0 (10)

In this sense, then, there is a counterpart to the kind of universality propo-
sitions in classical recursion theory �computation universality, universal com-
puter, etc., �also in the emerging theory for analogue computation, particularly,
GPACs. Eventually, by directly linking such universal equations to Turing Ma-
chines via numerical analysis there may even be scope for a more uni�ed and
encompassing theory.
As for the third question, my answer goes as follows. GPACs can also be

considered generalised �x-point machines! Every solution generated by a GPAC
is a �xed-point of an ADE. This is a re�ection of the historical fact and practice
that the origins of �xed point theory lies in the search for solutions of di¤erential
equations, particularly ODEs4 .
Whether there is a Church-Turing Theses for analogue computation is di¢ -

cult to answer. The reason is as follows. The concept of computability by �nite
means was made formally concrete after the notions of solvability and unsolv-
ability or, rather, decidability and undecidability, were made precise in terms
of recursion theory. These notions were made precise within the context of a
particular debate on the foundations of mathematics - on the nature of the logic
that underpinned formal reasoning. As Gödel famously observed:

4But also PDEs (partial di¤erential equations), as George Temple pointed out ([17], p.119):

"One of the most frutiful studies in topology has considered the mapping T
of a set of points S into S, and the existence of �xed points x such that

Tx = x

The importance of these studies is largely due to their application to ordi-
nary and partial di¤erential equations which can often be transformed into a
functional equation Fx = 0 with F = T � I where Ix = x."
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"It seems to me that [the great importance of general recursive-
ness (Turing�s computability)] is largely due to the fact that with
this concept one has for the �rst time succeeded in giving an ab-
solute de�nition of an interesting epistemological notion, i.e., one
not depending on the formalism chosen. In all other cases treated
previously, such as demonstrability or de�nability, one has been able
to de�ne them only relative to a given language, and for each indi-
vidual language it is clear that the one thus obtained is not the
one looked for. For the concept of computability however, although
it is merely a special kind of demonstrability or decidability5 the
situation is di¤erent. By a kind of miracle it is not necessary to
distinguish orders, and the diagonal procedure does not lead outside
the de�ned notion. This, I think, should encourage one to expect the
same thing to be possible also in other cases (such as demonstrability
or de�nability)."
[6], p.84.

So, to ask and answer an epistemological question such as whether there
is a correspondence to the �Church-Turing Thesis� in analogue computing by
GPACs must mean that we must, �rst, characterise the formal structure and
mathematical foundations of ODEs in a more precise way. I think this is an in-
teresting methodological task, but cannot even be begun to be discussed within
the con�nes of a simple expository paper such as this. I think, however, there
will be an interplay between a logic on which continuous processes can be un-
derpinned, say by Lukasiewicz�s continuous logic, and the logic of ODEs6 . My
intuition is that there will be some kind of �Church-Turing Thesis�in the case
of analogue computing by GPACs and awareness of it will greatly discipline
solution, simulation and experimental exercises by the use of GPACs (see also
[13]).

3 Economic Modelling in the Analog Comput-
ing Mode

From the results tentatively outlined in section 2 it is clear �at least to me �
that there is a duality between analog and digital computing. Since, in par-
ticular, there is a notion of �universality�in analog and digital computing that
are obviously �dual�to each other, one can ask, more seriously than in the past,
whether the �economy can be simulated by a universal computer� and, if so,
what kind of computer the Phillips Machine is. By this I mean to ask �and,

5 I have always wondered whether this is not a misprint and the word that is meant to be
here is not �decidability�but �de�nability�!

6 I suspect that this will be fruitful link to pursue partly because Lukasiewicz, in the de-
velopment of his continuous valued logic, abandons both the law of the excluded middle and
proof by the method of reductio ad absurdum - both contentious issues in the debate between
Hilbert and Brouwer that led to the foundational crisis in mathematics from which the work
of Gödel and Turing emerged.
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eventually, hopefully asnwer, the question whether the Phillips Machine is ca-
pable of universal computing or not. My immediate conjecture is that is it not
capable of universal computing and is formally equivalent to a �nite automatn,
in the language of computability theory.
But the kind of questions, in greater detail, above and beyond the general

question of the capability of universal computation, are similar to the ones posed
by the redoubtable Richard Feynman, as a Physicist, to Physics:
First of all, Richard Feynman ([5], p.467) wondered:

"Can physics be simulated by a universal computer?

Feynman, in his characteristically penetrating way, then asked three obvi-
ously pertinent questions to make the above query meaningful:

� What kind of physics are we going to imitate?

� What kind of simulation do we mean?

� Is there a way of simulating rather than imitating physics?

Before providing fundamental, but tentative, answers to the above queries,
he adds a penetrating caveat (ibid, p.468; italics in original):

"I want to talk about the possibility that there is to be an exact
simulation, that the computer will do exactly the same as nature."

Feynman�s answer to part of the �rst question was that the kind of physics we
should simulate are �quantum mechanical phenomena�, because (ibid, p. 486):

"...I�m not happy with all the analyses that go with just the classical
theory, because nature isn�t classical, dammit, and if you want to
make a simulation of nature, you�d better make it quantum mechan-
ical, and by golly it�s a wonderful problem, because it doesn�t look
so easy."

But he was careful to point out, also, that there was a crucial mathematical
di¤erence between �quantizing�and �discretizing�(ibid, p. 488; italics added):

"Discretizing is the right word. Quantizing is a di¤erent kind of
mathematics. If we talk about discretizing ... of course I pointed
out that we�re going to have to change the laws of physics. Because
the laws of physics as written now have, in the classical limit, a
continuous variable everywhere ... ."

He was not the only giant in the natural sciences who wondered thus: Ein-
stein, Schrödinger, Hamming, To¤oli, Fredkin and most recently, Penrose, too,
have had speculative thoughts along similar lines. Einstein, in perhaps his last
published work, seems to suggest that a future physics may well be in terms of
the discrete:
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"One can give good reasons why reality cannot be represented as a
continuous �eld. ...."

[4], p.166

Roger Penrose, in his recently published, massive, vision of The Road to
Reality, was even more explicit:

[W]e may still ask whether the real-number system is really �cor-
rect�for the description of physical reality at its deepest level. When
quantum mechanical ideas were beginning to be introduced early in
the 20th century, there was the feeling that perhaps we were now
beginning to witness a discrete or granular nature to the physical
world at its smallest scales.... Accordingly, various physicists at-
tempted to build up an alternative picture of the world in which
discrete processes governed all action at the tiniest levels. ....
In the late 1950s, I myself tried this sort of thing, coming up

with a scheme that I referred to as the theory of �spin networks�, in
which the discrete nature of quantum-mechanical spin is taken as
the fundamental building block for a combinatorial (i.e. a discrete
rather than real-number-based) approach to physics."
[10], pp.61-2; italics in the second paragraph as in original.

These speculations on the granular structure of �reality�at some deep level
arose out of purely theoretical developments in the subject, but in continuous
interaction with the epistemology of measurement in well-designed and sound
experimental environments. Where these re�ections by Feynman, Einstein and
Penrose leave the loose epistemology and wild methodological claims in [1], I
am not at sure.
More importantly, the long-standing epistemological stance taken by those

of us wedded to the philosophy of Computable Economics, that economic data
is invariably and necessarily �granular�and, therefore, computability theory or
constructive mathematics is the correct approach for modelling computation
and simulation of economic models seems to be validated by the results in the
previous section. But the thorny problem of the intermediary role played by
numerical methods and numerical algorithms in digital computing is, of course,
circumvented by analogue computing. In this sense, there is a clear advantage,
at least from an economic modelling point of view, in working with analog
computers. But the cardinal message of Computable Economics is that the
fundamental computing model for economics should be the Turing Machine.
In that sense, the use of the Phillips Machine in economic modelling remains
incomplete from an analytic point of view till it is shown, rigorously, that it is
capable of universal computation.
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