739 research outputs found

    Wavelet based Watermarking approach in the Compressive Sensing Scenario

    Full text link
    Due to the wide distribution and usage of digital media, an important issue is protection of the digital content. There is a number of algorithms and techniques developed for the digital watermarking.In this paper, the invisible image watermark procedure is considered. Watermark is created as a pseudo random sequence, embedded in the certain region of the image, obtained using Haar wavelet decomposition. Generally, the watermarking procedure should be robust to the various attacks-filtering, noise etc. Here we assume the Compressive sensing scenario as a new signal processing technique that may influence the robustness. The focus of this paper was the possibility of the watermark detection under Compressive Sensing attack with different number of available image coefficients. The quality of the reconstructed images has been evaluated using Peak Signal to Noise Ratio (PSNR).The theory is supported with experimental results

    Provably secure and efficient audio compression based on compressive sensing

    Get PDF
    The advancement of systems with the capacity to compress audio signals and simultaneously secure is a highly attractive research subject. This is because of the need to enhance storage usage and speed up the transmission of data, as well as securing the transmission of sensitive signals over limited and insecure communication channels. Thus, many researchers have studied and produced different systems, either to compress or encrypt audio data using different algorithms and methods, all of which suffer from certain issues including high time consumption or complex calculations. This paper proposes a compressing sensing-based system that compresses audio signals and simultaneously provides an encryption system. The audio signal is segmented into small matrices of samples and then multiplied by a non-square sensing matrix generated by a Gaussian random generator. The reconstruction process is carried out by solving a linear system using the pseudoinverse of Moore-Penrose. The statistical analysis results obtaining from implementing different types and sizes of audio signals prove that the proposed system succeeds in compressing the audio signals with a ratio reaching 28% of real size and reconstructing the signal with a correlation metric between 0.98 and 0.99. It also scores very good results in the normalized mean square error (MSE), peak signal-to-noise ratio metrics (PSNR), and the structural similarity index (SSIM), as well as giving the signal a high level of security

    Identification of Sparse Audio Tampering Using Distributed Source Coding and Compressive Sensing Techniques

    Get PDF
    In the past few years, a large amount of techniques have been proposed to identify whether a multimedia content has been illegally tampered or not. Nevertheless, very few efforts have been devoted to identifying which kind of attack has been carried out, especially due to the large data required for this task. We propose a novel hashing scheme which exploits the paradigms of compressive sensing and distributed source coding to generate a compact hash signature, and we apply it to the case of audio content protection. The audio content provider produces a small hash signature by computing a limited number of random projections of a perceptual, time-frequency representation of the original audio stream; the audio hash is given by the syndrome bits of an LDPC code applied to the projections. At the content user side, the hash is decoded using distributed source coding tools. If the tampering is sparsifiable or compressible in some orthonormal basis or redundant dictionary, it is possible to identify the time-frequency position of the attack, with a hash size as small as 200 bits/second; the bit saving obtained by introducing distributed source coding ranges between 20% to 70%
    • …
    corecore