238 research outputs found

    Extended RDF: Computability and Complexity Issues

    Get PDF
    ERDF stable model semantics is a recently proposed semantics for ERDF ontologies and a faithful extension of RDFS semantics on RDF graphs. In this paper, we elaborate on the computability and complexity issues of the ERDF stable model semantics. Based on the undecidability result of ERDF stable model semantics, decidability under this semantics cannot be achieved, unless ERDF ontologies of restricted syntax are considered. Therefore, we propose a slightly modified semantics for ERDF ontologies, called ERDF #n- stable model semantics. We show that entailment under this semantics is, in general, decidable and also extends RDFS entailment. Equivalence statements between the two semantics are provided. Additionally, we provide algorithms that compute the ERDF #n-stable models of syntax-restricted and general ERDF ontologies. Further, we provide complexity results for the ERDF #nstable model semantics on syntax-restricted and general ERDF ontologies. Finally, we provide complexity results for the ERDF stable model semantics on syntax-restricted ERDF ontologies

    Hypermedia-based discovery for source selection using low-cost linked data interfaces

    Get PDF
    Evaluating federated Linked Data queries requires consulting multiple sources on the Web. Before a client can execute queries, it must discover data sources, and determine which ones are relevant. Federated query execution research focuses on the actual execution, while data source discovery is often marginally discussed-even though it has a strong impact on selecting sources that contribute to the query results. Therefore, the authors introduce a discovery approach for Linked Data interfaces based on hypermedia links and controls, and apply it to federated query execution with Triple Pattern Fragments. In addition, the authors identify quantitative metrics to evaluate this discovery approach. This article describes generic evaluation measures and results for their concrete approach. With low-cost data summaries as seed, interfaces to eight large real-world datasets can discover each other within 7 minutes. Hypermedia-based client-side querying shows a promising gain of up to 50% in execution time, but demands algorithms that visit a higher number of interfaces to improve result completeness

    Peer-to-peer semantic integration of linked data

    Get PDF
    We propose a framework for peer-based integration of linked data sets, where the semantic relationships between data at different peers are expressed through mappings. We provide the theoretical foundations for such a setting and we devise an algorithm for processing graph pattern queries, discussing its complexity and scalability

    SPARQL++ for mapping between RDF vocabularies

    Get PDF
    Abstract. Lightweight ontologies in the form of RDF vocabularies such as SIOC, FOAF, vCard, etc. are increasingly being used and exported by “serious ” applications recently. Such vocabularies, together with query languages like SPARQL also allow to syndicate resulting RDF data from arbitrary Web sources and open the path to finally bringing the Semantic Web to operation mode. Considering, however, that many of the promoted lightweight ontologies overlap, the lack of suitable standards to describe these overlaps in a declarative fashion becomes evident. In this paper we argue that one does not necessarily need to delve into the huge body of research on ontology mapping for a solution, but SPARQL itself might — with extensions such as external functions and aggregates — serve as a basis for declaratively describing ontology mappings. We provide the semantic foundations and a path towards implementation for such a mapping language by means of a translation to Datalog with external predicates

    dlvhex-sparql: A SPARQLcompliant query engine based on dlvhex

    Get PDF
    Abstract. This paper describes the dlvhex SPARQL plugin, a query processor for the upcoming Semantic Web query language standard by W3C. We report on the implementation of this languages using dlvhex, a flexible plugin system on top of the DLV solver. This work advances our earlier translation based on the semantics by Perez et al. towards an engine which is fully compliant to the official SPARQL specification. As it turns out, the differences between these two definitions of SPARQL, which might seem moderate at first glance, need some extra machinery. We also briefly report the status of implementation, and extensions currently being implemented, such as handling of aggregates, nested CONSTRUCT queries in the spirit of networked RDF graphs, or partially support of RDFS entailment. For such extensions a tight integration of SPARQL query processing and Answer-Set Programming, the underlying logic programming formalism of our engine, turns out to be particularly useful, as the resulting programs can actually involve unstratified negation.

    BIM semantic-enrichment for built heritage representation

    Get PDF
    In the built heritage context, BIM has shown difficulties in representing and managing the large and complex knowledge related to non-geometrical aspects of the heritage. Within this scope, this paper focuses on a domain-specific semantic-enrichment of BIM methodology, aimed at fulfilling semantic representation requirements of built heritage through Semantic Web technologies. To develop this semantic-enriched BIM approach, this research relies on the integration of a BIM environment with a knowledge base created through information ontologies. The result is knowledge base system - and a prototypal platform - that enhances semantic representation capabilities of BIM application to architectural heritage processes. It solves the issue of knowledge formalization in cultural heritage informative models, favouring a deeper comprehension and interpretation of all the building aspects. Its open structure allows future research to customize, scale and adapt the knowledge base different typologies of artefacts and heritage activities

    A Framework for the Organization and Discovery of Information Resources in a WWW Environment Using Association, Classification and Deduction

    Get PDF
    The Semantic Web is envisioned as a next-generation WWW environment in which information is given well-defined meaning. Although the standards for the Semantic Web are being established, it is as yet unclear how the Semantic Web will allow information resources to be effectively organized and discovered in an automated fashion. This dissertation research explores the organization and discovery of resources for the Semantic Web. It assumes that resources on the Semantic Web will be retrieved based on metadata and ontologies that will provide an effective basis for automated deduction. An integrated deduction system based on the Resource Description Framework (RDF), the DARPA Agent Markup Language (DAML) and description logic (DL) was built. A case study was conducted to study the system effectiveness in retrieving resources in a large Web resource collection. The results showed that deduction has an overall positive impact on the retrieval of the collection over the defined queries. The greatest positive impact occurred when precision was perfect with no decrease in recall. The sensitivity analysis was conducted over properties of resources, subject categories, query expressions and relevance judgment in observing their relationships with the retrieval performance. The results highlight both the potentials and various issues in applying deduction over metadata and ontologies. Further investigation will be required for additional improvement. The factors that can contribute to degraded performance were identified and addressed. Some guidelines were developed based on the lessons learned from the case study for the development of Semantic Web data and systems
    corecore