
Peer-to-Peer Semantic Integration of Linked Data

Mirko Michele Dimartino
London Knowledge Lab

Birkbeck, University of London
mirko@dcs.bbk.ac.uk

Andrea Calì
∗

London Knowledge Lab
Birkbeck, University of London
andrea@dcs.bbk.ac.uk

Alexandra Poulovassilis
London Knowledge Lab

Birkbeck, University of London
ap@dcs.bbk.ac.uk

Peter Wood
London Knowledge Lab

Birkbeck, University of London
ptw@dcs.bbk.ac.uk

ABSTRACT
We propose a framework for peer-based integration of linked
data sets, where the semantic relationships between data at
different peers are expressed through mappings. We provide
the theoretical foundations for such a setting and we devise
an algorithm for processing graph pattern queries, discussing
its complexity and scalability.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—distributed
databases, query processing

General Terms
Algorithms

Keywords
Rewriting, SPARQL, RDF, Peer-to-Peer, Semantic Web

1. INTRODUCTION
In recent years the World Wide Web has gradually ex-

panded from a simple network of hyper-linked documents to
a more complex structure where both documents and data
are easily published, consumed and reused. As a result of
this rapid transformation, new techniques are required in or-
der to integrate these heterogeneous data into a single global
data space, the so-called Linked Open Data (LOD) cloud
[2], building on Web infrastructure (URIs and HTTP), Se-
mantic Web standards (such as the Resource Description
Framework (RDF) and RDF Schema (RDFS)), and vocab-
ularies. These practices have led to the creation of a world-
wide database covering a wide range of domains, varying in

∗Also affiliated to the Oxford-Man Institute of Quantita-
tive Finance, University of Oxford, andrea.cali@oxford-
man.ox.ac.uk .

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

type from personal and corporate to statistical and scientific
data and reviews [3]. Ideally, users should be able to access
an open, global data space with an approach similar to how
a local database is queried today, in order to obtain more
extensive answers as new data sources appear on the Web.
However, linked data poses challenges inherent to integrat-
ing and querying highly heterogeneous and distributed data,
so the above-stated vision has yet to be entirely realised.

In the LOD environment, it is common for several datasets
to describe overlapping domains, often using different stan-
dards of data modelling and naming. Therefore a global
ontological conceptualisation is impracticable and a more
flexible approach for semantic integration is needed. This
represents a major research challenge for the web of data.

To cope with these limitations, some work in the literature
addresses the problem of answering SPARQL queries over
disparate sources, proposing new SPARQL rewriting algo-
rithms that entail semantic mappings between RDF databases
[18, 10, 19, 20]. These techniques address query rewrit-
ing from one source to another, while the LOD cloud is a
dynamic environment that comprises several data sources
with arbitrary mapping topologies in a peer-to-peer fashion.
In fact, in this scenario, an implementation of the exist-
ing rewriting algorithms may lack computability, especially
in the presence of mapping cycles. The open problem is
then developing new data integration techniques to support
SPARQL query answering over several heterogeneous RDF
sources whose semantic mappings have arbitrary topologies.

The following example considers a typical use-case of query-
ing Linked Data.

Example 1. Figure 1 illustrates an RDF graph containing
triples from three different sources. Sources 1 and 2 contain
data about films, while Source 3 describes people and their
properties. We can see that URIs representing the same
entities (e.g., DB1:Spiderman and DB2:Spiderman2002, for
the film Spiderman) are linked by the built-in OWL property
sameAs1, which states that the linked URIs represent the
same real-world entity (best practices for owl:sameAs are
given in [15]). It is clear that there is a semantic equivalence
mapping between URIs linked by sameAs. We can also see
that there is a semantic equivalence mapping between pairs
of triples of the form (a starring _z) and (_z artist b)

in Source 1 and triples of the form (a actor b) in Source 2;
both represent the relationship that“actor b acted in the film

1http://sameas.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42133356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: Example of an RDF graph from three data
sources.

a”. Now assume that a user poses the following SPARQL2

query:

SELECT ?x ?y

WHERE { DB1:Spiderman starring ?z . ?z artist ?x .

?x age ?y }

This query returns an empty result on the data of Figure 1,
since the sameAs property is missing from the query, and
SPARQL does not automatically exploit semantic mappings
between RDF resources. As stated above, adopting exist-
ing rewriting techniques to entail the semantic mappings is
impractical for this scenario, since there are more than two
RDF sources and the mapping topologies are arbitrary. In
this regard, we propose a decentralised, easily extensible,
RDF-oriented peer data management system. We provide
the theoretical foundations for such a setting and we devise
an algorithm for processing graph pattern queries, discussing
its complexity and scalability.

Related work: As previously stated in this section, few
papers in the literature deal with the challenges of answering
SPARQL queries over data, leveraging the semantic map-
pings between similar vocabularies. For instance, the work
in [18] presents a query rewriting algorithm over virtual
SPARQL views; and, similarly, [10] introduces a SPARQL
rewriting algorithm based on the encoding of rules for RDF
patterns, involving entity equivalence functions for the se-
mantics of the property owl:sameAs. In [19, 20] Makris et al.
instead adopt Description Logic rules between overlapping
OWL ontologies. These works address query answering over
two-tiered architectures, while we wish to explore the most
general case, where the number of sources and the mapping
topologies are arbitrary.

Several peer-to-peer systems for RDF datasources can be
found in the literature. For instance, in [5, 6] the authors
describe a distributed RDF metadata storage, querying and
subscription service as a structured P2P network. Similarly,
work in [23] proposes routing strategies for RDF-based P2P
networks. Similar work can be found in [21, 22, 17]. How-
ever, all of these papers focus on technical issues relating to
peer networks (such as efficiency of query routing, network

2http://www.w3.org/TR/rdf-sparql-query/

traffic load, etc.), and so leave a gap between the RDF data
model and peer-to-peer semantic integration.

Paper outline: The paper is organised as follows. In
Section 2 we present our new framework for RDF peer-to-
peer integration. Then, in Section 3 we explore the query
answering problem under RDF Peer Systems and we pro-
pose a query answering algorithm that terminates in poly-
nomial time. In Section 4 we explore query rewriting tech-
niques in our setting, showing that our mapping rules are
not first-order-rewritable. We conclude with a discussion in
Section 5.

2. THE FRAMEWORK
In this section, we introduce our framework for peer-to-

peer RDF semantic data integration. We present a new peer
mapping language suitable for the RDF data model that ex-
tends the goals of relational P2P models to achieve seman-
tic integration in accordance with Linked Data technologies.
Our goal is to leverage the techniques for specifying seman-
tic mappings between RDF sources, extending them beyond
a two-tiered architecture. In our framework, each peer is
represented by its peer schema, comprising the set of URIs
adopted in the peer to model data. Integration is achieved
by means of mappings between these sets of URIs. To for-
mally specify the problem of query answering, we generalize
the notion of certain answers [1] to our context.

2.1 Graph pattern queries
To formalise the problem, we introduce the notion of graph

pattern queries for RDF databases (for details of RDF for-
malisation, see [14]). Assume there are pairwise disjoint in-
finite sets I, B, and L (IRIs [11], Blank nodes, and Literals,
respectively). A triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L)
is called an RDF triple. In this triple, s is the subject, p the
predicate, and o the object. Also, we assume the existence of
an infinite set of variables V disjoint from (I ∪ B ∪ L). An
RDF database is then a set of RDF triples.

A graph pattern is defined recursively as follows:

1. A tuple from (I ∪ L ∪ V )× (I ∪ V )× (I ∪ L ∪ V ) is a
graph pattern. Specifically, it is a triple pattern.

2. If GP1 and GP2 are graph patterns, then the expres-
sion (GP1 AND GP2) is a graph pattern.

We denote by var(GP ) the set of variables VGP ⊆ V that
appear in the graph pattern GP .

A graph pattern query Q of arity n is of the form

q(x)← GP

where GP is a graph pattern, and x = x1, . . . , xn ∈ var(GP )
denote the free variables of the query. All the elements in
var(GP ) that are not free variables denote the existentially
quantified variables of the query.

In order to define the semantics of graph pattern queries,
we introduce some terminology from [24, 4] for the evalua-
tion of a graph pattern over an RDF database.

A mapping µ from V to (I ∪ B ∪ L) is a partial function
µ : V → (I ∪B ∪L). The domain of µ, denoted by dom(µ),
is the subset of V where µ is defined. Given a mapping µ
and a variable v ∈ dom(µ) we denote by µ(v) the value in
(I ∪B ∪L) obtained by applying the function µ to v. Also,



abusing notation, for a triple pattern t we denote by µ(t)
the triple obtained by replacing the variables in t according
to µ. Two mappings µ1 and µ2 are compatible when for all
x ∈ dom(µ1) ∩ dom(µ2), it is the case that µ1(x) = µ2(x),
i.e. when µ1 ∪ µ2 is also a mapping.

Let Ω1 and Ω2 be sets of mappings. Then the join of Ω1

and Ω2 is defined as follows [24, 4]:

Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2

and µ1, µ2 are compatible mappings}

The semantics of graph patterns is then defined by a func-
tion J · KD over a set of RDF triples D, also called an RDF
graph or RDF database, which takes a graph pattern as in-
put and returns a set of mappings that matches the database
D [4, 24].

Definition 1. (Evaluation of a graph pattern). The eval-
uation of a graph pattern GP over an RDF dataset D, de-
noted by JGP KD, is defined recursively as follows:

1. IfGP is a triple pattern t, then JGP KD = {µ | dom(µ) =
var(t) and µ(t) ∈ D}

2. If GP is of the form (GP1 AND GP2), then JP KD =
JGP1KD ./ JGP2KD.

We are ready to define the semantics of graph pattern
queries. We denote by QD the set of n-tuples returned by
the evaluation of the graph pattern query Q of arity n over
the dataset D. We define the semantics of QD as follows:

QD := {(µ(x1), . . . , µ(xn)) | µ ∈ JGP KD
and µ(x1), . . . , µ(xn) ∈ (I ∪ L)},

where GP is the graph pattern of the query Q and x1 . . . xn
are the free variables of Q.

As we can see from the above definition, tuples contain-
ing elements in B (blank nodes) are not returned from the
evaluation of the query. Blank nodes are used in the RDF
triples as placeholders for unknown resources [16]; in other
words, they denote variables which may take values in the
set of IRIs and literals (I ∪ L). In this regard, a graph pat-
tern query retrieves only full information, dropping all the
tuples containing partial information.

In fact, we define the semantics of blank nodes so as to be
equivalent to the semantics of labelled nulls in the relational
model, which are placeholders for unknown values and are
not included in query results. For completeness, we also de-
fine a semantics of graph pattern queries which does include
blank nodes in the result set. This semantics will be used
later on to exploit the expressiveness of equivalence map-
pings in our RDF Peer System. We denote this semantics
by Q∗D, where

Q∗D := {(µ(x1), . . . , µ(xn)) | µ ∈ JGP KD}.

Note that the graph pattern query language can be seen
as a “conjunctive fragment” of SPARQL, so a graph pattern
query can always be translated to a conjunctive SPARQL
query and vice versa.

2.2 RDF Peer Systems
An RDF Peer System (RPS) P constitutes a set of peers

and a set of mappings that specify the semantic relationships
between peers. Formally, an RPS P is defined as a tuple
P = (S, G,E), where:

• S is the set of the peer schemas in P. Each peer schema
S ∈ S is simply the set of all the constants u ∈ I
adopted by the corresponding peer to describe data in
the form of RDF triples. Informally, the schema of a
peer is a subset of I (the set of all the IRIs in Linked
Data) comprising only the IRIs adopted by the peer.
Two peer schemas then need not be disjoint sets: this
is in accordance with real Linked Data sources, where
two different RDF databases may share some IRIs in
the RDF triples.

• G is a set of graph mapping assertions, each of which
is an expression of the form Q; Q′, where Q and Q′

are graph pattern queries of the same arity, expressed
over the schemas S and S′, respectively, of two peers
in P. Formally, the graph pattern GP in the query Q
contains triple patterns from (S ∪ L ∪ V )× (S ∪ V )×
(S ∪ L ∪ V ), and the graph pattern GP ′ in the query
Q′ contains triple patterns from (S′ ∪ L ∪ V ) × (S′ ∪
V )× (S′ ∪ L ∪ V ).

• E is a set of equivalence mappings of the form c ≡e c
′,

where c ∈ S and c′ ∈ S′ and S, S′ ∈ S.

2.3 Semantics of RDF Peer Systems
We assume that we are given an instance of the data stored

in the peers in the form of a set of RDF triples for each
peer in the system. Formally, for each peer defined by its
schema S ∈ S in P, we have a database d, that is, a set of
triples (s, p, o) ∈ (S ∪ B)× S × (S ∪ B ∪ L). Consequently,
a stored database D of an RPS P is the union of all the
peer databases d of all the peers in P. Then, a peer-to-peer
database of an RPS P is simply an arbitrary RDF database
containing triples (s, p, o) ∈ (S1 ∪ · · · ∪ Sn ∪B)× (S1 ∪ · · · ∪
Sn)× (S1 ∪ · · · ∪ Sn ∪B ∪ L), where S1, . . . , Sn ∈ S are the
peer schemas in P.

We also denote by subjQ(c), predQ(c) and objQ(c) three
special graph pattern queries:

• subjQ(c) := q(xpred, xobj)← (c, xpred, xobj)

• predQ(c) := q(xsubj , xobj)← (xsubj , c, xobj)

• objQ(c) := q(xsubj , xpred)← (xsubj , xpred, c)

where c ∈ (S1 ∪ · · · ∪ Sn ∪ L).
The evaluation of subjQ(c) over an RDF dataset is the set

of pairs of the form (t.pred, t.obj) containing the predicate
and object of all triples in the dataset where the constant c
occurs as the subject. The queries predQ(c) and objQ(c) are
defined similarly, with the constant c now occurring as the
predicate and the object of an RDF triple, respectively.

Below we give formal definitions for a solution for an RPS
P and the set of certain answers for a query posed against
P. Informally, a peer-to-peer database is a solution of an
RPS P if it contains the stored database of P, as well as all
triples inferred by the mappings of P. The certain answers
to a query against P are those which appear in all possible
solutions of P.



Definition 2. A peer-to-peer database I is said to be a
solution for an RPS P based on a stored database D if:

1. For every stored database d ∈ D, we have that d ⊆ I.

2. For every graph mapping assertion in G of the form
Q; Q′, we have that QI ⊆ Q′I .

3. For every equivalence mapping in E of the form c ≡e

c′, all of the following hold:

subjQ(c)∗I = subjQ(c′)∗I

predQ(c)∗I = predQ(c′)∗I

objQ(c)∗I = objQ(c′)∗I

Definition 3. We define the certain answers ans(q,P, D)
to an arbitrary graph pattern query q of arity n, based on
a stored database D of an RPS P, as the set of n-tuples t
of constants in (S1 ∪ · · · ∪ Sn ∪L) such that, for every peer-
to-peer database I that is a solution for the system P based
on D, we have that t ∈ qI .

The query answering problem is defined as follows: given
an RPS P, a stored database D and a graph pattern query
q, find the certain answers ans(q,P, D).

3. QUERY ANSWERING
To evaluate the complexity of the query answering prob-

lem we show that the problem of finding ans(q,P, D) is sub-
sumed by CQ answering in data exchange for the relational
model. Specifically, we show that a solution of an RPS can
be seen as a solution of a special data exchange setting.

A data exchange setting is defined by a source relational
alphabet S, a target relational alphabet T , a set Σst of
source-to-target dependencies and a set Σt of target depen-
dencies. Instances over S are called source instances, while
instances over T are called target instances. Given a source
instance I, the problem is to find a solution J over the target
schema such that I ∪ J satisfies the source-to-target depen-
dencies and J satisfies the target dependencies [12].

For a given RPS P = (S, G,E) and a stored database
D for P, we can define a data exchange setting such that
a solution for the data exchange problem is a solution for
P. We define the relational alphabets Rs := {ts, rs} and
Rt := {tt, rt}, where ts and tt are ternary relational symbols
and rs and rt are unary relational symbols. These relational
alphabets describe the RDF triples (ts) and the identified
resources (rs) stored by the peers in D, and the RDF triples
(tt) and the identified resources (rt) inferred in a peer-to-
peer database of P.

Given a relational alphabet A, we denote by LA the set of
function-free first-order logic (FOL) formulas whose relation
symbols are in A and whose constants are in (I ∪ B ∪ L).
Then, given a graph pattern query Q of the form q(x)← GP
we can define the term Qbody(x,y) as the conjunction of
the atoms in LRt representing triple patterns in GP , where
x = x1, . . . , xn ∈ var(GP ) are the free variables, and y =
y1, . . . , ym ∈ var(GP ) are the existentially quantified vari-
ables in Q. For example, given the following graph pattern
query

Gfather := q(x1, x2)←
(x1, father, y) AND (y, father, x2),

Gfatherbody(x,y) is the conjunction of atoms

tt(x1, father, y) ∧ tt(y, father, x2),

where x = x1, x2 and y = y. In this regard, evaluating a
graph pattern query Q over an instance of a RPS is equiva-
lent to evaluating the following conjunctive query (CQ) over
an interpretation of the relations in Rt:

{x | ∃y Qbody(x,y) ∧ rt(x1) ∧ · · · ∧ rt(xn)}.

Given an RPS P = (S, G,E), we are now ready to define
a data exchange setting whose solution (seen as an RDF
database) is also a solution for P. The relational alphabets
Rs and Rt are the source and target relational alphabets of
the data exchange setting. The source-to-target dependen-
cies express the semantics of item 1 in Definition 2, which
states that the peer-to-peer database of the RPS must con-
tain all the triples in the stored database. They are of the
form:

∀x∀y∀z ts(x, y, z)→ tt(x, y, z),
∀x rs(x)→ rt(x).

The target dependencies express the semantics of the graph
mapping assertions and the equivalence mappings. For each
graph mapping assertion Q ; Q′ ∈ G, we have the depen-
dency

∀x∃y Qbody(x,y) ∧ rt(x1) ∧ · · · ∧ rt(xn)→ ∃z Q′body(x, z),

and for each equivalence mapping c ≡e c
′ ∈ E, we have the

dependencies

∀y∀z tt(c, y, z)→ tt(c
′, y, z),

∀y∀z tt(c′, y, z)→ tt(c, y, z),
∀x∀z tt(x, c, z)→ tt(x, c

′, z),
∀x∀z tt(x, c′, z)→ tt(x, c, z),
∀x∀y tt(x, y, c)→ tt(x, y, c

′),
∀x∀y tt(x, y, c′)→ tt(x, y, c).

In this regard, query answering under an RPS is equivalent
to the problem of CQ answering in data exchange, under the
special data exchange setting defined above.

The set of certain answers in the data exchange problem is
computed by evaluating queries over the so-called universal
solution of the data exchange setting. To generate a univer-
sal solution, a source database is “chased” using the set of
dependencies. Each step of the chase “extends”the database
so that the chosen dependency is satisfied. For instance,
given a dependency φ(x) → ∃y ψ(x,y) and a mapping h
(from the variables in φ(x) to constants) for which the de-
pendency is not satisfied, the chase step generates new facts
in the target instance in order to satisfy the dependency.
The new facts are generated by: (a) extending h to h′ such
that each existentially quantified variable in ψ(x,y) is as-
signed a freshly created constant, a labelled null, followed
by: (b) taking the image of the atoms of ψ under h′ (see
[12], Section 3 for more details of the chase procedure).

In our specific data exchange setting, there are no atoms
of type rt(x) in the head of any dependency such that the



variable x is existentially quantified. Therefore, the set of
IRIs and literals remains constant during the chase proce-
dure. Thus, the chase generates new blank nodes as labelled
nulls. Without loss of generality, we will use the term newly
created blank nodes when we want to denote labelled nulls.

In an RPS P = (S, G,E), only dependencies in G contain
existentially quantified variables in the body, therefore they
are the only dependencies for which the chase may generate
new constants, i.e., newly created blank nodes. Since newly
created blank nodes cannot trigger any of these rules, the
chase sequence is then bounded by a finite number of steps.
This leads to the following theorem:

Theorem 1. The problem of finding all certain answers
ans(q,P, D) to an arbitrary graph pattern query q, for a
given RDF Peer System P and a stored database D, has
PTIME data complexity.

Due to lack of space, we omit a formal proof of the theo-
rem, which will appear in an extended version of this paper.

In data exchange, the set of certain answers of a query
is then computed by evaluating the query over the univer-
sal solution and eliminating all the tuples in the result that
contain labelled nulls. In our RDF model, the semantics of
a graph pattern query QD eliminates all the answer tuples
containing blank nodes, so we can generate the certain an-
swers by simply evaluating the graph pattern query over the
universal solution. The algorithm that computes the certain
answers, Algorithm 1, is listed in the Appendix.

Figure 2: RDF graph of a universal solution for the
peer system. Dotted arrows and dashed arrows rep-
resent triples inferred by the equivalence mappings
and the graph mapping assertions, respectively.

Example 2. Let us consider again the RDF sources of Ex-
ample 1. We define an RPS P = (S, G,E) as follows:

• S := {S1, S2, S3} where Si is the set of IRIs in the
ith source. For example, S2 := {DB2:Spiderman2002,
DB2:Willem Dafoe,DB2:Pleasantville, actor} (in this
case, we consider owl:sameAs triples stored in Source
1 and Source 3).

• G is a single graph mapping assertion of the formQ2 ;

Q1, where:

– Q1 := q(x, y)← (x, starring, z) AND (z, artist, y),

– Q2 := q(x, y)← (x, actor, y).

• E contains an equivalence mapping c ≡e c
′ for each

triple of the form (c, sameAs, c′).

Figure 2 illustrates an RDF database which is a universal
solution for P. Let us consider again the SPARQL query
used in Example 1. Now, evaluating the query over the uni-
versal solution, we obtain the result in Listing 1. It is impor-
tant to observe that the user poses a query over Sources 1
and 3 but retrieves additional information also from Source 2
in a transparent way. The RPS, in fact, not only captures
the semantics of the owl:sameAs property, but also performs
integration of similar sources in order to return additional
answers to the user. This integration can be performed dy-
namically as new data sources appear, and requires no input
from the user.

#Query

SELECT ?x ?y

WHERE { DB1:Spiderman starring ?z .

?z artist ?x .

?x age ?y }

#Result

DB1:Toby_Maguire "39"

foaf:Toby_Maguire "39"

DB1:Kirsten_Dunst "32"

foaf:Kirsten_Dunst "32"

DB2:Willem_Dafoe "59"

foaf:Willem_Dafoe "59"

#Result without redundancy

DB1:Toby_Maguire "39"

DB1:Kirsten_Dunst "32"

DB2:Willem_Dafoe "59"

Listing 1: SPARQL query over the universal solu-
tion.

4. QUERY REWRITING
The chase algorithm is a useful tool for query answering,

however materialising the universal solution for an RDF peer
system may be impractical in the Linked Data scenario due
to the large volumes of data involved.

A more efficient approach would involve a rewriting of the
original query that, when evaluated directly over the sources,
returns the set of certain answers. In other words, given a
stored database D, a query q and the set Σ of TGDs that
entail the peer mappings, we want to compute a rewriting
of q based on Σ, named qΣ, such that qΣ

D = qJ , where J =
chase(D,Σ) is the universal solution for the peer system. In
this case qΣ is a perfect rewriting of q since it preserves a
sound and complete answer of the original query based on
the extensional database D and the “ontological theory” Σ.

Several works have addressed query rewriting under TGDs.
[8, 9] introduced sets of TDGs, namely sticky sets, that en-
joy the property of being FO-rewritable, i.e., for every query
that needs to be evaluated under such dependencies it is



possible to compute a first-order query as a perfect rewrit-
ing. The algorithm has as input a Boolean CQ q, a database
D and a sticky set of TGDs Σ, and it outputs “Accept” if
chase(D,Σ) |= q. We recall that the two problems of CQ
and BCQ evaluation under TGDs are logspace-equivalent.

Stickiness is a sufficient syntactic condition that ensures
the so-called sticky property of the chase, which is as follows.
For every instance D, assume that during the chase of D
under a set Σ of TGDs, we apply a TGD σ that has a variable
V appearing more than once in its body; assume also that
V maps (via homomorphism) onto the constant z, and that
by virtue of this application the atom a is generated by the
chase step. In this case, for each atom b in the body of σ, we
say that a is derived from b. Then, we have that z appears
in a, and in all atoms resulting from some chase derivation
sequence starting from a, “sticking”to them (hence the name
“sticky sets of TGDs”).

The formal definition of sticky sets of TGDs, given in [9],
is an efficient testable condition involving variable marking.

Definition 4. Consider a set Σ of TGDs over a relational
alphabet R. A position r[i] in R is identified by the predi-
cate r ∈ R and its i-th argument (or attribute). We mark
the variables that occur in the body of the TGDs of Σ ac-
cording to the following procedure. First, for each TGD
σ ∈ Σ and for each variable V in body(σ), if there exists an
atom a in head(σ) such that V does not appear in a, then
we mark each occurrence of V in body(σ). Given a predi-
cate symbol r, r[i] identifies its i-th argument (or attribute).
Now, we apply exhaustively (i.e., until a fixpoint is reached)
the following step: for each TGD σ ∈ Σ, if a marked vari-
able in body(σ) appears at a position π, then for every TGD
σ′ ∈ Σ (including the case σ′ = σ), we mark each occur-
rence of the variables in body(σ′) that appear in head(σ′) at
the same position π. We say that Σ is sticky if and only if
there is no TGD σ ∈ Σ such that a marked variable occurs
in body(σ) more than once.

Given an RPS P = (S, G,E), the set E of TGDs for equiv-
alence mappings enjoys the sticky property of the chase, as
well as linearity. Graph mapping assertions in G do not
preserve the same property. We can easily show this by ap-
plying the variable marking on the following example of a
graph mapping assertion:

∀x∀y∃z tt(x,A, ẑ) ∧ tt(ẑ, B, y) ∧ rt(x) ∧ rt(y)→ tt(x,C, y),

where A,B and C are URIs. Here, applying the variable
marking results in the variable z appearing more than once
in the body of the TGD. This violates the stickiness condi-
tion.

It is important to observe that the set Σ of TGDs in an
RPS is neither sticky, nor linear, nor weakly-acyclic [12],
nor guarded [7], nor weakly-guarded [7]. In fact our sets of
TGDs are incomparable to the above known classes of TGDs
under which query answering is decidable. �

In [13] the authors propose the query rewriting algorithm
TGD-rewrite which takes as input a BCQ and a set of TGDs
each with just one head-atom, containing at most one exis-
tentially quantified variable, which occurs only once. The al-
gorithm generates a union of BCQs (i.e., a FO-query) which
is a perfect rewriting of the original query. It is shown that
query answering under this setting is logspace-equivalent
to query answering under (general) TGDs, and thus the re-
sult holds for arbitrary TGDs. The algorithm TGD-rewrite

guarantees termination under linear, sticky or sticky-join
sets of TGDs (a generalisation of sticky TGDs and linear
TGDs).

Proposition. 2. Given an RPS P = (S, G,E), a stored
database D and a Boolean query q, if G is either linear,
sticky, or sticky-join, then we can generate a FO-query qP ,
such that qP

D = qJ , where J is the universal solution for P
based on D.

Example 3. Consider again the RPS in Example 2. The
set G of graph mapping assertions is linear, hence, follow-
ing from Proposition 2, we can generate an FO-rewriting of
a given Boolean query to entail the mapping assertions of
the RPS. Listing 2 shows an example rewriting based on the
SPARQL query and the RDF stored database shown in the
introduction. To compute the set of certain answers of the
given query, first we generate the set of all the possible 2-
tuples from the stored database. Then we iterate over each
2-tuple t and decide whether or not t is in the set of cer-
tain answers, by substituting t into the SPARQL query to
obtain a Boolean query (note that this is a polynomial-time
reduction of the problem, since there are polynomially many
k-tuples from the source database). Each Boolean query can
be rewritten as an FO-query according to the mapping as-
sertions in the RPS. In our case, the rewriting generates a
union of SPARQL queries. Due to lack of space, we show
only one possible step of the query rewriting, which makes
use of the dependency

∀y∀z tt(foaf:Toby Maguire, y, z)→
tt(DB1:Toby Maguire, y, z)

to rewrite the triple pattern (DB1:Toby_Maguire age "39").

#Original query

SELECT ?x ?y

WHERE { DB1:Spiderman starring ?z .

?z artist ?x .

?x age ?y }

#Boolean query:

#ask if the tuple (DB1:Toby_Maguire ,"39")

#is in the query result.

ASK { DB1:Spiderman starring ?z .

?z artist DB1:Toby_Maguire .

DB1:Toby_Maguire age "39" }

false

#Rewritten query

ASK {{ DB1:Spiderman starring ?z .

?z artist DB1:Toby_Maguire .

DB1:Toby_Maguire age "39" }

UNION

{ DB1:Spiderman starring ?z .

?z artist DB1:Toby_Maguire .

foaf:Toby_Maguire age "39" }}

true

Listing 2: SPARQL Boolean query rewriting.



Let us now evaluate the general case.
Consider the TGD σ = A(x, z) ∧ A(z, y) → A(x, y) and

observe that σ is not FO-rewritable since it captures the
transitive closure of the relation A, which cannot be done
using a finite number of first-order queries. Let us now con-
sider an instance of a RPS P defined only by the following
mapping assertion:

∀x∀y∃z tt(x,A, z) ∧ tt(z,A, y) ∧ rt(x) ∧ rt(y)→ tt(x,A, y),

We assume without loss of generality that the sources in D
do not contain blank nodes. Now we transform the mapping
assertion into the following set Σ of TGDs:

∀x∀y tt(x,A, y)→ A(x, y)
∀x∀y A(x, z) ∧A(z, y)→ A(x, y)
∀x∀y A(x, y)→ tt(x,A, y).

Note that we can drop the atoms rt(x), rt(y) in the body
of the TGDs because for any D we have that D |= ∀x rt(x),
and the same condition holds for every partial instance of
the chase in each chase step.

The auxiliary predicates, being introduced only during
the above construction, do not match any predicate sym-
bol in any query q, and hence chase(D,Σ) |= q if and only if
chase(D,P) |= q; therefore query answering under the RPS
P is equivalent to query answering under Σ. Note that Σ
now contains TGDs computing the transitive closure, so if
we assume that the set of TGDs Σ are FO-rewritable, then
the transitive closure is also FO-rewritable which is a con-
tradiction.

This leads to the following result.

Proposition. 3. The sets of TGDs corresponding to the
mapping assertions of RPSs are not FO-rewritable.

5. DISCUSSION
In this paper we have addressed the problem of integrating

RDF data sources in a peer-based fashion, where mappings
are defined between arbitrary peers, without a centralised
schema. We have proposed a formalisation of the notion
of a peer-to-peer semantic integration system, where RDF
triples are represented as relational tuples and mappings are
expressed as tuple-generating dependencies. Following that,
we have shown that answering graph pattern queries on an
RDF peer system can be done in polynomial time in terms
of data complexity. Finally, we have shown that it is not
possible to process queries in general RDF peer systems by
rewriting them into first-order queries.

This is a preliminary report which poses several new chal-
lenges. As future work, we plan the following.

1. We want to improve the efficiency of the query pro-
cessing algorithm. Our query answering algorithm is
näıve as it generates the whole universal solution under
the given dependencies; this is far from ideal, as map-
pings may be subject to change and we might need
to compute the information inferred from the TGDs
dynamically. We intend to investigate the possibil-
ity of adopting a combined approach, where only part
of the universal solution is computed, and queries are
rewritten according to some of the dependencies only.
Another possible approach is to devise a rewriting al-
gorithm that produces rewritten queries in a language
more expressive than FO-queries, for instance Datalog.

2. We intend to investigate the query answering problem
for more expressive query languages, in particular for
larger subsets of SPARQL.

3. We want to be able to discover mappings between
peers automatically. We are investigating relevant ar-
eas such as probabilistic logics and state-of-the-art tech-
niques for automatic schema/ontology-alignment and
for managing uncertain semantic mappings.

4. Finally, we are building a prototype system to validate
our techniques on real and synthetic data sets and de-
termine their scalability properties. Our prototype is
a SPARQL query engine which provides unified access
to the mapped sources. The user poses a query ex-
pressed in any vocabulary known by the system, and
the query is processed as follows:

(a) A query rewriting module rewrites the original
SPARQL query in order to retrieve all the certain
answers.

(b) A query module performs federated querying over
the sources. It stores SPARQL access points of
the RDF sources, up-to-date RDF data dumps
and other information in order to query feder-
ated sources in a transparent way for the user.
After query rewriting, sub-queries are posed to
the relevant RDF sources and sub-query results
are joined, taking into account efficiency of the
join operations between the RDF triple patterns.
The final result is returned to the user.

Acknowledgments.
Andrea Cal̀ı acknowledges support by the EPSRC project

“Logic-based Integration and Querying of Unindexed Data”
(EP/E010865/1).

6. REFERENCES
[1] S. Abiteboul and O. M. Duschka. Complexity of

answering queries using materialized views. In Proc. of
PODS, pages 254–263, 1998.

[2] S. Auer, J. Lehmann, and A.-C. N. Ngomo.
Introduction to Linked Data and its lifecycle on the
web. In Proc. of RW, pages 1–75, 2011.

[3] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data -
the story so far. Int. J. Semantic Web Inf. Syst.,
5(3):1–22, 2009.

[4] C. Buil-Aranda, M. Arenas, and O. Corcho. Semantics
and optimization of the SPARQL 1.1 federation
extension. In Proc. of ESWC, pages 1–15, 2011.

[5] M. Cai and M. Frank. RDFPeers: A scalable
distributed RDF repository based on a structured
peer-to-peer network. In Proc. of WWW, pages
650–657, 2004.

[6] M. Cai, M. R. Frank, B. Yan, and R. M. MacGregor.
A subscribable peer-to-peer RDF repository for
distributed metadata management. J. Web Sem.,
2(2):109–130, 2004.

[7] A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the infinite
chase: Query answering under expressive relational
constraints. In Proc. of KR, pages 70–80, 2008.



[8] A. Cal̀ı, G. Gottlob, and A. Pieris. Advanced
processing for ontological queries. PVLDB,
3(1):554–565, 2010.

[9] A. Cal̀ı, G. Gottlob, and A. Pieris. Query answering
under non-guarded rules in Datalog+/-. In Proc. of
RR, pages 1–17, 2010.

[10] G. Correndo, M. Salvadores, I. Millard, H. Glaser, and
N. Shadbolt. SPARQL query rewriting for
implementing data integration over linked data. In
Proc. of EDBT/ICDT, 2010.

[11] M. Duerst and M. Suignard. RFC 3987:
Internationalized Resource Identifiers (IRIs). RFC
3987 (Proposed Standard), January 2005.

[12] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering. TCS,
336(1):89–124, 2005.

[13] G. Gottlob, G. Orsi, and A. Pieris. Ontological
queries: Rewriting and optimization (extended
version). CoRR, abs/1112.0343, 2011.

[14] C. Gutierrez, C. Hurtado, and A. O. Mendelzon.
Foundations of semantic web databases. In Proc. of
PODS, pages 95–106, 2004.

[15] H. Halpin, P. Hayes, J. McCusker, D. McGuinness,
and H. Thompson. When owl:sameas isn’t the same:
An analysis of identity in linked data. In Proc. of
ISWC, volume 6496, pages 305–320, 2010.

[16] P. Hayes and B. McBride. RDF semantics. W3C
recommendation, Feb. 2004.

[17] G. Kokkinidis and V. Christophides. Semantic query
routing and processing in P2P database systems: The
ICS-FORTH SQPeer middleware. In Proc. of EDBT,
pages 486–495, 2004.

[18] W. Le, S. Duan, A. Kementsietsidis, F. Li, and
M. Wang. Rewriting queries on SPARQL views. In
Proc. of WWW, pages 655–664, 2011.

[19] K. Makris, N. Bikakis, N. Gioldasis, and
S. Christodoulakis. SPARQL-RW: transparent query
access over mapped RDF data sources. In Proc. of
EDBT, pages 610–613, 2012.

[20] K. Makris, N. Gioldasis, N. Bikakis, and
S. Christodoulakis. Ontology mapping and SPARQL
rewriting for querying federated RDF data sources. In
Proc. of OTM, pages 1108–1117, 2010.

[21] W. Nejdl. Design issues and challenges for RDF- and
schema-based peer-to-peer systems. In Proc. of
DBISP2P, page 1, 2003.

[22] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. S. A. Naeve,
M. Nilsson, M. Palmer, and T. Risch. Edutella: A
P2P networking infrastructure based on RDF. In
Proc. of WWW, pages 604–615, 2002.

[23] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz,
M. Schlosser, I. Brunkhorst, and A. Löser.
Super-peer-based routing strategies for RDF-based
peer-to-peer networks. WWW, 1(2):177–186, 2003.

[24] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. TODS, 34(3):16:1–16:45,
2009.

APPENDIX

Algorithm 1: Using the chase to compute the certain
answers ans(q,P, D).

Data: Graph pattern query q, system P, stored
instance D.

Result: The set t of the certain answers ans(q,P, D).
Initialize instance J = ∅;
/* Chase procedure to generate a universal

solution */

while some of the mappings of P are not satisfied in J
do

case (d 6⊆ J for some d ∈ D):
add d to J ;

case (for some graph mapping assertion in P, we
have QJ 6⊆ Q′J):

for each tuple t ∈ QJ \Q′J do
generate the boolean query bQ′ by
substituting t in the free variables Q′;
add triples to J generating new blank nodes,

such that bQ′
J

= true;

case (for some equivalence mapping to P, we
have c 6≡e c

′)
switch subjQ(c)∗J 6⊆ subjQ(c′)∗J do

for each tuple
(p, o) ∈ (subjQ(c)∗J \ subjQ(c′)∗J) do

add the triple (c′, p, o) to J ;

switch subjQ(c′)∗J 6⊆ subjQ(c)∗J do
for each tuple
(p, o) ∈ (subjQ(c′)∗J \ subjQ(c)∗J) do

add the triple (c, p, o) to J ;

switch predQ(c)∗J 6⊆ predQ(c′)∗J do
for each tuple
(s, o) ∈ (predQ(c)∗J \ predQ(c′)∗J) do

add the triple (s, c′, o) to J ;

switch predQ(c′)∗J 6⊆ predQ(c)∗J do
for each tuple
(s, o) ∈ (predQ(c′)∗J \ predQ(c)∗J) do

add the triple (s, c, o) to J ;

switch objQ(c)∗J 6⊆ objQ(c′)∗J do
for each tuple
(s, p) ∈ (objQ(c)∗J \ objQ(c′)∗J) do

add the triple (s, p, c′) to J ;

switch objQ(c′)∗J 6⊆ objQ(c)∗J do
for each tuple
(s, p) ∈ (objQ(c′)∗J \ objQ(c)∗J) do

add the triple (s, p, c) to J ;

/* End of chase */

compute the certain answers t := qJ ;
/* The certain answers are generated by

evaluating the query over the universal

solution */

return t;


