28 research outputs found

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    MASSIVELY PARALLEL OIL RESERVOIR SIMULATION FOR HISTORY MATCHING

    Get PDF

    Generalized database index structures on massively parallel processor architectures

    Get PDF
    Height-balanced search trees are ubiquitous in database management systems as well as in other applications that require efficient access methods in order to identify entries in large data volumes. They can be configured with various strategies for structuring the search space for a given data set and for pruning it when different kinds of search queries are answered. In order to facilitate the development of application-specific tree variants, index frameworks, such as GiST, exist that provide a reusable library of commonly shared tree management functionality. By specializing internal data organization strategies, the framework can be customized to create an index that is efficient for an application's data access characteristics. Because the majority of the framework's code can be reused development and testing efforts are significantly lower, compared to an implementation from scratch. However, none of the existing frameworks supports the execution of index operations on massively parallel processor architectures, such as GPUs. Enabling the use of such processors for generalized index frameworks is the goal of this thesis. By compiling state-of-the-art techniques from a wide range of CPU- and GPU-optimized indexes, a GiST extension is developed that abstracts the physical execution aspect of generic, tree-based search queries. Tree traversals are broken-down into vectorized processing primitives that can be scheduled to one of the available (co-)processors for execution. Further, a CPU-based implementation is provided as well as a new GPU-based algorithm that, unlike prior art in this area, does not require that the index is fully stored inside a GPU's main memory buffer. The applicability of the extended framework is assessed for image rendering engines and, based on microbenchmarks, the parallelized algorithm performance is compared for different CPU and GPU generations. It will be shown that cases exist, where the GPU clearly outperforms the CPU and vice versa. In order to leverage the strengths of each processor type, an adaptive scheduler is presented that can be calibrated to schedule index operations to the best-fitting device in a hybrid system. With the help of a tree traversal simulation different scheduling strategies are evaluated and it will be shown that the adaptive scheduler can be used to make near-optimal decisions.Suchbäume sind allgegenwärtig in Datenbanksystemen und anderen Anwendungen, die eine effiziente Möglichkeit benötigen um in großen Datensätzen nach Einträgen zu suchen, die bestimmte Suchkriterien erfüllen. Sie können mit verschiedenen Strategien konfiguriert werden um den Suchraum zu strukturieren und die für ein Suchergebnis irrelevante Bereiche von der Bearbeitung auszuschließen. Die Entwicklung von anwendungsspezifischen Indexen wird durch Frameworks wie GiST unterstützt. Jedoch unterstützt keines der heute bereits existierenden Frameworks die Verwendung von hochgradig parallelen Prozessorarchitekturen wie GPUs. Solche Prozessoren für generische Index Frameworks nutzbar zu machen, ist Ziel dieser Arbeit. Dazu werden Techniken aus verschiedensten CPU- und GPU-optimierten Indexen analysiert und für die Entwicklung einer GiST-Erweiterung verwendet, welche die für eine Suche in Suchbäumen nötigen Berechnungen abstrahiert. Traversierungsoperationen werden dabei auf vektorisierte Primitive abgebildet, die auf parallelen Prozessoren implementiert werden können. Die Verwendung dieser Erweiterung wird beispielhaft an einem CPU Algorithmus demonstriert. Weiterhin wird ein neuer GPU-basierter Algorithmus vorgestellt, der im Vergleich zu bisherigen Verfahren, ein dynamisches Nachladen der Index Daten in den Hauptspeicher der GPU unterstützt. Die Praktikabilität des erweiterten Frameworks wird am Beispiel von Anwendungen aus der Computergrafik untersucht und die Performanz der verwendeten Algorithmen mit Hilfe eines Benchmarks auf verschiedenen CPU- und GPU-Modellen analysiert. Dabei wird gezeigt, unter welchen Bedingungen die parallele GPU-basierte Ausführung schneller ist als die CPU-basierte Variante - und umgekehrt. Um die Stärken beider Prozessortypen in einem hybriden System ausnutzen zu können, wird ein Scheduler entwickelt, der nach einer Kalibrierungsphase für eine gegebene Operation den geeignetsten Prozessor wählen kann. Mit Hilfe eines Simulators für Baumtraversierungen werden verschiedenste Scheduling Strategien verglichen. Dabei wird gezeigt, dass die Entscheidungen des Schedulers kaum vom Optimum abweichen und, abhängig von der simulierten Last, die erzielbaren Durchsätze für die parallele Ausführung mehrerer Suchoperationen durch hybrides Scheduling um eine Größenordnung und mehr erhöht werden können

    Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis

    Full text link
    Deep Neural Networks (DNNs) are becoming an important tool in modern computing applications. Accelerating their training is a major challenge and techniques range from distributed algorithms to low-level circuit design. In this survey, we describe the problem from a theoretical perspective, followed by approaches for its parallelization. We present trends in DNN architectures and the resulting implications on parallelization strategies. We then review and model the different types of concurrency in DNNs: from the single operator, through parallelism in network inference and training, to distributed deep learning. We discuss asynchronous stochastic optimization, distributed system architectures, communication schemes, and neural architecture search. Based on those approaches, we extrapolate potential directions for parallelism in deep learning

    FPGA-based high-performance neural network acceleration

    Full text link
    In the last ten years, Artificial Intelligence through Deep Neural Networks (DNNs) has penetrated virtually every aspect of science, technology, and business. Advances are rapid with thousands of papers being published annually. Many types of DNNs have been and continue to be developed -- in this thesis, we address Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Graph Neural Networks (GNNs) -- each with a different set of target applications and implementation challenges. The overall problem for all of these Neural Networks (NNs) is that their target applications generally pose stringent constraints on latency and throughput, but also have strict accuracy requirements. Much research has therefore gone into all aspects of improving NN quality and performance: algorithms, code optimization, acceleration with GPUs, and acceleration with hardware, both dedicated ASICs and off-the-shelf FPGAs. In this thesis, we concentrate on the last of these approaches. There have been many previous efforts in creating hardware to accelerate NNs. The problem designers face is that optimal NN models typically have significant irregularities, making them hardware unfriendly. One commonly used approach is to train NN models to follow regular computation and data patterns. This approach, however, can hurt the models' accuracy or lead to models with non-negligible redundancies. This dissertation takes a different approach. Instead of regularizing the model, we create architectures friendly to irregular models. Our thesis is that high-accuracy and high-performance NN inference and training can be achieved by creating a series of novel irregularity-aware architectures for Field-Programmable Gate Arrays (FPGAs). In four different studies on four different NN types, we find that this approach results in speedups of 2.1x to 3255x compared with carefully selected prior art; for inference, there is no change in accuracy. The bulk of this dissertation revolves around these studies, the various workload balancing techniques, and the resulting NN acceleration architectures. In particular, we propose four different architectures to handle, respectively, data structure level, operation level, bit level, and model level irregularities. At the data structure level, we propose AWB-GCN, which uses runtime workload rebalancing to handle Sparse Matrices Multiplications (SpMM) on extremely sparse and unbalanced input. With GNN inference as a case study, AWB-GCN achieves over 90% system efficiency, guarantees efficient off-chip memory access, and provides considerable speedups over CPUs (3255x), GPUs (80x), and a prior ASIC accelerator (5.1x). At the operation level, we propose O3BNN-R, which can detect redundant operations and prune them at run time. This works even for those that are highly data-dependent and unpredictable. With Binarized NNs (BNNs) as a case study, O3BNN-R can prune over 30% of the operations, without any accuracy loss, yielding speedups over state-of-the-art implementations on CPUs (1122x), GPUs (2.3x), and FPGAs (2.1x). At the bit level, we propose CQNN. CQNN embeds a Coarse-Grained Reconfigurable Architecture (CGRA) which can be programmed at runtime to support NN functions with various data-width requirements. Results show that CQNN can deliver us-level Quantized NN (QNN) inference. At the model level, we propose FPDeep, especially for training. In order to address model-level irregularity, FPDeep uses a novel model partitioning schemes to balance workload and storage among nodes. By using a hybrid of model and layer parallelism to train DNNs, FPDeep avoids the large gap that commonly occurs between training and testing accuracy due to the improper convergence to sharp minimizers (caused by large training batches). Results show that FPDeep provides scalable, fast, and accurate training and leads to 6.6x higher energy efficiency than GPUs

    Tuning the Computational Effort: An Adaptive Accuracy-aware Approach Across System Layers

    Get PDF
    This thesis introduces a novel methodology to realize accuracy-aware systems, which will help designers integrate accuracy awareness into their systems. It proposes an adaptive accuracy-aware approach across system layers that addresses current challenges in that domain, combining and tuning accuracy-aware methods on different system layers. To widen the scope of accuracy-aware computing including approximate computing for other domains, this thesis presents innovative accuracy-aware methods and techniques for different system layers. The required tuning of the accuracy-aware methods is integrated into a configuration layer that tunes the available knobs of the accuracy-aware methods integrated into a system

    Graph analytics on modern massively parallel systems

    Get PDF
    Graphs provide a very flexible abstraction for understanding and modeling complex systems in many fields such as physics, biology, neuroscience, engineering, and social science. Only in the last two decades, with the advent of Big Data era, supercomputers equipped by accelerators –i.e., Graphics Processing Unit (GPUs)–, advanced networking, and highly parallel file systems have been used to analyze graph properties such as reachability, diameter, connected components, centrality, and clustering coefficient. Today graphs of interest may be composed by millions, sometimes billions, of nodes and edges and exhibit a highly irregular structure. As a consequence, the design of efficient and scalable graph algorithms is an extraordinary challenge due to irregular communication and memory access patterns, high synchronization costs, and lack of data locality. In the present dissertation, we start off with a brief and gentle introduction for the reader to graph analytics and massively parallel systems. In particular, we present the intersection between graph analytics and parallel architectures in the current state-of-the-art and discuss the challenges encountered when solving such problems on large-scale graphs on these architectures (Chapter 1). In Chapter 2, some preliminary definitions and graph-theoretical notions are provided together with a description of the synthetic graphs used in the literature to model real-world networks. In Chapters 3-5, we present and tackle three different relevant problems in graph analysis: reachability (Chapter 3), Betweenness Centrality (Chapter 4), and clustering coefficient (Chapter 5). In detail, Chapter 3 tackles reachability problems by providing two scalable algorithms and implementations which efficiently solve st-connectivity problems on very large-scale graphs Chapter 4 considers the problem of identifying most relevant nodes in a network which plays a crucial role in several applications, including transportation and communication networks, social network analysis, and biological networks. In particular, we focus on a well-known centrality metrics, namely Betweenness Centrality (BC), and present two different distributed algorithms for the BC computation on unweighted and weighted graphs. For unweighted graphs, we present a new communication-efficient algorithm based on the combination of bi-dimensional (2D) decomposition and multi-level parallelism. Furthermore, new algorithms which exploit the underlying graph topology to reduce the time and space usage of betweenness centrality computations are described as well. Concerning weighted graphs, we provide a scalable algorithm based on an algebraic formulation of the problem. Finally, thorough comprehensive experimental results on synthetic and real- world large-scale graphs, we show that the proposed techniques are effective in practice and achieve significant speedups against state-of-the-art solutions. Chapter 5 considers clustering coefficients problem. Similarly to Betweenness Centrality, it is a fundamental tool in network analysis, as it specifically measures how nodes tend to cluster together in a network. In the chapter, we first extend caching techniques to Remote Memory Access (RMA) operations on distributed-memory system. The caching layer is mainly designed to avoid inter-node communications in order to achieve similar benefits for irregular applications as communication-avoiding algorithms. We also show how cached RMA is able to improve the performance of a new distributed asynchronous algorithm for the computation of local clustering coefficients. Finally, Chapter 6 contains a brief summary of the key contributions described in the dissertation and presents potential future directions of the work
    corecore