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Petroleum Reservoir modeling is a challenging process that attempts inferring reservoir 

structure and configurations through the estimation of essential spatial properties like 

porosity and permeability. The general model consists of two consecutive and 

computationally expensive simulated paradigms; the forward and the inverse models. The 

goal of Forward Reservoir Simulation (FRS) is to model fluid flow and mass transfer in 

porous media to eventually draw conclusions about the behavior of certain flow variables 

and well responses. Any developed (FRS) is prone to significant errors as the initial data 

that defines the reservoir and the actual values of reservoir parameters are not necessarily 

the same. As a result, history matching or the inverse model repeatedly improves the 

simulated reservoir past performance after observing weaknesses in current data to suggest 

modifications in subsequent iterations. Both models eventually attempt solving a huge and 

computationally very expensive sparse linear system having either one or multiple right 

hand side (RHS) in the forward or the inverse model, respectively. By considering the state 

of art advances in massively parallel computing and the accompanying parallel 

architecture, this work aims primarily at developing a parallel simulator for oil reservoir 

on many-core processors by implementing a suitable parallel preconditioned linear solver 
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for both (single & multiple RHS) and exploiting several optimizations in both storage and 

implementation, to speed up the computation and minimize the overall simulator execution 

time. To offer more flexibility a graphical user interface (GUI) with simple visualization 

and controls will also be offered. 
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 ملخص الرسالة

  
  

  أیھم نواف حوریة ظاظا  :الاسم الكامل
  

  :عنوان الرسالة
  

  علوم وھندسة الحاسب الآلي التخصص:
  

  م٢٠١٥ كانون الأول    :تاریخ الدرجة العلمیة
  
 
  

المحاك�������اة الحاس�������وبیة عملی�������ة عل�������ى ال�������رغم م�������ن التح�������دیات العلمی�������ة المص�������احبة لھ�������ا، تھ�������دف 

م�����ن خ�����لال اس�����تقراء  اً إل�����ى التنب�����ؤ بماھی�����ة ھ�����ذه الحق�����وللطریق�����ة عم�����ل الحق�����ول النفطی�����ة أساس�����

ن الخص������ائص البنوی������ة الرئیس������ة كص������فات الص������خور المكون������ة ونفاذی������ة الموائ������ع م������ن جمل������ة م������ل

یعتم������دان بش������كل كبی������ر نم������وذجین متت������ابعین لھ������ذه المحاك������اة عل������ى  الع������ام الھیك������ل یق������ومخلالھ������ا. 

معرف�����ة كیفی�����ة . غ�����رض أول ھ�����ذین النم�����وذجین حس�����ابیة المعق�����دةعل�����ى ج�����م ھائ�����ل م�����ن العلمی�����ات ال

م�����ن  س�����ریان وت�����دفق الموائ�����ع م�����ن خ�����لال الطبق�����ات المكون�����ة للحق�����ل النفط�����ي واس�����تنتاج ق�����یم أولی�����ة

ی��������أتي دور  ل��������بعض المتغی��������رات المص��������احبة. لیس��������ت بالض��������رورة دقیق��������ة، خ��������لال افتراض��������ات

لال مقارن�������ھ النت�������ائج النم�������وذج الث�������اني لتحس�������ین الق�������یم الخارج�������ة م�������ن النم�������وذج الأول م�������ن خ�������

 المتنبئ���������ة م���������ع ق���������راءات س���������ابقة، وتحلیلھ���������ا واس���������تباط ش���������روط أفض���������ل لتولی���������د نت���������ائج أدق

ش�����كل مت�����زامن، ح�����ل سلس�����لة نظ�����م م�����ن بیتطل�����ب الأم�����ر ف�����ي كلت�����ا الح�����التین و .وافتراض�����ات أحس�����ن

مربع������ة ھیكلی������ة وھائل������ة ملیئ������ة بعناص������ر ص������فریة  وفةفالمع������ادلات الخطی������ة، مجموع������ة ف������ي مص������

ف�����ي النم�����وذج الأول، أو متع�����دد كم�����ا ف�����ي الث�����اني. یھ�����دف ھ�����ذا البح�����ث  لط�����رف أیم�����ن أوح�����د كم�����ا

التط�����ورات الس�����ریعة المتعاقب�����ة ف�����ي مج�����ال الحوس�����بة المتزامن�����ة  أح�����دثأساس�����اً، وبالاس�����تفادة م�����ن 

، إل�����ى تط�����ویر برن�����امج متكام�����ل یعم�����ل عل�����ى حواس�����ب كثی�����رة الأنوی�����ة، لمحاك�����اة عملی�����ة المتوازی�����ة

تس������ریع عملی������ة الحص������ول عل������ى النت������ائج  بغ������رض م������ن الخزان������ات الأرض������یة اس������تخراج ال������نفط
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لإعط������اء ص������ورة متكامل������ة، س������یتم أیض������اً تط������ویر واجھ������ة للمس������تخدمین تمك������نھم م������ن . المرج������وة

  التحكم ببعض متغیرات البرنامج واستعراض النتائج.
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1 CHAPTER 1 

INTRODUCTION 

 

From food production, power generation to transportation systems and almost every other 

aspect of daily life, our modern society continues to ask for more and more energy with oil 

being the number one resource that addresses that heavily increasing demands.  Despite 

the huge technological advances in oil industry, recovering the remaining available oil is 

limited by    our knowledge and understanding of oil reservoirs [1]. The process of 

Reservoir Simulation requires large amount of memory storage as well as extensive 

computations to eventually provide vital information about the production rate, cost 

management, optimal well placement and many other reservoir parameters. As the 

computation for practical reservoir dimensions may last for days, speeding up the process 

by taking advantage of parallel computing is indispensable. 

Like many other complex systems in nature, the behavior of oil reservoir can be modeled 

using a set of non-linear partial differential equations (PDEs)  that describe how the entire 

system evolve in time, space or both. For many practical scenarios, obtaining a closed form 

analytical solution for the governing (PDEs) that completely describe the problem is 

extremely difficult or even impossible. For that reason various discretization schemes have 

been developed and utilized to approximate the solution of the governing (PDEs), yet 
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maintaining stability and leading sound results with accepted convergence level. Such 

approximations result in a large sparse system of algebraic equations that needs to be 

further solved. 

The details of the problem are described in the next section. After that, the entire system 

model is presented followed by shedding some light on the computational model. Literature 

survey for discretization schemes and linear solvers is then introduced before finally stating 

the deliverables, methodology and the objectives out of this research.  

 

1.1 Statement of the Problem 

Petroleum Reservoir modeling is a challenging process for inferring reservoir structure and 

configurations through the estimation of essential spatial properties like porosity and 

permeability. As reservoirs extend over wide geographical areas, collecting enough 

samples efficiently and accurately to approximate flow conditions over a reasonable grid 

size is impracticable both economically and technically. This is mainly attributed to the 

fact that, wells are the only window through which various samples could be drawn. As a 

result and in order to approximate the estimation of reservoir parameters, indirect 

measurements or inverse modeling is a widely utilized alternative. When applied in 

petroleum engineering context, the inverse problem consists of two iterative and 

consecutive parts: the forward model and history matching – the inverse model.  

At the beginning of the first process, the forward model assumes initial values for porosity 

and permeability and tries to predict resulting estimates of pressure and saturation by 
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discretizing the governing partial differential equations (PDE’s) using a previously defined 

numerical scheme. Suitable desired boundary conditions and well constraints are imposed 

before finally and simultaneously solving the resulting set of nonlinear algebraic equations. 

After finishing all time iterates, the final resulting solution is fed to the inverse model which 

in turns searches the reservoir characteristics space to find the best variable estimate that 

matches the calculated pressure and saturation values.  

The inverse process is very challenging as its obtained solution is very sensitive to the input 

data that is naturally subjected to measurement and modeling errors. At the heart of inverse 

model lies the formulation and computation of sensitivity matrix that measures how an 

induced change in reservoir behavior at one place could be carried out throughout the entire 

system. It is computationally very expensive, and various methods were suggested to 

compute it. Two such famous approaches are the forward sensitivity and the adjoint 

sensitivity methods. Moreover, when the size of this sensitivity matrix is even large, 

approximation techniques may be utilized to further reduce its dimension. 

By considering the state of art advances in massively parallel computing and the 

accompanying parallel architecture, this work aims primarily at developing a parallel 

simulator for oil reservoir on many-core processors by implementing a suitable parallel 

preconditioned linear solver for both (single & multiple RHS) and exploiting several 

optimizations in both storage and implementation, to speed up the computation and to 

minimize the overall simulator execution time. To offer more flexibility a graphical user 

interface (GUI) with simple visualization and controls will also be offered. 
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1.2 Parallel Computer Architecture: Past and Present   

Aiming for more and more performance has always been a driving force for any 

technological advances in computer systems ever since it was invented. Despite all the 

ambiguities associated with quantifying what the word performance solely indicates, the 

development trend was geared and motivated by a necessity of solving complex, practical 

and large scale real life problems,.  As a result, machines with several architectural 

taxonomies have been built to serve different needs.  

With a Central Processing Unit (CPU) interconnected with parallel wires to a memory chip 

that stores low level instructions and user data, the classical von Neumann model [2] laid 

the most successful foundational architecture that both dominated and advanced computer 

industry for quite some time.  The (CPU) that features special fast storage elements called 

registers, comprise a control unit responsible not only for tracking program flow but also 

determining the next fetched instruction to be later executed by the arithmetic and logic 

unit (ALU).  

As processor’s throughput, the amount of work that can be completed per unit time, is 

much higher than the rate at which data arrives from main memory, various considerations 

over the years of computer system development were suggested to overcome that 

bottleneck. The improvements took many directions ranging from enhancing the 

performance of existing components and inventing novel technologies up to introducing 

new architectural taxonomies.  
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The presence of different memory hierarchies that originally revolved around exploiting 

the concept of data temporal and spatial localities, helped to some extent in bridging the 

previous latency gap. The idea was based on trading off space and power consumption with 

speed. This lead to introducing and manufacturing special cache memories which are small 

in size but supports fast data access, organized at different levels between the CPU and 

main memory.  According to a predefined scheme, cache memory maps a portion of data 

from main memory to its lines and serve them directly, upon a hit, to the processor when 

requested. If a processor requested data that is not available in cache, then data is fetched 

from main memory and some unused old data blocks are then replaced according to certain 

mechanism. Regardless of the mapping scheme or any resulting coherency overhead, the 

effectiveness of caches is prominent when the probability of not finding requested data in 

cache (miss rate) is small. At the first glance, it is obvious that, the miss rate is lowered 

when the cache size is made bigger. Nevertheless, and based on the intensive study of [3] 

that relates the cache sizes and the program working set, [4] has indicated that the benefit 

of further increasing cache size would be minimal and will not contribute to the overall 

performance as used to be in the past. [4] indicated that currently available cache sizes are 

big enough to hold the data needed to be accessed through out the lifecycle a given program 

in order to complete its needed calculations.  

Dating back to 1965, Gordon Moore, co-founder of Intel Corporation, formulated an 

observation that was later known as Moor’s Law and predicted the number of transistors 

per inch on integrated circuits to be doubled every 18 months [5]. The observation held 

true for quite good time until it finally hit classical physics walls. The more transistors 

shrink in size, the faster the electronic response becomes and hence the faster the integrated 
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circuit is [4]. However, as the frequency of operation increases, the associated power 

consumption increases in a quadratic relation1. Current technology still cannot cope with 

that excessive amount of dissipated resulting heat that if pushed further, may either melt 

the chip or result in an unreliable behavior [6].    

Moor’s prediction of the huge increase in transistors’ count, had paved the road for a new 

speed optimization era where more space is invested to deliver better performance. 

Instruction Level Parallelism (ILP) techniques [7] such as Superscalar Instruction Issue 

and Instruction Pipelining, are two currently widely utilized strategies that utilized the 

previous tradeoff and often been exploited to their possible extreme. Pipelining is centered 

on breaking down instructions into smaller pieces to be later processed at multiple 

staggered independent stages. The simultaneous work flow among different stages will 

eventually achieve a throughput of executing one instruction per clock cycle. Moreover 

and in addition to utilize complex circuitry as in pipelining, superscalar machines make use 

of duplicated additional hardware functional units to dynamically fetch, issue and process 

multiple instructions at the same time. While simultaneous issue of six instructions in 

superscalar machines, is about the useful limit for most programs on real processors, 

                                                 
1 The capacitance is the ability of the circuit to store energy � =

�

�
  Or � = �. �. 

Work is moving the charge against the voltage: � = � ∗ � == > � =  �. ��. 

Power is work per unit time: � =
�

�
= �. � == > � = �. ��. � 
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increasing the size of the pipeline beyond a certain depth has not been proven contribute to 

better performance of the processor because of the inherent practical limits2 [4, 6].  

Just as the previous two techniques, Speculative Execution and Branch Prediction are also 

other forms of ILP. They again take advantage of the exponential increase in the number 

of transistors and advanced manufacturing technologies to introduce other components for 

boosting up performance [7]. In order to enhance speculation, a buffer is utilized to keep a 

history record of already taken branches inside a program, so that they are utilized later by 

processors for any upcoming branches. Although keeping such records consumes space 

and power [6], and despite the fact that programs’ behavior is not completely predictable, 

such statistical inference had lead a boost in performance but only up to a certain point [4].   

1.2.1 Multicore System 

In parallel and not far from the previous chronological development, many attempts were 

dedicated to making use of multiple cooperating processors to either reduce the overall 

execution time of very intensive computational simulations or to solve a given problem at 

larger scales. By taking the combination of instructions’ flow and data streams, Flynn [2, 

5, 7] proposed a coarse famous taxonomy to categorize computer systems. Table 1 

Although SIMD machines may yield a very high throughput especially when processing 

vector instructions, such machines suffer from a main drawback stemmed from their 

                                                 
2 Pipelining is accomplished by reducing the amount of logic per stage to reduce the time between clocked 
circuits, and there is a practical limit to the number of stages into which instruction processing can be 
decomposed 
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original design; all computations must proceed in lock step and therefore free processing 

elements that had completed their job cannot start other tasks [8]. 

 

 

Table 1: Flynn Taxonomy for classifying computer systems 

 Data Streams 

Single Multiple 

In
st

ru
ct

io
n

s 

S
in

gl
e 

The uniprocessor 

Ex. von Neumann Architecture 

 

SIMD 

The same instruction is executed by 
multiple processors while operating 
on different data streams.  

Ex. Vector Architecture 

M
u

lt
ip

le
 

MISD 

A single data stream that utilizes 
successive functional units 

Ex. No Commercial model available 
yet 

MIMD 

Each processor fetches its own 
instructions and uses its own data. 

Ex. General-Purpose 
Multiprocessors 

 

MIMD can be further classified into two categories based on their attached memory 

organizations: shared memory systems and distributed memory systems. Distributed 

memory system is also categorized according to the access pattern to be either distributed 

shared memory or clusters, Table 2. 
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Table 2: MIMD machines according to their attached memory and communication schemes 

 Memory System 

Shared Distributed 

Organization Processors share a single centralized 

memory 

Memory is physically distributed and private 

to each processor. 

communication Buses or switches Switches, Multidimensional meshes, 

communication networks, internet 

Characteristics  The main memory has a 
uniform (symmetric) access 
time from any processor.  

 Implicit communication via 
load and store from a shared 
variable. 

 Explicit Synchronization 
 

Also known as: 

 Symmetric multiprocessors  
(SMPs) 

 Uniform Memory Access 
(UMA) 

 

Two communication schemes: 

 Distributed Shared Memory (DSM): 
o Communication via a logical 

shared address space.  
o Also called non-uniform 

memory access (NUMAs), as 
the access time for varies 
according to the location of a 
data in memory 

o Implicit communication 
o To mitigate the discrepancy in 

memory access time, 
processors are shipped with 
caches and a coherency 
protocol. 

 Multicomputers 
o Separate computers connected 

on a local area network 
o Popularly called clusters 
o Explicit Communication via 

message passing 
o Implicit Synchronization 

 

Famous 

Programming 

Environment3 

[9] 

OpenMP [10]: 

Implemented as set of extensions to 

(C/Fortran)  

MPI [11] 

Implemented as a library called from 

programs written in a sequential 

programming language 

                                                 
3 Java is also famous for both memory systems and enjoys lot of software engineering benefits. However, 
it is slow compared to the other two environments and suffer from several deficiencies in the domain. 
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The programming effort needed to write parallel applications targeted to run on shared 

address space is minimal compared to other schemes as no data structure is needed to be 

distributed among processors. It is worth mentioning that such systems do not scale.  This 

is due to the fact that increasing the number of processors, will increase the contention for 

memory bandwidth which is already a limiting factor [9].  

1.2.2 From Multicore to Many-core 

Many-core machines have emerged naturally as an answer to the continuous demand and 

need for more performance. They have been developed by considering the tricks and 

limitations that has been learnt over the years of continuous improvement on the design of 

both single and multicore systems.  In addition to exploiting all possible optimizations to 

their limits, many-core machines came to existence after realizing that ILP could only 

deliver constant factors of speedup [6]. Moreover, it has been firmly realized that clock 

speed could not be increased anymore without melting the chip. As a result, the design 

consideration for many-core systems was centered on optimizing the architecture for power 

rather than performance [9]. On NVidia’s GPUs for instance and being generated from 

simple cores operating at MHz clock, teraflop performance, or even exaflop in the near 

future, is achieved via hundreds of thousands cooperating threads4 performing the same 

task simultaneously.  

                                                 
4 Multiple threads exploit parallelism through latency hiding 
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Unlike the previous trend in manufacturing high performance computing machines, 

designing dedicated throughput oriented devices rather than utilizing general purpose 

latency oriented ones had enabled smarter utilization of Moor’s observation. Doubling the 

number of transistors every eighteen month on a chip is now used to create either many-

core processors, or single chips having multiple processor cores [4, 6, 12].  

The details for the most widely used many core systems is presented next. 

1.2.3 Intel Xeon Phi  

Taking advantage of the new implemented 218 instructions not to mention the dedicated 

vector processing unit (VPU) and if a given code is highly parallel, efficiently vectorizable, 

scalable and able to hide the I/O communication [13], then it can effectively enjoy the 

teraflop performance offered by the power efficient Xeon Phi coprocessor [14]. The 

accelerator that coexists with the main processor and operates at about its third speed 

supports various execution models including heterogeneous programming mode5, 

coprocessor native execution mode6 and Symmetric execution7 mode [13].  Through either 

data marshaling or virtual shared memory model, the host processor and Intel Xeon Phi 

communicate for exchanging data [13]. 

                                                 
5 Also known the offload mode, supported by OpenMP 4.0 
6 As the Intel Xeon phi has its own micro OS, it can be viewed as another node connected to the main 
system. Cross compilation is required.   
7 The application runs on both the main processor and the accelerator. Communication is done through 
message passing interface.  
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1.2.4 NVidia’s GPUs 

The product line at NVidia is continuously introducing new generations of high 

performance power efficient hardware. Besides the offered extreme computing 

capabilities, the new Kepler architecture [15] has introduced more features that enables 

increased GPU utilization and simplify parallel program design. For example, by allowing 

kernels to have full control on spawning other kernels, dynamic parallelism gives more 

flexibility for parallelizing nested loop iterations and performing recursion.  Moreover, and 

to better utilize the system’s multicores, Hyper-Q allows multiple simultaneous connection 

lines from those cores to launch work on the GPU, thus supporting computation and 

communication overlapping optimization.   

With a support to 2688 CUDA Cores, 6 GB memory with 250 GB/s bandwidth, the Tesla 

K20 GPU is capable of delivering 1.32 TF and 3.95 TF double and single precision peak 

performance, respectively. The accelerator that is made of more than 7.1 Billion transistors 

is shipped with 15 streaming multiprocessors (SMX) and 1.5 MB L2 cache. Each SMX 

supports a maximum of 2048 threads, 16 thread blocks, 64K 32-bit registers, up to 48K 

shared memory. Each thread block can have a maximum of 1024 threads, while every 

thread can have a maximum of 255 registers. The computing Grid can support a maximum 

of 2�� − 1 threads. Four warps each containing 32 threads can be issued and executed 

concurrently8. Threads within a warp can share data through the new implemented Shuffle 

instruction and therefore reduce the amount of shared memory needed per thread block9.  

                                                 
8 This is because of the available quad warp scheduler and the eight instruction dispatch units.  
9 This has a direct relation with the amount of threads and thread blocks that can be allocated. 
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As this work is implemented on this architecture by utilizing its accompanying parallel 

computing platform -CUDA, the next section is dedicated to describing this programming 

model and its associated optimizations in more details. 

 

1.3 The Programming Model of the Compute Unified Device 

Architecture (CUDA) 

 

The NVidia GPU memory, Figure 1, is organized at different levels each of which varies 

in speed, usage, size, and scope10 [15]. Tesla K20x GPU features a 6 GB global memory 

with 250 GB/s bandwidth. Data stored in global memory are allocated and destroyed from 

the host and are visible by all threads in the application. With a similar scope and certain 

considerations11, the read only 512 KB Constant Memory provides a relatively faster 

access speed than the global memory by reducing bandwidth usage through caching 

constant values and broadcasting them to all threads in a warp. At the block level and being 

visible to all threads in the block, the configurable 64 KB shared memory and in the 

absence of bank conflicts, provide even much faster access speed and allow data sharing 

and reuse among threads within the block. Finally, and with a lifetime of the thread that 

created it, registers are considered the fastest memory elements requiring zero clock cycle 

per instruction in the absence data dependency. Kepler based devices support a maximum 

of 255 32-bit register per thread.  

                                                 
10 See also: http://docs.nvidia.com/cuda/kepler-tuning-guide/#axzz3V6tnqhWI  
11 Warps of threads read the same location 
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Figure 1:  Memory Hierarchy in NVidia GPU 
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1.4 The Forward Reservoir Model 

 

Forward Reservoir Simulation (FRS) is a predictive mathematical process that models fluid 

flow and mass transfer in porous media. Regardless of the discretization approach or grid 

mesh type, FRS will eventually draw conclusions at the behavior of certain flow variables 

and well responses to either utilize it in the development of new fields to estimate the 

production rate for instance, or to instantiate another process, namely, the inverse model 

and history matching.  

Our implemented model fully describes the 3D flow process of the two immiscible phases 

(water, oil) and accounts for various physical properties in the flowing medium like 

permeability, porosity, oil pressure, water saturation as well as the interacting forces such 

as gravity and capillary. Permeably is  the  capacity of the  rock to  transmit  fluid  through  

its  connected  pores  when the same  fluid  fills  all the  interconnected  pores [16]. A 

porous medium is a solid containing void spaces (pores), connected or unconnected, 

dispersed within it in either a regular or random manner. And porosity is the ratio of the 

volume of the pores to the total bulk volume of the media [17]. Our simulated reservoir 

will be described as having isotropic permeability distribution and a heterogeneous 

geometry12. At the analysis stage, the mass balance equation for every phase is constructed 

and the associated velocities are expressed by means of Darcy’s law that linearly relates 

                                                 
12 Those are properties of the porous media:  
Isotropic: permeability is constant in all directions, i.e. it does not exhibit directional bias. 
Heterogeneous:  porosity is changing with location. 
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the flow rate to pressure drop through geometry, viscosity and permeability. 

Mathematically, the mass balance equation can be derived as: 

  − �(����⃗�)+ ��

��
����

�
=

�

��
(������), (1.1) 

where, the subscript � ϵ [oil (o),water (w )], ��⃗� is velocity vector,�� the density,��
���� 

the flow rate, �� is the bulk volume, �  the porosity of the medium, and S� is phase 

saturation.  

Darcy Law is given by: 

  1
.f rf f f

f

u k k p Z


   


, 
(1.2) 

with � representing absolute permeability tensor of the medium ,  ��� is the relative 

permeability of phase �, �� is the viscosity of phase �, ������⃗ is the velocity of phase �, � the 

applied pressure drop, Z is the depth of the reservoir and  � is the specific gravity of the 

fluid. 

Expanding equation (1.1) using suitable flow units, and after substituting the velocity from 

equation (1.2) we obtain the following equations for each phase,  
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(1.4) 

Two more equations are then needed to close the system. In the two-phase system 

considered in this work, we require that: 

 �� =  �� −  �� , (1.5) 

 �� + �� = 1 , (1.6) 

where, � is the formation volume factor, �� and �� are constants, ��� and ��� are the 

relative permeability for oil and water respectively. Finally �� is the capillary pressure.  

The simulator will handle different boundary conditions and well constrains. Natural grid 

indexing is utilized and the above equation is then discretized using the finite volume 

method [18]  on a structured grid.  

After discretizing equations (1.3) and (1.4), and after providing initial state variables (�� &  

��) as well as reservoir properties, FRS solve for the corresponding state variables values 

at each iteration. The details of the process are described next. 

1.4.1 The Discretization Process 

The goal of this step is to approximate the solution of the governing non-linear partial 

differential equations provided by (1.3) and (1.4) after imposing certain boundary 

conditions of interest, by a system of non-linear algebraic equations that are iteratively 

solved. At the analysis stage, the domain of interest, the reservoir, is subdivided into a finite 
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number of grid cubes, control volumes, that spans the entire 3D space. By following the 

finite volume approach, the flow equations at the center of each grid cube are then 

integrated over that volume, shape functions between the center and the edges are then 

assumed and interpolation13 is performed in an attempt to summarize the total flow across 

and within the cube by a single point in the center. This will lead to a non-linear algebraic 

equation that approximates the original (PDE) and resembles the flow at the center of the 

control volume taking into account the contribution of other flows coming from all the six 

neighboring directions (North, South, East, West, Top and Bottom) as well as extra flow 

sources coming from the wells for instance. The previous process is repeated until all the 

originally subdivided volumes are visited.  

1.4.2 Assembling the System 

The mathematical derivation for the developed models follows exactly the formulation 

presented by Abeeb [19, 20]. 

The residual equation of the discretized system is given by the following14  

 ��⃗ ���(��⃗ ���,��⃗ �,�⃗ ,��;�⃗)= 0,��⃗ (1.7) 

where �⃗ is the vector of known reservoir properties and ��⃗ is the vector of the state variables 

given by: 

 ��⃗ = ���,�,��,�,… ,��,�,��,�,���,�,. . . ,���,������
�
 (1.8) 

                                                 
13 Depending on the required accuracy, the shape functions and the interpolation could be linear, 
quadratic or any other higher order. 
14 Assumptions include: fully implicit approach, three-dimensional reservoir system with � grid blocks and 
������  wells. 
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��⃗ ��� consists of the residual due to flow in and out of reservoir grid blocks, ��⃗���
��� and the 

residual due to flow into or out of the wells in the reservoir, ��⃗����
��� . Thus ��⃗ ��� may be 

represented by: 

 ��⃗ ��� = �
��⃗���

���

��⃗����
���

�, (1.9) 

where: 

 ��⃗���
��� = ���,�

���,��,�
���,��,�

���,��,�
���,. . . ,��,�

���,��,�
����

�
 (1.10) 

and  

 ��⃗����
��� = ������,�

��� ,�����,�
��� ,. . . ,�����,�����

��� �
�

, (1.11) 

��⃗���
���consists of the residuals representing the two phases present in the reservoir: 

 ��⃗�
�����⃗�

 ���,��
 ���,�⃗��

 ���,�⃗�
 �,��

 �,��⃗��� ,��;��⃗� = 0,��⃗ (1.12) 

and: 

 ��⃗�
�����⃗�

 ���,��
 ���,�⃗��

 ���,�⃗�
 �,��

 �,��⃗��� ,��;��⃗� = 0,��⃗ (1.13) 

while ��⃗����
���  is the well residual given by: 

 ��⃗����
�����⃗�

 ���,��
 ���,�⃗��

 ���,�⃗�
 �,��

 �,��⃗��� ,��;��⃗� = 0�⃗ (1.14) 
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In Equations (1.12) through (1.14),  ��⃗��� is the initial porosity distribution and ��⃗ is the 

permeability distribution in the reservoir. For a fixed total production rate constraint, we 

have  

 ��⃗����,�
��� =  � � ���,�

����− ��,�

�  ����

�����,�

= 0 (1.15) 

where ���,�
���� is the flow rate of phase �ℎ (�ℎ is either oil or water) at the ���  completion 

given by: 

 ���,�
����= ���,�

����������,�
��� − ���

��� − ���,�
������� (1.16) 

 

while ���,�
��� and ���,�

��� are the mobility ratio and specific gravity respectively of phases �ℎ 

at the ��� completion in well �. ��� is the well index at completion �. 

 

1.4.3 The Linearization Step 

 

Before the system of non-linear equations that was presented in equation (1.7) is 

simultaneously solved, a linearization step is necessary. The Newton Iteration achieves that 

goal by repeatedly refining a nearby approximation obtained after solving a linear system 

with the Jacobian as the coefficient matrix. For every iteration we solve the linear system 
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 ����,������⃗ ���,� = − ��⃗ ���,� (1.17) 

and updated the solution: 

 ��⃗ ���,��� =  ��⃗ ���,� + ���⃗ ���,� (1.18) 

 

In Equation (1.17),  the Jacobian matrix  ����,� is given by: 

 ����,� =
���⃗ ���,�

���⃗ ���,�
 (1.19) 

At the ��� iteration. 

As the practical dimensions of the modeled space are very high (M ~ billions), special care 

should be taken for choosing a suitable solver15. 

 

1.5 Computation of Sensitivity Coefficients 

 

Any developed forward reservoir simulation is prone to significant errors as the initial data 

that define the reservoir model and the actual values of reservoir parameters are not 

necessarily the same. This lack of information is due to the fact that wells are the only 

window to the reservoir where some properties can be drawn. Not only well dimensions 

are very narrow, but also they are distributed over wide areas. As a result drawing 

                                                 
15 Details will be provided later for various solvers comparisons. 
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conclusions about reservoir behavior in-between wells or interpolating reservoir 

parameters among wells is subjected to significant mismatch with the actual values. To 

counter this mismatch, repeated improvement of the simulated reservoir past performance 

are performed after observing weaknesses in data and suggesting modifications needed to 

improve the model [21]. 

History matching is the application of inverse theory to petroleum reservoir engineering, 

where direct or indirect observations at either well locations or well-head respectively are 

used to estimate variables that describe the physical properties of the system. Such 

information could be described by sensitivity coefficients which relate small changes in 

model variables such as permeability, to changes in the state variables such as pressure or 

saturation. The high computational cost required when processing sensitivity coefficients 

not only influences the optimization methodology, but also forces certain compromises and 

tradeoffs. [19, 22] Two famous approaches for computing sensitivity coefficients are the 

forward sensitivity [19, 22-24] and the adjoint-state [19, 22, 25, 26]. 

Both the forward sensitivity approach and the adjoint method require the simultaneous 

solution of a linear system with multiple right hand side independent vectors, assembled in 

a matrix that has a column dimension Σ. Although, the two methods produce the same 

results, Σ in both approaches differs widely and the choice for which one to apply is highly 

driven by the size of data and model spaces. When the number of data to match is 

significantly smaller than the number of parameters to estimate, the adjoint method is 

favored over the forward sensitivity approach. Σ in this case contains information about 

data for which sensitivities are to be calculated and independent of the number of 



41 

 

parameters. On the other hand, Σ in the forward sensitivity case stores redundant 

information about model variables but is preferred when the number of parameters is small. 

When both data space and model space are of high dimensions, the computation of 

sensitivity coefficients is very expensive and the use of parallel machines is a must or other 

approximations are utilized. One of which is presented in [19].    

To start with, the following sections present the mathematical derivations for both 

approaches. Again, we follow the same formulation as presented by Abeeb in [19] 

 

1.5.1 Forward Sensitivity Method 

 

Recall the general representation of the residual equations in (1.1) 

 ��⃗ ���(��⃗ ���,��⃗ �,�⃗ ,��;�⃗)= 0�⃗ (1.20) 

 

A perturbation, δα��⃗, of the model parameter, α��⃗, induces a perturbation, δu�⃗, of the state 

variable, u�⃗, and a perturbation of the residual R��⃗  as given by 

 ��⃗ (��⃗ ��� + ���⃗ ���,��⃗ � + ���⃗ �,�⃗ ,��;�⃗ + ��⃗) = 0�⃗ (1.21) 

An expansion of Equation (1.20) leads to 

 ��⃗ ��� +  
���⃗ ���

���⃗ ���
 ���⃗ ��� +

���⃗ ���

���⃗ �
 ���⃗ � +  

���⃗ ���

��⃗
 ��⃗ + �(��)=  0.��⃗    (1.22) 
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Dropping higher order terms and recognizing that R��⃗ ��� = 0 leads to the first order 

approximation 

 �������⃗ ��� = − �  ������⃗ � − ������,���⃗ (1.23) 

in which 

 ���� =
���⃗ ���

���⃗ ���
 (1.24) 

is the Jacobian matrix obtained from the simulator at the last step of the Newton-Raphson 

iteration,  

 � ��� =
���⃗ ���

���⃗ �
 (1.25) 

is a block-diagonal matrix containing the derivative of the accumulation terms with respect 

to the state variables, at the previous time step n and 

 ���� =
���⃗ ���

��⃗
 (1.26) 

is a very sparse matrix programmed into the simulator and obtained at the last step of the 

Newton-Raphson iteration. Differentiating Equation (1.23) with respect to α��⃗ gives  

 �������� = − �  ����� − ����, (1.27) 

where 

 �� =
���⃗ �

��⃗
 (1.28) 
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is the sensitivity matrix required to solve the inverse problem. 

 

In Equation (1.25) the entries of the block-diagonal matrix, D���, are  
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��� =

���

��
�
�(� ����)

���
�

�

�
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and 
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for m = 1,2,. . . M . The Jacobian matrix, the matrix containing partial derivatives of the 

accumulation terms, does not change for all parameters. Thus we only need to compute 

them once at every time. In Equation (1.26) Y��� is the derivative of the residual with 

respect to model parameters and is given by: 

 ���� =
���⃗ ���
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 , (1.33) 
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Except where otherwise noted, 

 �⃗ = �� ��⃗. (1.34) 

The derivative of the state variables with respect to lnk�⃗ is given by 

 
���⃗

� �� ��⃗
= �

���⃗

��
 (1.35) 

 

If we use the wavelets16 of α��⃗ as model parameters, Equation (1.27) becomes: 

 ������
��� = − � �����

� − ������, (1.36) 

where 

 ��
��� =

���⃗ ���

��⃗
=

���⃗ ���

��⃗
��, (1.37) 

and 

 �⃗ = ��⃗, (1.38) 

 

1.5.2 Adjoint Sensitivity Approach 

 

                                                 
16 The wavelet transform is a tool that cuts up data into different frequency components, and then studies 
each component with a resolution matched to its scale. [27] I. Daubechies, Ten lectures on wavelets vol. 
61: SIAM, 1992. 
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Consider any scalar-valued function Ψ (α��⃗) which depends on u�⃗ �(α��⃗) and is thus represented 

by 

    
1

, .
N

n

n
u   



 
   

 

  

 
(1.39) 

in which 
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: 1,2,... .
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n n
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u u n N


  

 

 
(1.40) 

Where: 
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,
N

n

n
u  



 
 
 

 

  

represents the computed data at time index (n) where the measurement are made. Define 

Ψ � by adjoining the constraints f⃗ in (1.20) to η using adjoint variables17 λ�⃗  

 Ψ ��u�⃗ ���,λ�⃗ ,α��⃗� =   η + �[�λ�⃗����
�

f⃗��� ]

�

���

 (1.41) 

In Equation (1.41) λ�⃗��� is the vector of adjoint variables at time-step n + 1 and it is of the 

same dimension as δu�⃗ ���, the solution of Equation(1.18).  At any feasible solution, δu�⃗���
���,  

 f⃗����u�⃗���
���,u�⃗���

� ,α��⃗� = 0 (1.42) 

                                                 
17 For comprehensive description please see [19] A. A. Awotunde, "Relating time series 

in data to spatial variation in the reservoir using wavelets," Ph.D. Thesis, 
Department of Energy Resource Engineering, Stanford University, 2010. 
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and as such 

 Ψ ��u�⃗���
���,λ�⃗ ,α��⃗� =   η�u�⃗���

���,α��⃗� =  Ψ (α��⃗). (1.43) 

 

Taking the total differential of Equation (1.41) we have 

∂Ψ � = ∂η + � ��λ�⃗����
� ∂f⃗���

∂u�⃗ ���
 δu�⃗ ��� +  �λ�⃗����

� ∂f⃗���

∂u�⃗ �
 δu�⃗ �

�

���

+  �λ�⃗����
� ∂f⃗���

∂α��⃗
 δα��⃗� 

(1.44) 

 

By considering the fact that the initial conditions are fixed 

 δu�⃗ � = 0�⃗ (1.45) 

And after certain manipulations, it can be shown that Eq. (1.44) will lead to [19]: 

 

 

∂Ψ � = � ���λ�⃗��
� ∂f⃗�

∂u�⃗ �
 + �λ�⃗����

� ∂f⃗���

∂u�⃗ �

�

���

+  
∂η

∂u�⃗ �
�δu�⃗ ��+ �

∂η

∂α��⃗

+ � ��λ�⃗��
� ∂f⃗�

∂α��⃗
�

�

���

�δα��⃗ 

(1.46) 
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We choose λ�⃗� so that the first term in Equation (1.46) vanishes. That is,  

 �λ�⃗��
� ∂f⃗�

∂u�⃗ �
 + �λ�⃗����

� ∂f⃗���

∂u�⃗ �
+  

∂η

∂u�⃗ �
= 0�⃗  (1.47) 

Equation (1.45) may be written as 

 (J�)�λ�⃗� =  − �(D���)�λ�⃗��� + �
∂η

∂u�⃗ �
�

�

� (1.48) 

At the last time step λ�⃗� �� is zero. Thus 

 (J� )�λ�⃗� =  − �
∂η

∂u�⃗ �
�

�

 (1.49) 

Equations (1.48) and (1.49) are the adjoint equations through which all the adjoint variables 

λ�⃗� are evaluated. Substituting Equation (1.48) into (1.47) and using the definition of Y� we 

obtain 

 ∂Ψ � = �
∂η

∂α��⃗
+  � ��λ�⃗��

�
Y��

�

���

� ∂α��⃗ (1.50) 

Differentiating Equation (1.50) with respect to � results in 

 
∂Ψ �

∂α��⃗
=

∂η

∂α��⃗
+  � ��λ�⃗��

�
Y��

�

���

 (1.51) 

 

Equation (1.51) gives the sensitivity of the scalar-valued function η to model parameters α���⃗. 

Equations (1.49) and (1.50) are solved backward in time forn = N,N − 1,… ,1. Consider 
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that we have measurements of well pressure, p�� for all the N  time steps. We may choose 

to compute the sensitivity of p��(t�)  for any (� ∈ 1,2,…  ) or a linear or nonlinear 

combination of all the p��(t�). In fact, to compute gradient of the objective function,Φ  we 

only need to replace η with Φ  in Equations (1.48), (1.49) and (1.51). [19] 
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2 CHAPTER 2 

LITERATURE REVIEW 

In this section, we review existing literature in areas relevant to this study. It covers a 

review for the discretization methodologies, and linear solvers. 

 

2.1 Review of Discretization Approaches 

 

Due to its simplistic formulation, ease of programming and previously accepted 

consistency, stability, and convergence, Finite Difference Method (FDM) was very famous 

in old literature. After the domain of interest is partitioned into structured grids, FDM 

approximate the derivatives in the domain’s governing Partial Differential Equations 

(PDE’s) by manipulating the equation’s Taylor Series Expansion.   Depending on the 

aimed accuracy, several schemes are derived and utilized. For example, in one dimensional 

discretization, the truncation error decreases by O(∆x�) in the case of Central Difference 

and by O(∆x) when Forward or Backward Differences are used. Whether block centered 

or point distributed discretization is considered, and after imposing suitable boundary 

conditions, such difference approximations yield a system of algebraic equations that 

eventually reduces to a banded sparse linear system. [28, 29]  
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Unlike FDM, Finite Element Method (FEM) has the ability to handle complex geometries 

and deal with variable material properties not to mention its rigorous mathematical 

foundations primarily reflected in error estimation.  Moreover, when applied to reservoir 

simulation, it plays a role in reducing grid orientation effects [30]. Over the years and after 

its deployment as a numerical procedure for solving (PDE’s), various flavors and 

enhancements were suggested. In their book “Computational Methods for Multiphase 

Flows in Porous Media” Zhangxin et al. [30], detailed the previous issues and presented in 

depth elaboration on various (FEM)  as well as case studies. Such variations include: 

Control Volume Finite Element, Discontinuous Finite Elements, Mixed Finite Element, 

Characteristic Finite Element and Adaptive Finite Element Methods. The general (FEM) 

approach could be described as follows: The domain of interests is first subdivided into 

unstructured non-overlapping elements that are usually triangles or tetrahedral in 2D or 3D 

cases respectively. After that, the variation of the solution inside an element is expressed 

by a shape-interpolation- function that form a linear distribution having its values vanish 

outside the corresponding element. The differential form of the governing PDE’s is 

transformed to their equivalent integral form by either utilizing the variation principle or 

through the method of weighted residuals of the weak formulation if preserving physical 

laws is desired. Finally, element equations and load vectors for each element are 

determined to form matrix equations, boundary conditions are imposed, and the final 

assembled system of simultaneous equations is solved. [31, 32] 

The Finite Volume Method (FVM) has become widely accepted in simulating fluid 

behavior not only because it naturally produces conserved discretization for the associated 

physical laws, but most importantly because of its flexibility.  The method utilizes mesh 
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dependent control volumes instead of grid intersection points to model unstructured grids 

without the need to perform coordinate transformation. As a direct result, the programming 

effort is much less compared to (FEM). The process begins by subdividing the domain of 

interests into a finite number of contiguous non-overlapping elements called control 

volumes (C.V). At the center of each (C.V) the associated governing (PDE’s) are integrated 

with respect to the variables of interest. Interpolation is used to express variable values at 

the (C.V.) surfaces before the final assembly of the algebraic equations is formed and 

solved. [18, 33, 34] 

 

2.2 Linear Solvers Review  

 

As the discretization process of PDE’s for practical problems will eventually lead to a set 

of algebraic equations with huge sparse coefficient matrix, Equation (2.1) , and given the 

associated storage issues and other limitations in direct linear solvers, researchers in the 

field of computational science and engineering continued to favor iterative methods in their 

applications.  

 �� = �, (2.1) 

where: � is the coefficient matrix of the system 

Although a clear boundary between the two classifications is very blur as indicated by [35], 

and since they are context specific, one can still classify linear solvers into direct and 
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iterative, to provide better rationalization when picking up the right solver for any 

application of interest. 

If the coefficient matrix (A) is non-degenerate, non-singular, direct solvers in the absence 

of rounding errors, offer the exact solution in finite steps with robust and predictable 

behavior without putting any constrains on the type of A. On the other hand, as the problem 

size gets bigger, direct solvers start exhibiting memory problems given their demand for 

long recurrence. Moreover, and because of the fill in problem, data structure used to store 

the original sparse coefficients is continuously altered and never preserved as lot of 

previously zero entries become non zero as the factorization proceeds [36, 37].  

Over the past 30 years, sparse direct solvers continued to develop and various strategies 

were introduced to guarantee more stable LU decomposition with minimal fill-in [38] or 

that preserves sparsity [39]. Despite all of the attempts, and because of the large storage 

demand and the processing requirements that is inherently sequential, some authors believe 

that the use of direct methods in practice is still limited to 2D mathematical modeling as 

reported by [40]. On the other hand, because of direct methods’ superior robustness and 

because computers are getting faster, many other authors [35] believe many problems will 

be solved by methods from both approaches.   

The most famous direct approach is Gauss elimination. In its general form, the method 

decomposes matrix (�) into both lower and upper triangular forms (LU). To solve the 

system in (2.1) forward elimination is performed first before back substitution takes place. 

With special consideration for the sparse case, Scott in [40] considered many numerical 

examples and reviewed frontal and multifrontal methods that are derived by combining 
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Gauss elimination and finite element approaches. Such methods are characterized by 

reducing storage and processing demands by interleaving matrix assembly with the 

elimination steps.  

Motivated by Strassen's algorithm [41] that utilizes recursion to speed up matrix 

multiplication, not to mention recursion highlighted success in computational problems 

when applied to dense matrices, Dongarra and others in [42] attempted a recursive 

approach for the LU factorization of sparse matrices. Although, they reported an efficient 

storage and speedup compared to multifrontal methods for most sparse matrix profiles, 

recursion suffers from substantial drawbacks from software engineering perspective [43], 

which in turns limit its scalability and performance in parallel computing. First although 

recursion leads a very concise and readable code, it is sequential in nature as it is executed 

in memory stack that forces Last In First Out (LIFO) sequence of function calls. Second, 

recursion relies on long recurrence making it not suitable for practical problems with big 

� as it demands excessive memory storage.  

On the other hand, and although they, might suffer from convergence issues and 

compromised accuracy, Iterative Methods are highly favored in the solution of large sparse 

systems. First, they preserve system sparsity as they do not modify the coefficient matrix. 

Second and most important, beside vector updates, the essential operation in almost all 

iterative solvers is matrix vector multiplication [36] that is characterized by its inherent 

parallelism. Moreover, and although iterative approaches are problem specific, it has been 

shown that the convergence could be enhanced by the use of suitable preconditioner.  



54 

 

Starting with an initial guess for the vector � in equation (2.1), iterative methods continue 

to refine that solution according to a certain criteria until convergence, if exists, to the 

desired accuracy. The overall idea lies behind replacing the system of equations by some 

nearby system which is easily solved [37, 44]. Such methods could be further classified 

into two main groups: stationary methods like Jacobi, Gauss Seidel, Successive over 

Relaxation, and non-stationary like Krylov subspace based methods [36, 45, 46].  

The discretization of flow equations that governs two-phase oil water reservoir behavior 

that results from the forward modeling, using finite volume approach will yield a sparse 

system having ill-conditioned unsymmetrical coefficient matrix with Hepta-diagonal 

profile and  2 × 2 block representing each entry. Moreover, the inverse problem requires 

solving either the same matrix, forward sensitivity approach, or its transpose in the case of 

adjoint sensitivity approach, with multiple right hand side.  

As a result and with the aim of writing the parallel code for the complete simulator, we 

review four applicable preconditioned Krylov methods of interest. In order to select one 

solver for our final implementation, we will be analyzing the part of a computation that can 

be parallelized as well as the usually addressed issues of storage and convergence. At this 

stage, we will only focus on general observations and leaving the detailed parallel analysis 

to a later stage. Given that perspective, the remaining lines in this section will review the 

following suggested solvers: The Generalized Minimum Residual Method (GMRES) by 

Saad and Schultz [47], The Bi-Conjugate Gradient Method (BiCG) by Fletcher [48],  the 

quasi-minimal residual method (QMR) by Freund and Nachtigal [49], and finally, the Bi-

Conjugate Gradient Stabilized (Bi-CGSTAB) by Van der Vorst [50].  
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By definition, the Krylov subspace generated by the coefficient matrix A and the 

accompanying residual r� = b − Ax� is denoted by: K�(A;r�), with k indicating the 

iteration and given by: K�(A;r�) ∈  span (r�,A r�,A� r�  … ,A��� r�) 

Krylov methods are classified according to the way x is chosen from the constructed 

subspace that contains the successive approximate solutions into: [37] 

1. The Ritz–Galerkin Approach: constructs �� for which the residual is orthogonal 

to the current subspace: � − ���  ⊥  Κ�(�;��). This leads to Conjugate Gradients, 

The Lanczos method, FOM, GENCG methods. 

2. The Minimum Norm Residual Approach: identifies x� for which the Euclidean 

norm ‖b − Ax�‖� is minimal over Κ�(A;r�), then we have: GMRES, MINRES, 

ORTHODIR 

3. The Petrov–Galerkin Approach: x� is found so that the residual b − Ax� is 

orthogonal to some other suitable k-dimensional subspace. This leads to BiCG and 

QMR. 

4. The Minimum Norm Error Approach: Determine x� in A�Κ�(A�;r�) for which 

the Euclidean norm ‖x� − x‖� is minimal. This leads to SYMMLQ and GMERR 

5. Hybrid Approaches  

a. CGS, Bi-CGSTAB 

b. Bi-CGSTAB(L), TFQMR, FGMRES, and GMRESR  

For extensive review of direct solvers and various implementation variations, one might 

consider [45, 51-53]. A comprehensive survey for preconditioning techniques is presented 

in [54].  For a complete survey on iterative solution methods, please check [35]. For a very 
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quick algorithmic treatment and comparison [45]. The books by [37, 55] presents a 

comprehensive treatment of the subject with a focus on the theory and finally, [56] 

describes various aspects of the parallel implementation of iterative solvers.  

2.3 Review of Sparse Storage Techniques  

 

Motivated by reducing storage requirements and avoiding unnecessary computations, 

sparse matrix representations have evolved to efficiently identify, operate on, and 

manipulate all non-zero matrix elements. As opposed to dense matrices, a sparse matrix is 

a matrix in which most of the elements are zero. Sparsity is the associated term that 

measures the fraction of non-zero elements to the total sparse matrix dimension. For 

example the sparsity of the general sparse matrix with arbitrary values shown in Figure 2 

is calculated as:  

�������� =  
������ �� ��������

����� ������ �� ��������
=

20

81
  

⇒ �������� = 0.247 

Perhaps, the most easy and obvious approach to store sparse matrices, is to store the spatial 

coordinates of their elements according to some traversing rules together with their 

corresponding values. For a 2-D matrix, such index representation could be abstracted by 

a state graph with nodes representing the first spatial coordinate, and directions 

representing the second [55]. The famous coordinate storage scheme (COO) [57] stores 

matrix information in three separate arrays (value, column-coordinate, row-coordinate) 

each with a length equals the total count of the non-zero elements Figure 3.  
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Figure 2: Sample Sparse Matrix with arbitrary values 
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(COO)  could be further optimized by trading off some computation with storage leading 

to two other representations: compressed row storage (CRS), and compressed column 

storage (CCS), Figure 3. In those schemes either the row-coordinate vector in (CRS) or the 

column-coordinate vector in (CCS) are replaced by another smaller vector that only stores 

values pointing  to the first corresponding non-zero element in the value vector. The 

corresponding number of non-zero elements is then easily calculated by subtracting two 

consecutive indices in the replaced vector [45].  

It can be observed from previous figures, that the maximum length of the vector holding 

the pointers in both (CRS) and (CCS) equals respectively the number of rows and columns 

in the original matrix. As a result, establishing a case where either of those representations 

outperforms the other in terms of minimizing storage space is an easy task indeed. For 

example, let � × � be the row and column dimensions of matrix �. If (� < �) and the 

matrix is full rank, then CRS is more favorable. The reverse also holds true. This indeed 

motivates the necessity for either developing an intelligent algorithm that statically detects 

and selects the best storage scheme for a given input matrix, or a reconfigurable one that 

dynamically changes its internal data structure to fulfill the previous need.   

For very large matrix dimensions and unlike (COO), one drawback of both (CRS) and 

(CCS) is that restoring and identifying the indices of the original matrix elements after 

performing some tiling is cumbersome. This in turn present another scheme's selection 

compromise namely choosing between saving storage space or flexible tiling with easy 

indexing and reduced computation. The previous observation goes both ways regardless of 

tiling precedence, i.e. whether it occurred before compressing the storage or afterwards.   
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Figure 3: From top to bottom: COO, CRS and CCS representation for matrix shown in Figure 2  
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To analyze and compare storage requirements, the total number of non-zero elements will 

be ignored as this is going to be constant among all representations, not to mention that 

storing the complete array that holds those elements is not optional.  Moreover, and without 

loss of generality and to compare various methods, the following analysis assumes the 

matrix to be a 2x2 Blocked-Hepta Diagonal. Let �,�,��� � be   

Let N  be the matrix dimension. Then it can be shown18 that the total number of non-zero 

elements is less than (14 �). As a result, the total storage required by (COO) is less than  

14 � × 3 = 42� 

On the other hand, the storage required by the compressed scheme is 

14 � + 14 � + � = 29� 

The following limit can be established for comparing the compressed storage to the naïve 

coordinate storage when the matrix is very large, 

lim
� → �

42 �

29 �
= 1.45,   

which means that  (COO) will demands at most around 50% more storage space than either 

(CRS) or (CCS)! i.e. if (CRS) takes 4GB of memory to store large input matrix then (COO) 

will at most take 6 GB. 

The Jagged Diagonal Storage (JDS) [55, 58] the generalization of ELLPACK-ITPACK 

[59]  first traverses the original sparse matrix row wise, shifts left nonzero elements, and 

                                                 
18 Assuming 7 diagonals each contains 2 elements per row. 
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then stores the associated column index, Figure 4. The resulting shifted rows are then 

rearranged in a descending order according to the maximum nonzero elements count per 

row; an array of pointers is kept to indicate and later restore those permutations. Nonzero 

elements are then stored column wise and pointers to indicate the start of each column are 

recorded [60].   

In one way or another, (JDS) is a mix between (CRS) and (CCS) with an extra intermediate 

permutation stage. Consider the sample matrix we chose for analysis. The initial startup 

overhead consists of two vectors each of length 14 � for storing the values and column 

indices, and one vector of length � that holds permutations and another varying in length 

but at most of size � for row pointers. Hence, the storage requirement for (JDS) is 

���� = 2(14 �)+ 2� =  30 �  

Therefore comparing the storage space requirement to the compressed formats presented 

earlier (CRS) and (CCS) yields,  

lim
� → �

30�

29�
= 1.03   

Which means that as the matrix dimension gets extremely large, then the extra storage 

demanded by (JDS) could be neglected compared to either (CRS) or (CCS)! 
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Figure 4: JDS representation for matrix shown in Figure 2 
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Neglecting start up computational overhead, (JDS) format will force the nonzero elements 

to be factorized into (� ×  �) matrix where (�) is the maximum number of nonzero 

elements in a given row of the original matrix. Hence, matrices with (JDS) representation 

can be tiled or partitioned easily to suit different parallel platforms. However, unless 

dynamic load balancing is established, (JDS) will suffer from sever performance and 

scalability issues. Moreover, as column indices are stored separately, matrix vector product 

operation could be performed efficiently.  

Just as the relation between (CRS) and (CCS), and as its name implies, the Transposed 

Jagged Diagonal Storage (TJDS) format, follows exactly the same logic of (JDS) but with 

main operations being transposed. Instead of being moved left, nonzero elements are 

shifted upwards. Columns are sorted in a decreasing order and nonzero elements' row 

indices are saved before storing the value array row by row, Figure 5.  In certain 

applications like matrix vector multiplication and because columns are initially permuted, 

no extra vector is needed to store these permutations as they are already captured and 

recovered by reordering the unknown vector accordingly [61]. Thus, it would further save 

some space.  By following the previous analysis on our sample matrix, and evaluating 

Matrix Vector Multiplication, the following is obtained 

����� = 2(14 �)+ � =  29 N,  

which is the same space as required by (CSR), but in the same time offering more flexibility 

and enjoys the characteristics of (JDS).   
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Figure 5: TJDS representation for matrix shown in Figure 2 
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Although specialized formats can further optimize storage, their domain of application is 

very tied and problem specific. Skyline Storage (SS) assumes a triangular matric, and 

traverses matrix elements column wise in upper triangular or row wise in lower triangular 

until it hits the diagonal. It stores data in tow arrays: one for the actual values and another 

is a pointer to the start of each row.  

Compressed Diagonal Storage (CDS) traverses the sparse matrix in a diagonal fashion and 

stores a reference to indicate the diagonal of interest [62].  

Despite the fact of their embarrassingly parallel nature [9], matrix vector multiplication 

(MV) operations are characterized to be bandwidth bound. That is because MV operations 

suffers from limited temporal locality [63] so they do not enjoy the so called surface to 

volume effect; i.e. they only perform �(��) ���������� on �(��) ���� [64].  To tackle 

this issue, and to increase the density of computation per memory transaction especially on 

modern many-core architectures, various sparse block storage techniques with either 

padding or by variable block size were utilized [65].  

Block coordinate storage (BCOO) approach  [66], scans the original sparse matrix row by 

row and groups nonzero elements into blocks of a predetermined size. Until all blocks are 

visited, elements at each block are recorded in a separate victor. Two other arrays are used 

to store the row and column indices to indicate the start of each block while a third vector 

holds pointers to the start of the first element in the next block. Example for 3x3 blocks is 

shown in Figure 6. 
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Figure 6: Block coordinate storage representation  
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Again, let � be the sparse matrix dimension, � the block size and � the number of blocks. 

It is clear then that the length of the array that holds the desired matrix elements is less than 

or equal the area of each block times the total number of blocks. i.e.  

�����_�������� ≤  �� × � 

Specifying the optimal block dimension and shape autonomously is a little bit challenging. 

All the previously described formats can be thought of as having blocks of 

dimension (1 × 1). Assuming an optimal block dimension has been chosen, it is then 

obvious how blocked schemes outperform other representations. After all, we are shrinking 

the size of index arrays to point to group of data rather than a single one, and of course, the 

larger this group the more saving is achieved. The catch here is that, if blind block 

decomposition is initiated, the array that was supposed to hold only nonzero elements 

might be dominated by zeroes. Consider for instance storing an identity matrix using 

(BCOO), and a block of size �, then the number of nonzero elements per block is (�) and 

the overhead storage is (�� − �)!  Figure 7 

In an attempt to handle the previous issue, and to achieve better performance, Hierarchical 

Sparse Matrix Storage Format (HSF) were suggested in [67] as well as some adaptive 

blocking techniques were suggested [68].   

 

 

 



68 

 

 

 

 

 

 

 
  

0000000001

0000000010

0000000100

0000001000

0000010000

0000100000

0001000000

0010000000

0100000000

1000000000

Figure 7: Overhead of using BCOO for various block sizes 
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Just like the natural rise of (CRS) and (CCS) as an optimal substitute to (COO), compressed 

versions of (BCOO) can be also established and derived. The vectors that stores the spatial 

coordinates of each block are further compressed column or row wise and substituted by a 

suitable pointer arrays; leading to Blocked Compressed Row Storage (BCRS) and Blocked 

Compressed Column Storage (BCCS) respectively. Despite the huge performance benefits 

offered by Blocking techniques, it has been reported to result in more than 70% 

performance degradation if not utilized properly [66].  

When it comes to the general purpose massively parallel machines (GPU’s), and besides 

the memory bottleneck problem associated with sparse matrix vector multiplications, there 

exists additional constrains to achieve better machine utilization. For example, processing 

many short rows will make loop overhead dominates the computational aspect [64, 69]. 

Various rows lengths lead to load imbalance and indirect device memory access degrades 

performance. As a result, and despite the huge advantage of (CRS) and it’s derived forms 

of handling any sparsity pattern, the fact that those techniques require separate vectors to 

store indices will give rise to more memory transactions and hence limiting performance. 

Moreover, and although some sparse storage schemes access the stored coefficient matrix 

contiguously, they suffer from irregular access to the multiplicand vector x [70, 71]. 

Therefore, if the matrix structure is known priory, specific optimizations could be exploited 

and a great boost in performance could be achieved if the right representation scheme was 

chosen properly. 

In an attempt to exploit the diagonal structure that resembles wide range simulation 

problems, [72] implemented a blocked version of the diagonal format. In their 
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representation, they are aiming at alleviating the overhead of storing unnecessary diagonal 

inter-elements zeros by defining a new data structure that holds the elements of interests 

according to predefined degree of freedom (DOF) criteria. [73] introduced a tool to model, 

profile and predict the performance of sparse matrix vector multiplication (SpMV) on 

GPUs. Based on the modeling and analysis of a given problem, they designed a dynamic 

and optimal domain and matrix specific (SpMV) kernel and reported obtaining optimal 

solution compared to similar kernels offered by NVIDIA.  In his thesis, [74] extensively 

analyzed the performance of PETSc [75] GPU implementation with various sparse matrix 

storage mechanisms, while [76] studied memory efficiency implications on sparse matrix 

operations and introduced a new storage scheme. In his Variable Dual Compressed Blocks 

(VDCB) format, and besides memory manipulation, he divides the original matrix into a 

number of variable-sized sub-matrices with a bitmap that points to the presence of a non-

zero element. He tested his implementation on FPGA and reported good bandwidth gain 

for various test cases.    

The issue of sparse matrix vector multiplication has been extensively studied in the past 

when CUDA was first introduced. Two famous highly cited papers in [77] and [78]. The 

reader is referred to [55, 64, 66, 79-81] For more in depth review of sparse matrices on 

CPU, Multicore and Many-Core devices, their representations and comparisons, [62, 82] 

for studies dedicated to diagonal matrices, and [66, 67, 72, 83] for blocking restructuring  

techniques.   
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2.4 Review of Linear Solver Libraries 

  

Over the past decades, researchers from all around the world have kept developing 

multipurpose computational libraries and tools that aid advancing their research by 

reducing programming overhead and facilitating rapid deployment and testing of their 

ideas. When it comes to linear solvers and computational modeling, [84] have not only 

listed and categorized dozens of those libraries but also organized them into sections along 

with links to their website.  

Eigen[85, 86] is an excellent and reliable sequential library that provides headers to 

perform various linear algebra routines. The library has been developed to take advantage 

of object oriented C++ and its expression templates, features an easily declared, directly 

accessed matrix and vector data structures. Eigen is flexible and enables easily integrated 

functions, code reuse and abstraction while maintaining good performance by supporting 

various optimizations like explicit vectorization, loop unrolling and static memory 

allocation. The open source library is released under MPL219, is supported by many 

compilers and has been successfully deployed in many interdisciplinary projects ranging 

from simple extensions, mobile applications to demanding simulations. A list of those 

projects is listed on the library main page.  Eigen supports both dense and sparse matrix 

functions with neatly organized, in depth class documentation and test examples. The 

library also supports multi-threading using OpenMP [10] and if available the Intel Math 

Kernel (MKL) library [87].  

                                                 
19 h�ps://www.mozilla.org/MPL/2.0/ 
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When it comes to GPUs, NVIDIA provides a CUDA Sparse Matrix library (cuSPARSE) 

for manipulating and operating on sparse matrices [88]. The library provides a collection 

of basic linear algebra functions that are called from C++ programs. They reported around 

8x faster performance gain over their direct competitor Math Kernel Library (MKL) 

offered by Intel [87]. The library has been used extensively by the researchers as it provides 

fast and reliable performance with ease of programming and development effort. For 

example [89] utilize it to implement (ILU) and Cholesky factorization for iteratively 

solving linear systems, while [90] used it to accelerate the modeling of deformation of soft 

tissue using (FEM). [91] made use of the library to boost image segmentation 

implementation; and [92] apply it for image reconstruction. 

 Similar to cuSPARSE, the CUSP library [93] provides a wrapper for many functions in 

cuSPARSE.. It was designed solely to take advantage of the intensive computational aspect 

of the massively parallel NVidia's GPUs. It is released under the Apache 2.0 open source 

license. The CUSP library is an inevitable starting point for CUDA developers writing 

parallel scientific computing applications. The library not only provides abstraction and 

easy to call cuSPARSE and cuBLAS [94] routines, but also reports good performance. 

Moreover, the developed applications can be smoothly integrated with THRUST library 

[95] to enable fast prototyping. CUSP could be used directly by including the associated 

interface files, and provides dozens of graph algorithms and sparse linear algebra routines 

easily deployed with many available sparse storage schemes and preconditioners. 
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PARALUTION [96] supports dozens of well-organized and easily deployed methods for 

performing plenty of sparse matrix linear algebra routines. Not only it supports various 

parallel hardware architecture [CPU, NVIDIA GPU, AMD GPU, Xeon Phi (MIC)], but it 

can also be configured to run on various operating systems and use various plugins. The 

library comes with useful ready to run examples, and the online documentation provides 

class hierarchies and in depth implementation details. This open source project exploits 

object oriented programming paradigm in C++, taking advantage of code reuse, 

inheritance, clarity, maintainability and abstraction. It is released under GPLv320. The 

library implements various sparse storage schemes with neat functions to covert among 

them. The list of the provided linear solvers along with the available preconditioners is 

quite intense as well. Although vectors defined under this library can be easily accessed 

directly, matrices are not. The issue that has been discussed in the user manual along with 

some suggested solutions. The library generic implementation and independence, 

facilitates fast prototyping and testing. Nevertheless, this comes with a price of degrading 

performance as was tested in our simulator. 

 

  

                                                 
20 http://www.gnu.org/licenses/gpl-3.0.html 
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3 CHAPTER 3 

COMPUTATIONAL MODELS, EXPERIMENTATIONS 

AND RESULTS 

 

This chapter describes the computational aspect of the simulator. The first section starts by 

presenting the general operations for both the forward and the inverse models. Section two 

provides an analytical study for selecting a suitable linear solver for both reservoir 

problems. Section three then presents an exhaustive experimental evaluation of two 

nominated parallel solvers in section two applied for matrices extracted from our developed 

simulator. We concluded that although GMRES is a widely used solver for sequential 

reservoir simulation; BiCGSTAB with proper preconditioning provides faster performance 

on parallel machines. In section four and with the focus on the reservoir resulting matrix 

specific structure, we experiment the issue of parallel sparse matrix vector multiplication 

on Hepta-Diagonal Matrices. After that, we make use of the famous operation merging 

trick to attempt implementing a faster version of BiCGSTAB algorithm. Finally, section 

six extends the implementation presented in section five to implement a same parallel 

solver but dedicated for multiple right hand side matrices encountered in reservoir history 

matching.  
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3.1 Computational Model for Reservoir Simulation 

 

Figure 8 describes the whole history matching process from computational perspective. 

The process starts by the forward simulation model by assuming certain reservoir 

parameters and repeatedly estimating the values of other state variables.  At the end of this 

process, the system then starts the inverse model based on the final retained values of the 

estimated state variables. The inverse model leads to the computation of the sensitivity 

matrix that is eventually used in history matching. The sensitivity matrix could be obtained 

by either the forward sensitivity approach or the adjoint state method. Regardless of the 

followed method, obtaining sensitivity matrix requires the solution of a linear system with 

multiple RHS. To reduce the dimensionality of the system, some reduction techniques are 

optionally utilized. The details for each individual step are described next. 

 

3.1.1 The Computational Model of the Forward Simulation Scheme 

Without loss of generality, Figure 9 shows how the final assembled system for small grid 

dimension looks like. 
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4.  

5.  

6.  

7.  

8.  

9. 
 

Figure 8: The Computational Model for Oil Reservoir History Matching 
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Figure 9: Sample snapshot of the assembled linear system for FSR, (J, I and H): is the maximum number of 
steps in the z, x and y directions, respectively 
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For a 3D problem and two simulated phases discretized using Finite volume method, it is 

clear that the maximum number of non-zero elements at each row is 14. Let m  be the total 

number of grid cubes, then the size of the Jacobian matrix is (2m  × 2m ), and the total 

number of non-zero elements are at most (14 × 2m ). As a result, the fraction of non-zero 

elements in the system is less than 

 
14 × 2m

2m  × 2m
=

7

m
 

It is obvious that special care should be taken when selecting a suitable solver for 

implementation, especially for practical dimensions (m = 10�), as most of the operations 

on the zero elements are not necessary and should be avoided to reduce the computational 

complexity.  

Not only the Jacobian matrix is sparse, but also it is unsymmetrical, ill-conditioned and has 

a special Hepta-Diagonal structure. That thing also influences the selection or 

implementation of any linear solver. More details on this computational model could be 

found in the Appendix. 

3.1.2 The Computational Model of the Inverse Simulation Scheme 

 Forward Sensitivity Approach 

 

The forward sensitivity process starts right after completing the whole forward reservoir 

simulation, for a given time step and for the initially assumed reservoir parameters. It 

repeats until the estimated parameters are matched. At this stage, we aim at simultaneously 

solving the system.  
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 A��× ��  ×  X��× � = B��× �  

B =  {b�,b�,… b�} &  m  is the total number of grid blocks 

 

The coefficient matrix A is the same Jacobian matrix obtained in the forward model that is 

blocked Hepta-Diagonal and sparse. It is also ill-conditioned and unsymmetrical. B is a 

combination between diagonal matrix and other hepta diagonal sparse matrices. Figure 10, 

demonstrates the computational aspect of this approach.  The figure shows four modules 

used to formulate the linear system with multiple right hand sides (RHS) that are described 

as follows: 

 Module 1: Computing the partial Derivatives (Or Jacobian matrix (J) for the last 

retained values of (�� &  �� ) from current iteration. The matrix structure and 

characteristics are the same as the previous one in the forward model. 

 Module 2: blocked diagonal matrix (D) of size (2� × 2�) that represent the mass 

accumulation for each phase Eq. (1.25) and calculated using Eq.(1.29) 

 Module 3: matrix (Y) of size (2� × �). It is constructed by analytically taking the 

derivative of the residual equations (��& ��) with respect to the perturbed 

parameter (�). This matrix is also sparse blocked-hepta diagonal. 

 Module 4: The sensitivity matrix, denoted by S, of size (2� × �) , initially zero 

and updated at every time iteration. The assembled system solves the system of 

multiple RHS for new S. 
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The final assembled system will have the form as presented in Eq. (1.27). Again this is 

computationally very expensive for practical reservoir dimensions and special care should 

be taken when choosing a suitable solver. One characteristic of Equation (1.27) is that the 

matrix J is the same for all the independent multiple right-hand-side vectors and the huge 

cost of either its factorization or preconditioning is alleviated by its repetitive utilization in 

the solution. Nevertheless, if the number of parameters of the system is very huge, the 

(RHS) size will also be very huge and the computational time of solving the previous 

system becomes prohibitive. Moreover, the forward sensitivity approach computes the 

sensitivities of the state variables at all grids leading to redundant calculations as 

sensitivities at well locations are the only ones required in the solution of the inverse 

problem.  

An alternative that addresses the last two limitations is the adjoint-state method in which 

the computational time depends mainly on the number of data to be matched. The adjoint 

method also has the property of directly computing the sensitivities of well variables at 

well locations only.   
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Figure 10: Inverse Model: Forward Sensitivity Approach 
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Adjoint Sensitivity Approach 

 

From computational perspective, the goal is again to solve a system with many (RHS) in 

order to get the sensitivity matrix that is used later for matching data. Unlike the forward 

sensitivity method, the width of the (RHS) in this case is the actual data to be matched 

rather than the number of parameters to be estimated. Moreover, and unlike the previous 

approach, the adjoint method requires the forward reservoir simulator (FRS) to complete 

all its time iterations, and to store some needed data, like the Jacobian for all iterations.  

After that, and starting from the last time step, the assembled system of multiple (RHS) is 

solved in a backward substitution manner [Eq. (1.48)] and the sensitivity matrix is built at 

each backward step. The whole computational model is better explained in Figure 11. The 

J &  D elements that constitute the multiple (RHS) are the same as the ones described in 

module 1 and 2 in the forward sensitivity approach, except we are taking the transpose of 

the Jacobian matrix. �
��

����⃗ �
� contains the derivatives of the data to be matched with respect 

to state variables (P�& S�). λ��⃗� is initially the adjoint variable resulted by adjoining the 

constrains to the data to be matched. Let k:number of data to be matched. Then λ�⃗� is of 

size 2m × k, while �
��

����⃗ �
� is of size k × 2m .  
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Figure 11: The computational model for the Adjoint Sensitivity Approach 
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3.2 Analytical Parallel Linear Solver Selection 

 

The finite volume discretization of flow equations that governs two-phase oil water 

reservoir behavior in the forward modeling will yield a sparse system having ill-

conditioned unsymmetrical coefficient matrix with Hepta-diagonal profile and  2 × 2 block 

representing each entry. Moreover, the inverse problem requires solving either the same 

matrix, forward sensitivity approach, or its transpose in the case of adjoint sensitivity 

approach, with multiple right hand side.  

With the goal of writing a parallel code to speed up the computational process for our 

black-oil simulator, this section reviews four applicable preconditioned Krylov methods of 

interest. Our final selection will depend on analyzing the concurrency of each algorithm as 

well as the usually addressed issues of storage, accuracy and convergence. Given that 

perspective, the following iterative solvers will be nominated for further study: The 

Generalized Minimum Residual Method (GMRES) by Saad and Schultz [47], The Bi-

Conjugate Gradient Method (BiCG) by Fletcher [48],  the quasi-minimal residual method 

(QMR) by Freund and Nachtigal [49], and finally, the Bi-Conjugate Gradient Stabilized 

(Bi-CGSTAB) by Van der Vorst [50]. 

The rationale behind selecting the above four for further analysis is three folded. First, the 

coefficient matrix (A) of interest has certain properties that put further restrictions on any 

selection. Because of its very large dimensions and the sparsity pattern, direct methods will 

be excluded because of their reported memory demands. Moreover, as (A) is ill-

conditioned, stationary iterative methods will not be considered because of issues related 
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to convergence. Finally, since (A) is unsymmetrical, some Krylov based methods dedicated 

for symmetrical systems will not be taken into account. Second, to study the variation 

among the same classification class, we chose to include QMR and BiCG as representatives 

of the Petrov–Galerkin approach. For interclass comparison we study BiCGSTAB from 

the hybrid camp and the famous GMERS for its desirable reported stability from the 

minimum norm residual methods. Third, as sound parallel implementation will eventually 

serve in reducing the overall execution time or enabling larger problems to be handled with 

the same sequential time, the selected solver should have high degree of data independency 

regardless of the amount of work involved. Moreover, the selected algorithms should be in 

harmony with the target parallel architecture as the later imposes additional constrains.  

With different permutations and various scaling, Krylov subspace methods share common 

operations ranging from an embarrassingly parallel tasks like sparse matrix vector 

multiplication, to norm calculations, dot product as well as vector updates, Table 3. It is 

worth mentioning such a table is constructed with relaxed but unified assumptions and its 

only purpose is to give a general overview. The estimation of the Required Steps to 

Complete Tasks in Parallel is established by assuming infinite processing and memory 

resources, zero communication penalty and by neglecting all other overhead. Without loss 

of generality, in reduction example like vector multiplication and assuming a matrix 

dimension of size (�), at least ���(�) steps are needed before producing the final answer 

[97]. Moreover, matrix vector multiplication can be seen as the process of performing (�) 

independent reductions. Assuming that every worker will be responsible for calculating 

one element in the resulting vector by processing its corresponding row and column, then 
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each calculation will require log (�) steps. Finally and given the above assumptions, vector 

update is done instantly in one step. On the other hand the estimation of the available 

parallel work is established as follows: the reduction operation requires � processing 

elements at the beginning, �/2 in the next iteration, followed by �/4 and so on. In other 

words, the total work that could be completed in parallel could be calculated as: 

 

����������������= � +
�

2
+

�

4
+ ⋯ + 2 + 1 

= � �1 +
1

2
+

1

4
+ ⋯ +

1

�
�. 

 

Between the above parentheses is a Harmonic Series with its sum equals ln(�)+

�����  ���ℎ����� ��������. Therefore and for the reduction case, 

 

����������������= �. ���(�) 
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Table 3: The main tasks the constitute Krylov Linear Solvers with an anticipated associated parallel 
complexities 

Operation Required Steps to complete 

Operations in Parallel 

(Infinite Resources) 

Estimated Available 

Parallel Work  

Example 

Work Sharing �(���(�)) �����(�)21 

Matrix-vector 

multiplication.  (��) 

Solving a sparse 

preconditioned 

linear system 
�(�) assumed �� (assumed) �� = � 

Reduction �����(�)� ����(�) 
Vector multiplication. 

(�. �) 

Vector Update �(1) � 
� = � ± � 

Vector Scaling �(1) � � = �� 

Scalar operation �(1) 1 
� = � ± �    or 

� = � × � 

 

3.2.1 The Generalized Minimum Residual Method (GMRES)  

GMRES identifies x� for which the Euclidean norm ‖b − Ax�‖� is minimal over the 

Krylov subspace generated by A and r�. As much as the method is well known for its 

robustness [37, 45, 47], it is also characterized by demanding large resources as the 

computation proceeds. The method is based on the Arnoldi-modified Gram-Schmidt 

procedure to build orthogonal basis of the Krylov subspace [56] and produces an upper 

Heisenberg matrix before finally the approximated solution is computed. [55] showed that 

if the coefficient matrix A is positive definite, then GMRES algorithm converges for any 

dimension of the considered Krylov space. To address storage issues, restarted versions 

                                                 
21 N for the all the rows, and N.LOG(N) for every reduction in a row 
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were introduced where only intermediate results are used in order to compute the next m  

iterations as initial data after the already accumulated data are erased [56]. The challenge 

remains in picking up suitable value of such (m )  as its value is problem specific and bad 

choice may either result in unnecessary slow convergence or even failing of convergence. 

One realization of the algorithm as presented by [45] is shown in Algorithm 1. To obtain 

the final solution, GMRES requires solving an upper triangular system after applying some 

plane rotations.  Let (�) be the matrix leading dimension and (m) the restart value. Besides 

storing the original matrix, we notice the need for a long recurrence22 for computing the 

Arnoldi iteration. Moreover, GMRES needs to store five main arrays of size (N); they are 

namely (�,��,�, y and x). Moreover an array of size (� ∗ �) is needed to store v���. As a 

result, and by ignoring spaces required to store scalars or vectors of small sizes compared 

to (�) like the space needed to store (�), the minimal total storage required by GMRES 

is: 

���������� = ����� �� ����� �ℎ� �������� ������ + �(5 + �). 

 

                                                 
22 Dependencies needed by subsequent iterations 
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Algorithm 1: Preconditioned GMRES (m) Method as presented in [45]  
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The main transactions per iteration in GMRES Algorithm, can be approximated as 

follows:(2� + � + 2) reduction operations23,   (� + 2) vector updates and (� + 1) matrix 

vector multiplications. Although the sequence of operations in GMRES Algorithm, could 

be mapped directly to efficient parallel GPU kernels, the algorithm itself poses an inherent 

sequential behavior [98].  

3.2.2 The Bi-Conjugate Gradient Method (BiCG) 

As a generalization for the famous CG solver and following the Petrov–Galerkin approach, 

BiCG identifies x� for which the residual b − Ax� is orthogonal to some other suitable k-

dimensional subspace [37]. By utilizing both the original coefficient matrix A, and its 

transpose A�, the BiCG method aims at generating two CG-like sequences of vectors that 

are mutually orthogonal to be used to update the residual as well as the search direction 

[45]. As the method may either breakdown and because of the reported irregular 

convergence behavior [35, 45], other approaches such as QMR and Bi-CGSTAB were 

suggested as a replacement. The general algorithm [45] for this process is shown in 

Algorithm 2. 

BiCG method consists of a series of sparse matrix vector multiplications as well as vector 

updates. The implementation of the algorithm is straight forward. By comparing its 

sequence of operations with the previously shown one in GMRES, we expect BiCG to 

scale better and to consume less storage. Nevertheless, due to its failure conditions and to 

account for the case where A� is not present, we will consider one of its enhancements.  

                                                 
23 Every matrix vector multiplication operation has an embedded reduction task 
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Algorithm 2: Preconditioned BiCG Method as presented in [45] 
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Besides the space needed to store the original matrix, the algorithm needs ten auxiliary 

vectors of size N to process data. Those are (r,r�,z,z�,p,p�,q,q�,b and x). As a result the 

minimal total storage required by BiCG is 

STORE���� = Space to Store the Original Matrix+ 10N. 

For the main transaction per iteration, there are four reduction operations, five vector 

updates (lines:10,11,18,19,20), and two matrix vector multiplication. 

3.2.3 The Bi-Conjugate Gradient Stabilized Method (BiCGSTAB) 

Bi-CGSTAB can be seen as a product of BiCG algorithm and repeated application of 

GMRES algorithm of degree one [45]. In that sense, the operation with �� is transformed 

to another polynomial in �. The convergence is smoother and may even be faster than 

BiCG [35].  A preconditioned version of BiCGSTAB as presented by [45] is shown in 

Algorithm 3.  

Similar to BiCG, the main operations of the algorithm consists of sparse matrix vector 

multiplication as well as vector updates and dot products. The sequential implementation 

is also straight forward. BiCGSTAB makes use of ten vectors to complete its computation 

in addition to the original matrix storage. We can identify (x,b,r,r�,p,p�,v,s,s� and t). As a 

result the minimal total storage required by BiCGSTAB is 

STORE�������� = Space to Store the Original Matrix+ 10N 

For every iteration, we can identify seven reduction operations, four vector updates, and 

finally two matrix vector products.  
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Algorithm 3: Preconditioned BiCGSTAB Method as presented in [45] 
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3.2.4 The Quasi-Minimal Residual Method (QMR) 

With almost similar computational cost and parallelization properties as BiCG, QMR was 

designed originally to avoid the irregular convergence behavior as well as one of the two 

breakdown situations of BiCG by solving a reduced tridiagonal system in a least-square 

sense [45]. QMR uses a look-ahead variant of nonsymmetrical Lanczos process to generate 

basis vectors that is induced by matrix � and can be implemented using short recurrences 

[49]. Beside the smooth convergence property compared to BiCG, it is possible to obtain 

error bounds for QMR similar to the standard bounds for GMRES [49]. Algorithm 4, shows 

a preconditioned version of OMR as presented by [45].    

Again besides the storage space for the input matrix, QMR demands a minimum of sixteen 

additional vectors to find the solution vector and residual. Those are 

mainly (b,r,x,v,v�,w ,w�,y,y�,z,z�,q,p,p�,s and d). Therefore, the minimal total storage 

required by QMR is 

STORE��� = Space to Store the Original Matrix+ 16N 

When it comes to the main operations within an iteration, we can identify seven reductions, 

eight vector updates, and finally two matrix vector products.  
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Algorithm 4 :
Preconditioned 

QMR Method as 
presented in [45] 
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3.2.5 Linear Solver Selection Based Tradeoffs 

 

We aim at selecting a solver that suits the most our implemented oil reservoir simulator. 

Despite their tremendous flavors and the dozens of available implementations nicely 

summarized in [99], picking up a universal and efficient parallel sparse linear solver is very 

challenging as many mutually interacting and application specific factors stands in the way. 

Table 4 summarizes the obtained analysis of the storage requirement for the four nominated 

solvers. It can be seen that both BiCG and BiCGSTAB demands the least storage among 

the four solvers if practical restart values are used in GMRES.  

 

Table 4: The Storage Requirement for the four solvers 

Linear Solver Storage Requirement 

GMRES(m) ������ + �(5 + �) 

BiCG ������ + 10� 

BiCGSTAB ������ + 10� 

QMR ������ + 16� 

 

One can also anticipate the parallel behavior of an algorithm from the number of required 

reductions. Usually, the more the reductions, the longer the sequential steps to be followed 

and roughly the lower the scalability of an algorithm. Let m be the restart number in 

GMRES and Iter: the number of required iterations, Table 5 lists the needed reductions for 

the nominated algorithms based on previous analysis. 
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Table 5: Number of reductions in the four nominated algorithms 

Algorithm Number of Reductions 

  

GMRES �2m  + 2 +  � i

�

���

  � ∗ Iter 

BiCG 4 ∗ Iter 

BiCGSTAB 7 ∗ Iter 

QMR 7 ∗ Iter 

 

Table 6 summarizes the main transactions per iteration that are utilized by every solver. 

Such operations could be transformed later to efficient GPU parallel kernels. As those 

algorithms are composed of the same operations but with different ordering and counts, 

they all poses good degree of data parallelism. Generally speaking and according to 

Amdahl’s Law [100], an algorithm with fewer number of transactions would be more 

scalable and faster. However, this is true and should only be interpreted per iteration. The 

overall speed of a given Krylov solver is subjected to many other factors including the 

utilized preconditioner, the matrix condition number and the convergence characteristics.  

Table 6: Summary of the number of main transactions within an iteration 

 Reduction 

(Dot Product) 

Matrix Vector 

Product 

������ ������ 

� =  �� + �� 

GMRES(m) 2m + i+ 2 i+ 2 m + 1 

BiCG 4 2 5 

BiCGSTAB 7 2 4 

QMR 7 2 8 
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The convergence of Krylov subspace methods depends on the spectral properties of both 

the coefficient and preconditioned matrix. Convergence comparison can be achieved by a 

numerical experiments with a clear stopping criteria and using an appropriate norm. The 

only convergence result for Krylov subspace method is given in the following theorem 

[101]. Similar inequality also hold for the remaining three solvers. 

Theorem: Let �(�) denote the iterate generated after � steps of GMRES iteration, with 

residual �(�). If � is diagonalizable, that is , � = ����� where � is the diagonal matrix 

of eigenvalues of � and � is the matrix whose columns are the eigenvectors, then 

��(�)�

‖�(�)‖
≤  �(�) ���

��∈��,��(�)��
���

��

�������� , 

where �(�) =  ‖�‖‖���‖ is the condition number of �.   

Accuracy depends on how many iterations the solver is allowed to perform. Theoretically, 

for all these solvers, Cayley-Hamilton theorem states that the exact solution (100% 

accuracy) is obtained in at most � iterations where � the size of the matrix is.  

The following points summarize our selection criteria for the linear solver: 

 First we exclude the famous GMRES algorithm, as it demands lot of computational 

resources. A suitable preconditioner will be utilized to improve the convergence 

with other solvers.  
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 We also exclude BiCG, as it poses some related convergence problems not to 

mention the existence of an enhancement with similar parallel behavior which also 

belong to the same class of BiCG. 

 To choose between QMR and BiCGSTAB we further try to analyze concurrency 

profile 

 

3.2.6 The Study of Concurrency Profile for BiCGSTAB and QMR  

Independent of the number of available processors, assignment or orchestration, the 

concurrency profile shows the number of tasks that could be performed concurrently in a 

given time [102]. It could be derived and constructed by plotting the number of available 

operations at every level in the dependency graph versus the level number.  Figure 12 and 

Figure 13. The number of available concurrent operations per iteration, in the 

preconditioned version of the two  solvers is shown in Table 7. Estimated available parallel 

work was taken from Table 3.  
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Table 7: The number of available concurrent operations in QMR and BiCGSTAB. N is matrix leading 
dimension 

Level QMR BiCGSTAB 
   

1 � + �����(�) � + �����(�) 

2 2� � 

3 2�� ����(�) 

4 2����(�) 1 
5 4N 3� 

6 2�� + ����(�) �� 

7 3� �����(�) 

8 �����(�) � + ���(�) 

9 � ���(�) 2� 

10 1 ����(�) 

11 3� + �����(�) �� 

12 2�� �����(�) 

13 2����(�) 2����(�) 

14 2� 5� 

15 1  

16 1  

17 4�  

18 2�  
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Figure 12: QMR Data Dependency Graph 
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Figure 13: QMR Data Dependency 
Graph 
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The resulting plots of concurrency graphs are shown in Figure 14 and Figure 15. The total 

amount of computational work is then calculated by estimating the area under the resulting 

constructed line segments. [102] has showed if the previous assumptions were considered 

and if unlimited number of processors were utilized, then the maximum achievable speed 

up is less than or equal the value of average parallelism24. Despite our relaxed assumptions, 

especially for the parallel amount of work involved in solving the preconditioned system, 

the average parallelism in BiCGSTAB algorithm is slightly higher than its counterpart in 

QMR algorithm.  

  

                                                 
24 Average Parallelism is calculated by dividing the area bounded by the line segments in the dependency 
graph over the horizontal access extent. 
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Figure 14: Concurrency Profile of QMR with N=64 
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Figure 15: Concurrency Profile of BiCGSTAB with N=64 
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Next we attempt to further exploit the dependency graphs Figure 12 and Figure 13 as well 

as the constructed concurrency profiles Figure 14 and Figure 15, for comparing the QMR 

and BiCGSTAB Algorithms in terms of their estimated parallel cost. We start by 

identifying the span of each algorithm25, Figure 16 and Figure 17. We then associate every 

link in the path with a cost function based on the perspective required steps to complete its 

operations in parallel when assuming Infinite Resources, as was demonstrated in Table 3. 

To summarize that in numbers, Table 8 shows the quantification of the estimated parallel 

cost when a matrix of leading dimension � = 1024, while Figure 18, plots the acquired 

results. 

 

Table 8: Estimated parallel cost based on the perspective required steps to complete its operations in parallel 
when assuming Infinite Resources 

Algorithm Estimated required steps to 

complete operations in parallel 

for the SPAN 

Summary of Parallel 

Cost 

Estimated 

Parallel Cost 

for N = 1024 

    

QMR ��� (�)+ 1 + � +  ��� (�) 

+ 1 + � + 1 +  ��� (�) 

+  ��� (�)+ 1 + 1 + � 

+  ��� (�)+ 1 +  1 + 1 +  1 + 1 

5���(�)+ 3� + 10 3132 

    

BiCGSTAB ���(�)+ 1 + ���(�)+ 1 + 1 

+ � + ���(�)+ ���(�)+ 1 

+ ���(�)+  � +  ���(�) 

+  2���(�)+ 1 

8���(�)+ 2� + 4 

 

2132 

  

                                                 
25 The span: is the longest serial path of the algorithm 
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Figure 16: QMR Span 
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Figure 17: BiCGSTAB Span 
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Figure 18: A comparison between the estimated parallel cost based on the perspective required steps for QMR and 
BiCGSTAB Algorithms, with matrix leading dimension N = 1024. The smaller the parallel cost, the better. 
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To enable a more compact realization of the parallel cost and the associated algorithmic 

complexity, we introduce a new universal graphical abstraction model which conserves 

data dependency. When applied to Krylov subspace methods and without loss of 

generality, the method takes the following steps: 

1. Construct a data dependency graph for the selected algorithm (DDG).  

2. The related tasks are grouped into functions that can be efficiently invoked from 

optimized library. For example, Intel Math Kernel Library [87]  and CUBLAS [94] 

3. Analyze the parallel complexity of each of the grouped tasks. The work flow of 

Krylov solvers consists of known building blocks detailed Table 3 

4. Associate each edge in the dependency graph with a weight equals the estimated 

parallel cost, Table 3 

5. Extract the span, the longest path of the algorithm.  

6. Construct the Abstract Parallel Complexity Graph (APCG) by converting every 

node in the span to an abstract node (AN) represented by a box whose width is 

proportional to the estimated parallel cost in step 3. The order of the operations 

should remain preserved. 

 

The construction of the Abstract Parallel Complexity Graph (APCG) is mainly based on 

functional decomposition with its associated temporal dependency, which in turns yields 

limited scalability according to Amdahl’s Law. Nevertheless, that decomposition and the 

resulted (APCG) is not only a primary step in the analysis procedure that guides 

implementing an optimized parallel code, but also servers the following advantages:  
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1. Presents a global abstract visual analytical way for comparing various parallel 

algorithms. 

2. Structuring functional parallelism to better make use of parallel design patterns to 

support automatic parallelism.  

3. Shedding light on the limitations associated with certain algorithms and their 

inevitable serial behavior. 

4. Optimizing parallel programs by pipelining the consecutive task groups, 

discovering common patterns and controlling the granularity levels by single or 

hierarchical merge of two or more nodes. Useful parallel patterns could be found 

in [6, 9]  

Figure 19, shows the constructed graph for both BiCGSTAB and QMR. General speaking, 

the parallel computational work inside any algorithm is achieved by either a single thread 

or many cooperating threads. The associated presented earlier complexities 

�O(n),O�Log(n)�,O(1)� will depend on the operational context throughout the program 

execution. We will call the flow of data from operations requiring O(1) to another O(1) a 

linear operation. A scatter, one to many, operation takes place from tasks requiring O(1) 

followed by either  O�Log(n)� or O(n) operations. The opposite is a reduction, many to 

one, operation. The final combination is the broadcast, many to many, that mimics the flow 

of data from operations with O�Log(n)� or O(n)  to other operations of either O�Log(n)� 

or O(n). An example of a linear operation is vector update followed by vector scaling. One 

optimization is to merge such operations together so that they are performed by the same 

worker. Other examples could be constructed in the same way.  
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Figure 19: The Abstract Parallel Complexity 

Graph (APCG) for BiCGSTAB and QMR 
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For example, referring to Figure 19, the possibilities of two extracted consecutive patterns 

are presented in Table 9, along with their associated interpretations. Similarly, other n-way 

patterns could also be constructed by grouping three or more consecutive patterns. The first 

combinations of a tri-pattern are in Table 10. 

 

Table 9: Two consecutive patterns possibilities for tasks representing Krylov Solvers 

 

one to many 

(scatter) 

 

Many to 

one(gather) 

 
Many to one 

 
One to Many 

 
Many to many 

(broadcast) 

 
Many to many 

(broadcast) 

 
Many to many 

(broadcast) 
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Table 10: Three consecutive patterns possibilities for tasks representing Krylov Solvers 

 
Linear 

 

One-many-one 

(scatter-gather) 

 

One-one-many 

(linear-scatter) 

 
One-one-many 

(linear-scatter) 

 
One-many-one 

(scatter-gather) 

 
One-one-many 

(linear-scatter) 

 

One-many-many 

(scatter-broadcast) 

 

One-many-many 

(scatter-broadcast) 

 

One-many-many 

(scatter-broadcast) 

 

As the span, the sequential path, of BiCGSTAB is shorter than the span of QMR, we may 

expect BiCGSTAB to scale better than QMR. Nevertheless, this is somehow a relaxed 

conclusion as lot of other factors may take place, one of which was discussed above about 

the combination of some operations to create a shorter path. For instance, if we merged all 

tasks taking O(1) with either its predecessor or successor, then QMR will have a shorter 

span than BiCGSTAB!  
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Based on the above discussion, we decide to select BiCGSTAB, as the chosen solver to be 

parallelized and incorporated in our parallel reservoir simulator. A support to this choice 

will be further verified via experimentations. 

 

3.3 Experimental Parallel Linear Solver Selection 

 

Objectives: 

 Examining how the parallel execution time of various already implemented parallel 

iterative linear solvers in CUSP library is affected with various sparse storage 

mechanisms.  

 To get an initial insight about the solver that suits our developed reservoir 

simulator. 

Experimental Setup and Conditions: 

 Five large matrix samples at different time iterations of the forward reservoir 

simulator have been extracted and their condition number was measured Figure 9.  

 Each sample represents a 3-D structured grid with (2 x 2) block entries distributed 

in a Hepta-diagonal fashion as resulted from finite volume discretization. 

 Matrix representing Sample_0 is assembled at the first time iteration of the 

simulator, and its coefficients are a combination of various reservoir parameters 

(permeability, compressibility …), oil pressure values �� and water saturation 

levels ��.  
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 As the simulation time proceeds, elements composing the coefficient matrix 

changes as both �� ��� �� get updated and other samples are extracted. 

 Tests were performed on a node in an HPC cluster offered by the Information 

Technology Center at  KFUPM featuring a Xeon E5-2680 10-Core, 2.8 GHz (Dual-

processor) and Tesla k20x GPU [103], Table 12 .  A Comparison of different 

compute capabilities for GPU Architecture is presented in [103]. 

 

 

Table 11: Condition number for various samples of the reservoir simulator 

Matrix Dimension  [120,000 x  120,000] 
Avg. Number of  
Non-Zeros    

[1512800] 

Sampling Time Condition Number 
0 1.279E+05 
31 1.112E+06 
62 1.873E+06 
93 3.548E+06 
124 4.708E+06 
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Table 12: TESLA K20X GPU ACCELERATOR26 

 

 

Table 13: Comparison of different compute capabilities for GPU Architecture27 

 

 

                                                 
26 http://www.nvidia.com/content/PDF/kepler/Tesla-K20X-BD-06397-001-v05.pdf 
 
27 http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf  
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Method: 

 We start first by examining how the parallel execution time of different solvers is 

behaving with different sparse storage mechanisms.  

 We use the CUSP implemented CUDA versions of the solvers. Each matrix in 

Table 11, and with a given storage format were tested across various restarted 

versions of GMRES (5, 15, 50, 1000) and BiCGSTAB.  

 To speed up convergence, we made use of the available Bridson approximate 

inverse preconditioner that reduces the fill-in and improves convergence vi 

reordering elements in coefficient matrix [104].  

 Each experiment was repeated ten times and the average as well as some statistics 

were reported, Figure 20 to Figure 24. T1 to T10 represents the recorded time for 

every experiment. 

 Each of the previous samples was examined using four available different sparse 

storage mechanisms: Compressed Row Storage (CSR), ELLPACK (ELL), Hybrid 

(HYB), and Coordinate Format (COO).  

Results and Discussion 

Figure 25 to Figure 30 show the results of plotting the execution time for different matrix 

storage schemes at different samples drawn from our simulator and for the two mentioned 

preconditioned iterative linear solvers. Every Sample plot is accompanied with another 

semi-log plot that shows the relative residual per-iteration with a minimum28 tolerance 

                                                 
28 It may also reach 1e-7 or 1e-8 depending on the matrix sample 
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value of 1� − 6 . Let � be the iteration number, and the residual ��� =  ‖� − ��‖�, then 

the relative-residual is calculated as ������ = log��(���(�) /���(0)). The following are 

observed and concluded: 

 Solver convergence is independent of the utilized storage scheme. However, the 

solver execution time is. 

 Even for the same matrix structure but with different data values, it is difficult to 

specify an absolute storage scheme that gives the best performance time. For 

example, in Sample_0 and for all solvers, COO outperforms HYB. This is not the 

case for �����(5) in Sample_93.  This could be attributed to the utilized 

preconditioner that approximate the inverse by exploiting the reordering property 

to minimize the fill in [93] [104] [105] .  

 As time step in our reservoir advances, more iterations would be needed for 

reaching an accepted convergence level. This is clearly seen in the relative error 

plot as it is steeper in early reservoir samples. Compare for instance the relative 

error in Sample_0 and Sample 93. The previous behavior is due to an increase in 

the condition number of the assembled system as the time advances; the thing that 

in turns require more iteration to converge.  

 A proper restarted version of �����(�) may be shown to outperform 

BiCGSTAB for different storage formats. However, automatic identification of an 

optimal restart value is not possible. Moreover, and although �����(�) enjoys a 

smoother convergence behavior shown in the relative residual plot, it demands lot 

of storage space. 
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Figure 20: Average Parallel Execution Times for Sample_0 

0 Conf. Coeff: 1.96
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

HYP 1.75 1.73 1.74 1.73 1.77 1.74 1.77 1.74 1.77 1.74 1.748 0.016 0.010 1.758 1.738 1.770 1.730 0.040

ELL 1.74 1.73 1.77 1.75 1.77 1.74 1.76 1.73 1.74 1.73 1.746 0.016 0.010 1.756 1.736 1.770 1.730 0.040

CSR 1.63 1.62 1.7 1.62 1.6 1.59 1.59 1.62 1.59 1.59 1.615 0.034 0.021 1.636 1.594 1.700 1.590 0.110

COO 1.69 1.69 1.73 1.69 1.74 1.69 1.75 1.68 1.75 1.72 1.713 0.028 0.017 1.730 1.696 1.750 1.680 0.070

HYP 1.83 1.79 1.73 1.72 1.72 1.72 1.72 1.74 1.71 1.74 1.742 0.038 0.024 1.766 1.718 1.830 1.710 0.120

ELL 1.75 1.73 1.72 1.74 1.76 1.75 1.75 1.75 1.75 1.74 1.744 0.012 0.007 1.751 1.737 1.760 1.720 0.040

CSR 1.64 1.62 1.63 1.62 1.65 1.64 1.63 1.63 1.62 1.62 1.630 0.011 0.007 1.637 1.623 1.650 1.620 0.030

COO 1.67 1.71 1.68 1.72 1.68 1.68 1.67 1.66 1.63 1.66 1.676 0.025 0.016 1.692 1.660 1.720 1.630 0.090

HYP 1.8 1.77 1.75 1.75 1.77 1.76 1.74 1.76 1.78 1.78 1.766 0.018 0.011 1.777 1.755 1.800 1.740 0.060

ELL 1.77 1.76 1.76 1.77 1.75 1.76 1.78 1.8 1.75 1.75 1.765 0.016 0.010 1.775 1.755 1.800 1.750 0.050

CSR 1.65 1.69 1.65 1.66 1.65 1.66 1.64 1.65 1.7 1.66 1.661 0.019 0.012 1.673 1.649 1.700 1.640 0.060

COO 1.75 1.69 1.67 1.69 1.68 1.67 1.68 1.72 1.7 1.76 1.701 0.032 0.020 1.721 1.681 1.760 1.670 0.090

HYP 1.94 1.9 1.88 1.9 1.94 1.89 1.89 1.94 1.89 1.89 1.906 0.024 0.015 1.921 1.891 1.940 1.880 0.060

ELL 1.89 1.91 1.87 1.88 1.92 1.88 1.91 1.88 1.89 1.88 1.891 0.017 0.010 1.901 1.881 1.920 1.870 0.050

CSR 1.77 1.78 1.77 1.78 1.8 1.77 1.78 1.79 1.77 1.79 1.780 0.011 0.007 1.787 1.773 1.800 1.770 0.030

COO 1.81 1.82 1.81 1.85 1.82 1.84 1.82 1.84 1.8 1.81 1.822 0.016 0.010 1.832 1.812 1.850 1.800 0.050

HYP 1.87 1.81 1.81 1.85 1.81 1.86 1.81 1.8 1.85 1.81 1.828 0.026 0.016 1.844 1.812 1.870 1.800 0.070

ELL 1.78 1.76 1.78 1.7 1.71 1.75 1.71 1.73 1.72 1.71 1.735 0.030 0.019 1.754 1.716 1.780 1.700 0.080

CSR 1.69 1.64 1.72 1.7 1.66 1.66 1.67 1.71 1.67 1.71 1.683 0.027 0.017 1.700 1.666 1.720 1.640 0.080

COO 1.73 1.73 1.73 1.72 1.73 1.77 1.74 1.84 1.74 1.76 1.749 0.035 0.022 1.771 1.727 1.840 1.720 0.120
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Figure 21: Average Parallel Execution Times for Sample_31 

31 Conf. Coeff: 1.96
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

HYP 2.98 3.03 3.08 2.99 3.03 2.97 3 3.06 3.06 3.08 3.028 0.041 0.026 3.054 3.002 3.080 2.970 0.110

ELL 2.75 2.75 2.72 2.84 2.73 2.79 2.7 2.77 2.71 2.8 2.756 0.044 0.027 2.783 2.729 2.840 2.700 0.140

CSR 2.72 2.62 2.77 2.68 2.62 2.79 2.68 2.74 2.65 2.81 2.708 0.069 0.043 2.751 2.665 2.810 2.620 0.190

COO 2.99 2.95 2.98 3.05 3.08 2.95 2.98 3 3.06 3.08 3.012 0.051 0.032 3.044 2.980 3.080 2.950 0.130

HYP 2.54 2.64 2.59 2.53 2.63 2.62 2.54 2.53 2.53 2.59 2.574 0.045 0.028 2.602 2.546 2.640 2.530 0.110

ELL 2.49 2.41 2.41 2.48 2.43 2.54 2.49 2.5 2.47 2.56 2.478 0.051 0.031 2.509 2.447 2.560 2.410 0.150

CSR 2.46 2.4 2.37 2.38 2.36 2.36 2.47 2.39 2.37 2.36 2.392 0.041 0.025 2.417 2.367 2.470 2.360 0.110

COO 2.51 2.7 2.54 2.68 2.58 2.54 2.53 2.6 2.49 2.49 2.566 0.074 0.046 2.612 2.520 2.700 2.490 0.210

HYP 2.68 2.61 2.62 2.6 2.65 2.61 2.6 2.62 2.6 2.68 2.627 0.032 0.020 2.647 2.607 2.680 2.600 0.080

ELL 2.54 2.55 2.59 2.57 2.54 2.6 2.55 2.59 2.57 2.5 2.560 0.030 0.019 2.579 2.541 2.600 2.500 0.100

CSR 2.51 2.45 2.5 2.49 2.44 2.44 2.49 2.44 2.45 2.43 2.464 0.030 0.019 2.483 2.445 2.510 2.430 0.080

COO 2.56 2.68 2.61 2.58 2.63 2.59 2.58 2.63 2.59 2.59 2.604 0.035 0.022 2.626 2.582 2.680 2.560 0.120

HYP 4.58 4.6 4.63 4.62 4.61 4.62 4.58 4.62 4.62 4.6 4.608 0.018 0.011 4.619 4.597 4.630 4.580 0.050

ELL 4.5 4.55 4.55 4.51 4.53 4.5 4.52 4.52 4.52 4.56 4.526 0.021 0.013 4.539 4.513 4.560 4.500 0.060

CSR 4.43 4.48 4.42 4.42 4.41 4.44 4.42 4.43 4.47 4.44 4.436 0.023 0.014 4.450 4.422 4.480 4.410 0.070

COO 4.52 4.51 4.46 4.54 4.55 4.52 4.5 4.55 4.57 4.55 4.527 0.032 0.020 4.547 4.507 4.570 4.460 0.110

HYP 2.58 2.5 2.68 2.52 2.51 2.62 2.51 2.51 2.51 2.6 2.554 0.062 0.039 2.593 2.515 2.680 2.500 0.180

ELL 2.45 2.45 2.49 2.48 2.48 2.46 2.44 2.44 2.45 2.44 2.458 0.019 0.012 2.470 2.446 2.490 2.440 0.050

CSR 2.4 2.4 2.37 2.37 2.36 2.48 2.49 2.43 2.4 2.39 2.409 0.045 0.028 2.437 2.381 2.490 2.360 0.130

COO 2.62 2.56 2.67 2.6 2.52 2.53 2.59 2.52 2.51 2.53 2.565 0.053 0.033 2.598 2.532 2.670 2.510 0.160
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Figure 22: Average Parallel Execution Times for Sample_62 

62 Conf. Coeff: 1.96
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

HYP 3.57 3.43 3.46 3.55 3.47 3.44 3.57 3.49 3.44 3.58 3.500 0.061 0.038 3.538 3.462 3.580 3.430 0.150

ELL 3.27 3.25 3.25 3.24 3.25 3.26 3.26 3.24 3.25 3.26 3.253 0.009 0.006 3.259 3.247 3.270 3.240 0.030

CSR 3.08 3.08 3.11 3.08 3.13 3.17 3.17 3.2 3.19 3.08 3.129 0.050 0.031 3.160 3.098 3.200 3.080 0.120

COO 3.49 3.53 3.62 3.52 3.5 3.64 3.48 3.67 3.64 3.49 3.558 0.075 0.047 3.605 3.511 3.670 3.480 0.190

HYP 2.97 3.09 2.9 2.92 2.88 2.98 2.92 2.97 2.89 2.99 2.951 0.063 0.039 2.990 2.912 3.090 2.880 0.210

ELL 2.76 2.76 2.76 2.7 2.7 2.7 2.72 2.77 2.73 2.79 2.739 0.033 0.021 2.760 2.718 2.790 2.700 0.090

CSR 2.73 2.66 2.68 2.68 2.74 2.65 2.7 2.69 2.61 2.71 2.685 0.039 0.024 2.709 2.661 2.740 2.610 0.130

COO 2.88 2.82 2.85 2.8 2.86 2.79 2.86 2.96 2.85 2.93 2.860 0.053 0.033 2.893 2.827 2.960 2.790 0.170

HYP 2.96 2.98 3 3.04 2.95 2.97 3.05 3.08 3.04 3.08 3.015 0.049 0.030 3.045 2.985 3.080 2.950 0.130

ELL 2.89 2.82 2.87 2.82 2.91 2.91 2.83 2.87 2.83 2.85 2.860 0.035 0.022 2.882 2.838 2.910 2.820 0.090

CSR 2.8 2.85 2.8 2.86 2.78 2.8 2.78 2.79 2.81 2.73 2.800 0.037 0.023 2.823 2.777 2.860 2.730 0.130

COO 2.96 2.99 2.99 3.03 2.93 2.94 2.99 3.04 2.92 2.95 2.974 0.041 0.025 2.999 2.949 3.040 2.920 0.120

HYP 5.93 5.93 5.93 5.95 5.99 5.99 5.96 5.99 6.06 5.95 5.968 0.041 0.025 5.993 5.943 6.060 5.930 0.130

ELL 5.87 5.9 5.86 5.85 5.84 5.89 5.83 5.85 5.88 5.87 5.864 0.022 0.014 5.878 5.850 5.900 5.830 0.070

CSR 5.77 5.75 5.79 5.84 5.75 5.8 5.77 5.77 5.74 5.73 5.771 0.032 0.020 5.791 5.751 5.840 5.730 0.110

COO 5.92 5.89 5.85 5.87 5.87 5.86 5.86 5.88 5.88 5.86 5.874 0.020 0.012 5.886 5.862 5.920 5.850 0.070

HYP 3 2.96 2.96 3.05 3.08 3.09 2.97 2.96 2.96 2.96 2.999 0.054 0.033 3.032 2.966 3.090 2.960 0.130

ELL 2.75 2.88 2.89 2.77 2.76 2.82 2.88 2.83 2.71 2.78 2.807 0.063 0.039 2.846 2.768 2.890 2.710 0.180

CSR 2.72 2.8 2.74 2.81 2.73 2.72 2.75 2.86 2.79 2.86 2.778 0.054 0.034 2.812 2.744 2.860 2.720 0.140

COO 2.86 2.97 2.93 2.87 2.95 2.96 2.84 2.94 2.87 2.89 2.908 0.047 0.029 2.937 2.879 2.970 2.840 0.130
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Figure 23: Average Parallel Execution Times for Sample_93 

93 Conf. Coeff: 1.96
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

HYP 4.27 4.25 4.23 4.37 4.37 4.4 4.39 4.33 4.27 4.34 4.322 0.062 0.039 4.361 4.283 4.400 4.230 0.170

ELL 3.86 3.78 3.84 3.79 3.84 3.93 3.94 3.79 3.91 3.79 3.847 0.061 0.038 3.885 3.809 3.940 3.780 0.160

CSR 3.89 3.77 3.86 3.75 3.86 3.79 3.87 3.72 3.84 3.72 3.807 0.065 0.040 3.847 3.767 3.890 3.720 0.170

COO 4.42 4.37 4.37 4.37 4.55 4.45 4.47 4.36 4.38 4.47 4.421 0.063 0.039 4.460 4.382 4.550 4.360 0.190

HYP 3.56 3.64 3.57 3.61 3.55 3.65 3.6 3.53 3.71 3.59 3.601 0.054 0.033 3.634 3.568 3.710 3.530 0.180

ELL 3.29 3.29 3.27 3.3 3.41 3.47 3.4 3.37 3.35 3.37 3.352 0.064 0.040 3.392 3.312 3.470 3.270 0.200

CSR 3.2 3.22 3.23 3.26 3.4 3.23 3.24 3.31 3.32 3.34 3.275 0.064 0.040 3.315 3.235 3.400 3.200 0.200

COO 3.59 3.62 3.6 3.55 3.63 3.64 3.73 3.65 3.6 3.66 3.627 0.049 0.030 3.657 3.597 3.730 3.550 0.180

HYP 3.66 3.59 3.68 3.59 3.53 3.56 3.51 3.58 3.6 3.57 3.587 0.052 0.032 3.619 3.555 3.680 3.510 0.170

ELL 3.48 3.41 3.49 3.45 3.44 3.35 3.36 3.37 3.44 3.46 3.425 0.050 0.031 3.456 3.394 3.490 3.350 0.140

CSR 3.35 3.32 3.32 3.41 3.32 3.37 3.34 3.33 3.32 3.33 3.341 0.029 0.018 3.359 3.323 3.410 3.320 0.090

COO 3.57 3.54 3.64 3.57 3.56 3.62 3.55 3.54 3.59 3.53 3.571 0.036 0.022 3.593 3.549 3.640 3.530 0.110

HYP 9.46 9.51 9.55 9.61 9.5 9.44 9.4 9.37 9.32 9.38 9.454 0.090 0.056 9.510 9.398 9.610 9.320 0.290

ELL 9.31 9.36 9.22 9.27 9.3 9.28 9.37 9.38 9.31 9.26 9.306 0.052 0.032 9.338 9.274 9.380 9.220 0.160

CSR 9.14 9.16 9.15 9.15 9.14 9.26 9.18 9.27 9.21 9.28 9.194 0.057 0.035 9.229 9.159 9.280 9.140 0.140

COO 9.43 9.38 9.38 9.45 9.4 9.42 9.41 9.39 9.41 9.41 9.408 0.022 0.014 9.422 9.394 9.450 9.380 0.070

HYP 3.46 3.4 3.56 3.47 3.43 3.34 3.37 3.56 3.46 3.41 3.446 0.073 0.045 3.491 3.401 3.560 3.340 0.220

ELL 3.21 3.17 3.16 3.16 3.16 3.16 3.17 3.15 3.29 3.23 3.186 0.045 0.028 3.214 3.158 3.290 3.150 0.140

CSR 3.09 3.13 3.14 3.15 3.17 3.14 3.15 3.15 3.23 3.2 3.155 0.038 0.024 3.179 3.131 3.230 3.090 0.140

COO 3.27 3.31 3.36 3.34 3.31 3.31 3.34 3.46 3.31 3.4 3.341 0.055 0.034 3.375 3.307 3.460 3.270 0.190
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Figure 24: Average Parallel Execution Times for Sample_124 

124 Conf. Coeff: 1.96
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

HYP 5.19 5.18 5.13 4.99 4.99 5.06 5.02 5.1 4.98 5.02 5.066 0.079 0.049 5.115 5.017 5.190 4.980 0.210

ELL 4.4 4.41 4.41 4.53 4.47 4.41 4.57 4.46 4.42 4.59 4.467 0.072 0.044 4.511 4.423 4.590 4.400 0.190

CSR 4.47 4.52 4.4 4.41 4.46 4.52 4.45 4.43 4.43 4.52 4.461 0.046 0.028 4.489 4.433 4.520 4.400 0.120

COO 5.46 5.1 5.24 5.32 5.19 5.13 5.28 5.29 5.28 5.28 5.257 0.102 0.063 5.320 5.194 5.460 5.100 0.360

HYP 3.77 3.71 3.69 3.69 3.78 3.7 3.76 3.75 3.77 3.87 3.749 0.055 0.034 3.783 3.715 3.870 3.690 0.180

ELL 3.55 3.45 3.45 3.54 3.5 3.47 3.48 3.69 3.62 3.63 3.538 0.084 0.052 3.590 3.486 3.690 3.450 0.240

CSR 3.53 3.47 3.45 3.56 3.45 3.37 3.42 3.41 3.39 3.38 3.443 0.063 0.039 3.482 3.404 3.560 3.370 0.190

COO 3.77 3.75 3.82 3.68 3.8 3.68 3.82 3.74 3.68 3.69 3.743 0.058 0.036 3.779 3.707 3.820 3.680 0.140

HYP 4.11 4.1 4.14 4.12 4.07 4.1 4.08 4.17 4.21 4.19 4.129 0.047 0.029 4.158 4.100 4.210 4.070 0.140

ELL 4.02 3.9 3.92 3.84 3.88 3.91 3.93 3.96 4.01 3.9 3.927 0.056 0.035 3.962 3.892 4.020 3.840 0.180

CSR 3.9 3.82 3.81 3.84 3.82 3.83 3.88 3.83 3.83 3.93 3.849 0.040 0.025 3.874 3.824 3.930 3.810 0.120

COO 4.04 4.05 4.09 4.19 4.2 4.15 4.19 4.08 4.19 4.18 4.136 0.064 0.040 4.176 4.096 4.200 4.040 0.160

HYP 12.8 13 13 13.1 12.8 12.8 12.7 12.8 12.9 13.1 12.888 0.138 0.086 12.974 12.802 13.100 12.730 0.370

ELL 12.8 12.9 12.8 12.7 12.7 12.6 12.9 12.8 12.9 12.8 12.792 0.082 0.051 12.843 12.741 12.920 12.640 0.280

CSR 12.7 12.9 12.7 12.6 12.6 12.7 12.6 12.8 12.7 12.8 12.711 0.090 0.056 12.767 12.655 12.890 12.600 0.290

COO 12.7 12.8 12.8 13.1 12.8 12.7 12.8 12.7 12.7 12.8 12.782 0.107 0.066 12.848 12.716 13.060 12.690 0.370

HYP 4.25 4.2 4.2 4.19 4.22 4.27 4.14 4.14 4.18 4.16 4.195 0.043 0.027 4.222 4.168 4.270 4.140 0.130

ELL 3.54 3.69 3.69 3.54 3.6 3.64 3.56 3.49 3.62 3.53 3.590 0.069 0.043 3.633 3.547 3.690 3.490 0.200

CSR 3.71 3.58 3.74 3.59 3.59 3.67 3.59 3.76 3.59 3.75 3.657 0.077 0.048 3.705 3.609 3.760 3.580 0.180

COO 3.76 3.75 3.76 3.77 3.77 3.74 3.75 3.71 3.69 3.77 3.747 0.027 0.017 3.764 3.730 3.770 3.690 0.080
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Figure 25: Solvers Parallel Execution time for various storage formats with relative residual semi-log plot. 
Sample_0. Convergence is independent of the utilized storage scheme 

 



126 

 

 

 

 

Figure 26: Solvers Parallel Execution time for various storage formats with relative residual semi-log plot. 
Sample_31. Convergence is independent of the utilized storage scheme 
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Figure 27: Solvers Parallel Execution time for various storage formats with relative residual semi-log plot. 
Sample_62. Convergence is independent of the utilized storage scheme. 
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Figure 28: Solvers Parallel Execution time for various storage formats with relative residual semi-log plot. 
Sample_93. Convergence is independent of the utilized storage scheme. 
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Figure 29: Solvers Parallel Execution time for various storage formats with relative residual semi-log plot. 
Sample_124. Convergence is independent of the utilized storage scheme.  
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Figure 30 shows the execution time of BiCGSTAB Solver for all considered samples with 

different storage schemes. The following could be further established and concluded:  

 With the use of suitable preconditioner, BiCGStab convergence to the right solution 

at minimal execution time compared to GMRES. 

 The larger the matrix sample, the higher the condition number and the longer it 

takes to converge. 

 BiCGSTAB with CSR storage scheme outperformed others from Samples_0 to 

Sample_93. It came second in Sample_124.  

 Given the above experimental conditions, a suitable preconditioner and the set of 

storage schemes we studied, BiCGStab with CSR is considered a suitable tradeoff 

that solves our reservoir simulation problem. Although this selection represents a 

sub-optimal answer for purely Hepta-Diagonal Systems, it paves the way for 

supporting wide range of more interesting simulation conditions29.   

 Interested readers in special optimal Blocked Hepta-Diagonal Storage format and 

its application to Sparse Matrix Vector Multiplication as well as extensive 

comparisons with other formats may refer to SG_DIA scheme presented in [72]. 

The following section sheds more light on that issue.   

  

                                                 
29 These includes utilizing unstructured meshes, different discretization or when using multi-well 
completion method. 
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Figure 30: BiCGSTAB Parallel Execution time for various storage formats with relative residual semi-log plot. 
All Extracted Sample. Convergence is independent of the utilized storage scheme 
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3.4   Special Case: Sparse Matrix Vector Multiplication for Hepta-

Diagonal Matrices 

 

Objectives: 

Examining the effect of different sparse storage schemes on the overall parallel execution 

time and comparing them for sparse Matrix-Vector Multiplication operation (SpMV) over 

Hepta-Diagonal Sample Matrices 

Experimental Setup and Conditions: 

 Six sample matrices with variable sizes that resemble elements distribution in the 

developed FRS have been considered. 

 Each sample represents a large matrix with (2 x 2) block entries distributed in a 

Hepta-diagonal fashion. The rest of elements are zeros. Figure 9 

 Tests were performed on a node in an HPC cluster offered by the Information 

Technology Center at  KFUPM featuring a Xeon E5-2680 10-Core, 2.8 GHz (Dual-

processor) and Tesla k20x GPU [103], Table 12 .  A Comparison of different 

compute capabilities for GPU Architecture is presented in [103]. 

Method 

 We use the CUSP implemented CUDA versions of Matrix-Vector Multiplication. 

We further implemented SG_DIA found in [72].  
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 The execution time of Sparse Matrix Vector Multiplication was  examined using 

five different sparse storage mechanisms; four of which were provided by CUSP 

library: Compressed Row Storage (CSR), ELLPACK (ELL), Hybrid (HYB), and 

Coordinate Format (COO), and the last one is the implementation for the blocked 

diagonal format SG_DIA found in [72].  

 Each experiment was repeated a number of times and the average parallel executed 

time was recorded. 

Results and Discussion 

Figure 31 demonstrates the average execution time of SpMV for various increasingly 

related matrix sizes for every utilized sparse storage schemes, while Figure 32 shows the 

execution time of the previous experiment by varying storage format across a given matrix 

leading dimension.   The following can be concluded: 

 Just as expected, for all matrix dimensions and due to its ability to exploit the 

reservoir matrix structure, (SG_DIA) outperformed all other schemes. This is more 

prominent when comparing it to (COO) as the latest enjoyed the most indirect 

addressing problem presented earlier.  

 Moreover, as (ELL) is somehow close to (SG_DIA), and as the former has already 

been developed to suite sparse matrix vector multiplications on GPUs, it is then no 

wonder that (ELL) comes second in performance.  

 Just like other formats, and although (SG_DIA) group multiple memory 

transactions, it suffers from the described earlier short row problem.  
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Figure 31: The average execution time of SpMV for various storage schemes and different related matrix 
dimensions.   Here the input size has been studied within each scheme separately.  
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Figure 32:  The average execution time of SpMV for various storage schemes and different related matrix 
dimensions.   The focus here is see how each storage scheme behaves for a given matrix dimension. 
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3.5 Parallel Implementation of the selected Linear Solver for 

Matrices with Single (RHS) 

 

3.5.1 Introduction 

The goal of parallel programing is to provide tools and techniques for either solving big 

problems faster or to run larger instances of the given problem for the same time interval 

that was used to execute its serial counterpart. Exposing application concurrency refers to 

the art of breaking down the main problem into independent logical tasks30 that could be 

later executed in parallel after mapping them to corresponding physical processing 

elements. It is then no wonder that restructuring the problem to exploit any available 

concurrency is indeed the first mandatory step before implementing any serial algorithm 

using a suitable parallel programming environment. The process for finding concurrency 

starts by a decomposition step performed on program data and the associated tasks. It is 

followed by an analysis step where the decomposed parts are grouped, ordered, or share 

their data [9].   

Figure 33 shows the established Data Dependency Graph (DDG) of BiCGSTAB 

Algorithm, highlights concurrent operations, and demonstrates detailed tasks according to 

Table 3. The parallel pattern is directly inferred from the arrows that express data flow 

direction. For example, before vector s is correctly computed, α,v,and r� should be 

available.    

                                                 
30 A task is a sequence of instructions that operate together as a group. 
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Figure 33: BiCGSTAB 
Data Dependency Graph 
(DDG), main operations 

are highlighted 
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3.5.2 Merging Operations31 

Although the algorithm seems to complete its constituting tasks in sequence, various 

optimizations could be established to enable better parallel behavior [6] .One of which is 

based on the observation that various operations could be merged together taking 

advantage of both the commutative and associative properties of real numbers. This will 

allow different workers to continue to evaluate the next line of the algorithm without 

causing data hazards by accumulating partial results that could be later merged to form the 

complete solution.  This is opposed to the other approach of establishing a barrier that 

forces thread synchronization after completing every operation. For example, and because 

of the dependency shown in Figure 33, one way of computing the sequence of operations 

extracted from BiCGSTAB Algorithm, shown in Figure 34,  could be by first assigning 

multiple workers to perform the reduction operation, then they wait until everyone finishes 

its assigned job. After that, a single worker computes the scalar value at line 7, before they 

cooperate again to compute lines:8. It is worth mentioning that Figure 34 presents an 

abstract symbolic view for how the calculations flow. After all, it is well known that 

performing a reduction operation in CUDA requires N cooperating threads with LOG N 

steps!  

 

                                                 
31 It is worth mentioning that, a similar trick has been utilized in [106] H. Anzt, S. Tomov, P. Luszczek, I. 

Yamazaki, J. Dongarra, and W. Sawyer, "Accelerating Krylov Subspace Solvers on Graphics Processing 

Units.". 
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Figure 34: The normal flow for various threads cooperating to compute sequence of operations in BiCGSTAB 
Algorithm 
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At first glance and given the above dependencies, any CUDA developed parallel 

implementation of BiCGSTAB solver seems to be bounded in terms of both bandwidth and 

computation. This is due to the fact that, the nature of operations composing BiCGSTAB 

algorithm demands many memory loads with minimal computations performed on the 

loaded data i.e.  computing resources spend the majority of the time busy waiting for data 

to be fetched. With the aim of reducing bandwidth pressure and increasing data locality, a 

split and merge strategy was adapted. Without loss of generality, the previous snippet of 

the algorithm shown in Figure 34, could be implemented as follows: 

Let � ≔ ����� ������ �� �������� �� ������ �.  

ρ is then calculated as 

ρ = � r�. r��
� 

�

���
 

ρ =  r�. r��
� +  r�. r��

� + ⋯ +  r�. r��
� 

ρ =  ρ� + ρ� + ρ� + ⋯ +  ρ� 

Let every worker (thread) operate on one element of vector r & r�, multiply them and store 

the result in the corresponding indexed location in the resulted ρ vector. Rather than 

finishing up the computation and finding the reduced value of ρ, i.e. summing the values 

over all indices, each worker continue to the next line of the algorithm, and calculates its 

corresponding�β�,β�,β�,… ,β��, where total β is 

β = ρ� �
�

� . �����
� + ρ� �

�

� . �����
� + ⋯ +  ρ� �

�

� . �����
�   
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Or 

β = β� +  β� +  β� + ⋯ + β� 

As a result, instead of having one thread loading two values of vectors r & r�, multiply the 

value and store the result back, the kernel proceeds with calculating the corresponding 

partial β value using some other constants that has been already brought to shared memory 

and broadcasted to all threads within the block.  In other words, increasing the 

computational intensity per memory operations.  

Again, the same logic applies when calculating the P as it requires the value of β to be 

available priory. One work around that we adopted is to make every thread computes the 

reduced value of  β that has been already accumulated in (inter_blk_Beta) vector by the aid 

of some other preloaded shared scalars before finally computing the final value of P and 

storing it back to global memory.   

p� = r� + �p� −  ω�. v�� � β�.

�

���
 

Similarly (r &  v). This leads the following relation:  

� p�

�

���
= � r�

�

���
+ � β�

�

���
 � �p� −  ω�. v��

�

���
   

Without loss of generality, the following Figure 35, shed more light about such possible 

merge. 
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Figure 35: One possibility for merging arithmetic operations of the snippet of BiCGSTAB code, shown in Figure 34 
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The same trick was applied when computing vectors α and s at lines:14 and 15, updating 

x and r from lines:21 to 22, Algorithm 3. This strategy is easily extended to include the 

preconditioner as well as the matrix vector multiplication that follows.  

The following code snippet shows kernel implementation for partial values of (ρ,β and P), 

CODE 1.  
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CODE 1: GPU Kernels for computing rho, beta and P 

__global__ void per_BLK_Rho_Beta(double *r_tld, double *r, 
double *vector_Beta, double *vector_rho, double *global_Alpha, 
double *global_rho1 ,int data_size) { 
=============================================================== 
 
    unsigned int Index = threadIdx.x; 
    __shared__  double shared_Constants[3]; // this will make 
use of the broadcast property in shared memory all threads will 
read either first, second or third word in the bank and the 
returned value will be broadcast 
 
    if(Index == 0 ){ 
        shared_Constants[0]= *global_rho1; 
    } 
    if(Index == 32 ){ 
        shared_Constants[1]= *global_Alpha; 
    } 
    if(Index == 64 ){ 
        shared_Constants[2]= global_Omega; 
    } 
    __syncthreads(); 
    //Allocating shared memory for intra (within) block 
reduction: Intra_Blk 
     __shared__ double Intra_Blk_rho[threadsPerBlock]; 
     __shared__ double Intra_Blk_Beta[threadsPerBlock]; 
 
     double rho_1 = shared_Constants[0]; double alpha = 
shared_Constants[1]; double omega = shared_Constants[2]; 
     double current_rho=0; 
 
    int tid = threadIdx.x + blockIdx.x * blockDim.x;  
    Intra_Blk_rho[Index] = 0; Intra_Blk_Beta[Index] = 0; 
 
    while (tid < data_size ){ 
 
        current_rho = r_tld[tid] * r[tid]; // partial rho: 
rho_0, rho_1, rho_2 
 
        Intra_Blk_rho[Index] += current_rho; 
        Intra_Blk_Beta[Index] += (current_rho/ rho_1) * (alpha 
/ omega); 
 
        tid += blockDim.x * gridDim.x; 
    } 
    __syncthreads(); 
 
    if(Index < threadsPerBlock ){ 
        UnrolledBlockReduce(Index, 
Intra_Blk_Beta,Intra_Blk_rho,threadsPerBlock); 
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    } 
    __syncthreads(); 
 
    //Thread 0 from each block will write the resulted per 
block reduced rho to global memory 
    if (Index == 0 ) { 
 
        vector_Beta[blockIdx.x] = Intra_Blk_Beta[0]; 
        vector_rho[blockIdx.x] = Intra_Blk_rho[0]; 
    } 
} 
 
__global__ void compute_P(double *p, double *r, double *r_tld,   
double *v,  double *vector_Beta, double *vector_rho,int 
data_size){ 
 
    int tid = threadIdx.x + blockIdx.x * blockDim.x; 
    unsigned int Index = threadIdx.x; 
 
    __shared__  double omega; 
    if(Index ==0) 
        omega =global_Omega; // let th0 of every block brings 
omega and share it with threads in a block 
 
    // step_1: Bring vector beta to shared memory 
 
    __shared__ double Inter_Blk_Beta[blocksPerGrid]; 
    __shared__ double Inter_Blk_Rho[blocksPerGrid]; 
 
    if( Index < blocksPerGrid){ 
        // very optimal if blocks is 32 as it will give only 
one memory transaction 
            Inter_Blk_Beta[Index]= vector_Beta[Index]; 
            Inter_Blk_Rho[Index]= vector_rho[Index]; 
 
        } 
    __syncthreads(); 
 
    // operate on shared memory 
    __shared__ double p_Sh[threadsPerBlock]; 
    __shared__ double v_Sh[threadsPerBlock]; 
 
    double current_Beta, current_Beta1, current_Beta2, 
current_Beta3, current_Beta4, current_Beta5, current_Beta6, 
current_Beta7; 
    double p_next, p_next1, p_next2, p_next3, p_next4, p_next5, 
p_next6, p_next7 ; 
 
    while (tid < data_size ){ 
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        p_next = 0; p_next1 = 0; p_next2 = 0; p_next3 = 0; 
p_next4 = 0; p_next5 = 0; p_next6 = 0; p_next7 = 0; 
 
        p_Sh[Index] =   p[tid]; 
        v_Sh[Index] =   v[tid]; 
     
        for(int i=0; i<blocksPerGrid;i+=8){ 
 
            current_Beta  = Inter_Blk_Beta[i]; 
            current_Beta1 = Inter_Blk_Beta[i+1]; 
            current_Beta2 = Inter_Blk_Beta[i+2]; 
            current_Beta3 = Inter_Blk_Beta[i+3]; 
            current_Beta4 = Inter_Blk_Beta[i+4]; 
            current_Beta5 = Inter_Blk_Beta[i+5]; 
            current_Beta6 = Inter_Blk_Beta[i+6]; 
            current_Beta7 = Inter_Blk_Beta[i+7]; 
 
            p_next += current_Beta * (p_Sh[Index]-  omega * 
v_Sh[Index]); 
            p_next1 += current_Beta1 * (p_Sh[Index]-  omega * 
v_Sh[Index]); 
            p_next2 += current_Beta2 * (p_Sh[Index]-  omega * 
v_Sh[Index]); 
            p_next3 += current_Beta3 * (p_Sh[Index]-  omega * 
v_Sh[Index]); 
            p_next4 += current_Beta4 * (p_Sh[Index]-  omega * 
v_Sh[Index]); 
            p_next5 += current_Beta5 * (p_Sh[Index]-  omega * 
v_Sh[Index]); 
            p_next6 += current_Beta6 * (p_Sh[Index]-  omega * 
v_Sh[Index]); 
            p_next7 += current_Beta7 * (p_Sh[Index]-  omega * 
v_Sh[Index]); 
 
        } 
        p[tid] = r[tid] + p_next + p_next1 + p_next2 + p_next3 
+ p_next4 + p_next5+ p_next6 + p_next7 ; 
         
        tid += blockDim.x * gridDim.x; 
 
    } 
 
} 
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GPU devices feature a number of memory types that are characterized by their speed and 

scope. In addition to operations’ merging, the previous kernels feature the following 

optimizations: 

 Intensive use of shared memory and making use of its broadcast property. 

 Loop unrolling to further increase computation intensity.  

 A call to optimized implemented reduction kernel (UnrolledBlockedReduce( )) 

based on various recommendations reported in literature [97, 107]. 

 Makes use of Asynchronous data transfer between host and device by utilizing 

Pinned Memory and streams. Kepler GK110 introduced a HyperQ mechanism that 

supports 32 hardware managed connections for communication between host and 

device. That improvement has a direct impact on increasing device utilization as 

multiple processors on the CPU could initiate work on a single GPU at the same 

time [15].    

 Host and kernel execution overlap: when possible, the original code was 

restructured in a way that a call to device kernel is followed by many calls to host 

functions. By default, kernel launch is asynchronous or non-blocking. So while the 

GPU is busy, the host performs some other computations.  If used properly, this 

mix, combined with streaming has great impact on performance.  

To preserver dependency when sharing thread results, synchronization was enforced by 

exiting every related kernel and launching another one.  Whenever necessary, a call to 

cudaDeviceSync() after kernel launch was initiated.  
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To elaborate more and without loss of generality, for calculating the values of � and �, each 

thread in CODE 1, loads to shared memory part of the global (�) and (�̃) vector, multiply 

the corresponding value using shared memory vector called intra-blk-rho, and accumulate 

partial sum before finally storing the final result to another vector in global memory called 

inter_blk_rho. Now and as the algorithm states, vector inter-block-rho is read by another 

kernel to either continue subsequent operations or got reduced on the host. In other words, 

whenever necessary, every block reduces given data through partial accumulation of the 

results, writes it to global memory and then the final reduction is done on the host by 

reading the reduced data by all blocks. This two steps synchronization is necessary as GPU 

devices do not allow data to be shared among blocks.  

The convergence is checked from the host side at the end of each iteration. One 

optimization could be to skip the check for some iterations. However, this requires some 

prior anticipation of the number of expected iterations needed before converging to the 

right solution. Kernels constituting this program are shown in the appendix. 
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3.5.3 Experiments and Comparisons 

 

Objectives: 

To examine the speed up obtained after merging some operations in a CUDA 

implementation of BiCGStab Algorithm. 

Experimental Setup and Conditions: 

 A number of large matrix sets with variable sizes are extracted from our developed 

FRS. The dimension has been chosen to double the previous one starting from  

(10800 x 10800) and up to (921600 x 921600) 

 Each sample represents a 3-D structured grid with (2 x 2) block entries distributed 

in a Hepta-diagonal fashion as resulted from finite volume discretization. 

 Tests were performed on a node in an HPC cluster offered by the Information 

Technology Center at  KFUPM featuring a Xeon E5-2680 10-Core, 2.8 GHz (Dual-

processor) and Tesla k20x GPU [103], Table 12 .  A Comparison of different 

compute capabilities for GPU Architecture is presented in [103]. 

Method 

 Two parallel versions of the BiCGSTAB were programmed. The first one was 

solely based on calling cuBLAS and cuSPARSE routines (BiCGSolver_Lib) and 

the other utilizes the ideas and optimizations mentioned above 

(BiCGSolver_Merged). See the appendix for the two programs.  
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 In both cases and since we are solely interested in evaluating the speedup that 

results from merging, we decided to utilize CSR storage schemes.  

 It is worth mentioning that other specialized schemes like SG_DIA [72], will 

definitely produce a better overall performance to both implementations and for the 

considered testing matrices.   

 In both cases, we utilized the ILU preconditioner offered by cuSPARSE library. 

Again, using other advanced preconditioners will definitely have better overall 

performance results. 

 

Program Tuning 

Obtaining the best performance out of CUDA-Based parallel programs is beholden by 

many design choices that in many cases are contradicting in nature. To manage this and to 

help programmers tune their applications according to their desired performance goals, 

NVidia provided a number of tools including the visual profiler and occupancy calculator.  

It is always intimidating to utilize more resources that grant higher throughput like 

registers, but unfortunately that comes with the price of limiting concurrency. After all, 

one key aspect at which GPU devices achieve their Tera-flop performance is through 

latency hiding. When a given warp32 stalls because of unavailable data and while these data 

being fetched from global memory, other warps are context-switched and scheduled for 

                                                 
32 A warp is a group of 32 consecu�ve threads within a block scheduled to be executed by the CUDA 
multiprocessor. 



151 

 

execution with zero penalty. Similarly, when a block stalls for any reason, other blocks are 

switched in by the scheduler. As a result, a smart selection for the number of blocks to be 

executed as well as the number of threads used by each block is mandatory for any 

successful exploitation of GPU device capabilities for achieving higher performance.   

Each streaming multiprocessor (SMX) in Kepler GK110 supports a maximum of 65536 

registers, 16 blocks, 2048 threads and 64 warps. Forcing CUDA kernel to use registers for 

variables may be achieved by explicitly using scalar variables and via loop unrolling. 

However and as mentioned above, using more registers will hinder performance as it limits 

the number of lunched blocks. For example, assume we are using 256 threads each uses 

100 32-bit registers (50 double private variables). Then each block will demand 256 x 100 

= 25600 registers. As a result, the maximum number of blocks that can be launched is 

calculated by dividing the maximum number of registers supported by each SMX over the 

utilized registers or (65536/25600) = 2 blocks. This means utilizing only 12.5 % of the 

maximum blocks allowed per SMX!  

In a similar way and although its latency is almost 100x lower than uncached global 

memory latency33, the exorbitant use of shared memory may also limit the pledged device 

performance. If 48 KB of shared memory is to be used among 8 blocks, then each block 

should utilize a maximum of 6 KB shared memory! Moreover, to prompt for higher 

bandwidth utilization, shared memory is distributed into concurrently accessed, equally 

sized 32 4-Bytes logical banks each with bandwidth of 64 bits per clock cycle. Memory 

bank conflict degrades shared memory performance by serializing bank accesses and 

                                                 
33 http://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/  
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occurs when multiple simultaneous requests by different threads are made to the same 

bank. Therefore, whenever shared memory is utilized, the associated variables should be 

placed under scrutiny to avoid possible bank conflicts. To enable better optimization when 

double precision variables are used, device bank size should be configured to be 8 bytes 

instead of the default on.  

In our developed program, we started with a given number of blocks & threads; and 

empirically tuned their figures until the least execution time was obtained for kernels 

launching 128 blocks and 256 threads per block.  As stated before, the motivation behind 

lies in the observation that usually but not necessarily [108], the higher the occupancy ratio, 

the more attainable performance.  

Moreover and by running the visual profiler, we studied memory bandwidth utilization, 

how instruction and memory latency limit the performance by analyzing stalls, compute 

resources as well as other offered suggestions. We then came up with a list of optimizations 

that we later manually addressed. These include: overlapping communication and 

computations, utilizing streams for data transfer, minimizing the number of used registers, 

tiling and memory coalescing and others. Table 16.  

It is worth mentioning that, there has been several attempts for designing auto-tuning 

applications that automatically aim at adjusting several CUDA parameters. Interested 

readers may consult [109-114] 

 

 



153 

 

Results and Discussion 

The following Figure 36, presents the data along with some useful statistics while Figure 

37, presents a double-log plot for the average execution time for both solvers. It can be 

seen that there is an order of magnitude speedup gain between the two implementations. It 

is clear that this merging technique utilizes more space than the usual calculation but it 

poses the following advantages that contributed to this drop in execution time: 

 

 Increasing work intensity per thread.  

 Efficient utilization of resources by allowing data reuse through shared memory.  

 Better throughput utilization by reducing global memory transactions. 

 Less power consumption due to reducing the loads from global memory. 
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Figure 36: Average Parallel Execution time for the two versions of the implemented solvers 
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Figure 37: Average Parallel Execution time for the two versions of the implemented solvers 
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Next we analyze the performance flops given the various kernels that composes our 

implementation of BiCGStab_Merged for samples extracted from the reservoir. The 

following table shows the count of their multiply-add operations as well as the computed 

GFLOPS/s while Figure 38, plots the computed GFLOPS/s for various matrix dimensions.  

 

Table 14: Performance FLOPS for the kernels constituting the BiCGSTAB merged implementation 

Number of operations 19 20 13 10 23 4 

Kernel Name Reduced 
Omega 

per_blk 
Omega 

compute S per_blk 
alpha 

Compute_P per_blk 
rho_beta 

Vector Size       

10800 7.89 12.71 8.26 6.75 1.38 2.06 

28800 10.32 33.88 19.71 19.20 25.48 5.01 

57600 13.85 60.63 28.80 30.32 38.96 7.94 

115200 14.69 96.00 35.66 42.67 42.74 12.45 

230400 15.18 121.26 41.03 56.20 46.08 16.17 

460800 15.28 146.29 44.70 69.82 53.26 20.03 
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Figure 38: GFLOPS/s for the kernels used to program the BiCGSTAB merged for various matrix dimensions 
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It is clear that all kernels are memory bandwidth bounded because the algorithm itself does 

not demand reuse of loaded matrix elements. For that reason, and with the aim of achieving 

more performance, we focused on bandwidth optimization and heavily utilized shared 

memory and registers to increase the intensity of computation per memory operations. 

Despite this huge lag between the performance plotted in Figure 38 to the device peak 

performance (1.31 teraflops for double precision), the performance of our implemented 

BiCGSTAB-merged is comparable to the one suggested and implemented in [106].  
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3.6 Parallel Implementation of the selected Linear Solver for 

Matrices with Single (RHS) 

 

3.6.1 Introduction and Motivation 

This section describes our attempt for implementing a parallel Krylov based subspace 

solver designed to solve a linear system with multiple right hand sides (MRHS). Based on 

previously mentioned considerations, we modify the past implementation of BiCGSTAB 

to suit the problem at hand. Solving a linear system with multiple right hand sides is 

required by our simulator when doing history matching. All vectors in the right hand side 

matrix are independent; the thing that prompts and motivates experimenting three 

important ideas.  

One would be tempted to utilize direct methods and find the inverse of the coefficient 

matrix (A) as the decomposition will be done once and repeated for all MRHS. The famous 

approach would be sparse LU factorization with pivoting that requires O(n�) complexity. 

However, as our initial matrix is Hepta-sparse and as the dimension of the matrix is very 

huge, we would not be able to afford the high storage demand required by this approach. 

After all, the inverse of a sparse matrix is a full matrix.      

We were also tempted to insert an outer loop over any version of our implemented parallel 

BiCGSTAB and repeat the whole solver thing until we finish all vectors in MRHS. This is 

indeed an easy and naïve solution and takes advantage of the previously implemented 

parallel solver and produces right results. Nevertheless, this approach does not take 
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advantage of various optimization opportunities that has been raised because of this data 

independent MRHS.  

The third solution that we will adapt, utilizes a cuSPARSE library call designed specifically 

to solve MRHS systems along with dynamic parallelism in order to implement a fast 

BiCGSTAB dedicated to solving MRHS problems. The next pages explain the idea more 

and show performance results. For details on various functions provided by cuSPARSE 

and various examples for different basic linear algebra operations at different levels please 

see [88]. The functions utilized from the library package are provided as a black box. 

Nevertheless, we can anticipate and guess many optimizations utilized. Those include: 

eliminating some common operations or results which are required for solving with each 

RHS and maximizing data reuse via the use of shared memory and registers.   

Recent releases of CUDA supports a process through which a kernel may invoke another 

kernel. The new functionality jargoned by Dynamic Parallelism34 not only synchronizes 

kernel execution, but also enables wide range of applications, including recursive calls, to 

be implemented. A parent kernel that is executed simultaneously with other parent kernels 

on various SM’s, could invoke other child kernels that also demands its share on those 

SM’s, may also evolve to become parents and invoke other child kernels and so on. This 

indeed creates an extra overhead over the programmer’s scheduler and requires him to 

keenly utilize available resources to tune the application for better performance. 

Nonetheless, Dynamic Parallelism creates more parallelization opportunities as GPU 

                                                 
34 Adapted from 
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelis
m_in_CUDA.pdf 
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hardware is more involved in the optimization process. The fact that a parent kernel halts 

waiting for his child to complete before it resumes execution enables both parties to 

implicitly synchronize their actions and exchange Data without CPU participation [115].   

 

3.6.2 Implementation Strategy 

The complete BiCGSTAB code was written using cuBLAS, cuSPARSE function calls as 

well as Thrust. The tasks and operations in the algorithm were mapped to suitable 

functions.  The synchronization between various algorithm operations was done depending 

on either the implicit barrier provided by those function calls, the implicit synchronization 

point created between a parent and a child processes as described earlier, or an explicit call 

to cudaDeviceSynchronize() API call after kernel invocation.   Convergence check is done 

at the host side at the end of each iteration by reading convergence flags passed from the 

device side. Same optimizations as the one presented in (section 3.4.2, P138) have been 

utilized. Four kernels were developed (compute_X, compute_S, compute_alpha, 

compute_P); they all have the same logic.  Without loss of generality, details and 

explanation is given for one of them Figure 39, compute_alpha Kernel. 

The kernel parameters are vectors stored in global memory and passed by reference. After 

setting up a global thread ID, the kernel initializes handles for cuBLAS routines. In their 

turn, those routines call implicitly other kernels in order to finish up the computation. An 

offset is assigned to pick up the right data portion that is passed as a parameter to each 

cuBLAS function. Since there is no need for data reuse, only registers were utilized. In the 

end, the cuBLAS destroy event is called. Performing the computation in this manner will 
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enable each thread (represented by its global ID) to operate on one complete vector of the 

MRHS. Whenever necessary, tiling could be implemented to handle larger vector 

dimensions.  Kernels constituting this program are shown in the appendix. 
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Figure 39: The Kernel Function for compute_alpha 
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3.6.3 Performance Evaluation 

The testing was performed on samples with different sizes, extracted from our reservoir 

simulator, representing a 3-D structured grid with (2 x 2) block entries and distributed in a 

Hepta-diagonal fashion. As explained before, the coefficients are a combination of various 

reservoir parameters (permeability, compressibility …), oil pressure values �� and water 

saturation levels ��. When simulation time proceeds, elements composing the coefficient 

matrix changes as both �� ��� �� get updated. Tests were performed on a node in an HPC 

cluster offered by the Information Technology Center at  KFUPM featuring a Xeon E5-

2680 10-Core, 2.8 GHz (Dual-processor) and Tesla k20x GPU that features a 6 GB 

memory [103]. The tests were repeated for different MRHS dimensions ranging from 32 

vectors and up to 2048. Device Allocation Fail flag is raised whenever CudaMalloc 

function fails to execute because of exceeding the size of global memory inside the GPU. 

Figure 40 shows the data along with some statistics while Figure 41, plots the results of the 

average execution time of the implemented parallel BiCGSTAB_MRHS for different 

matrix dimensions and various MRHS widths.  
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BiCGSTAB for Multiple Right Hand Side (MRHS) MRHS = 32 Conf. Coeff: 1.96
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Figure 40: Data and some statistics for a version of BiCGSTAB that solves a system with MRHS. Whenever GPU memory cannot be 
allocated on the device, device allocation fail flag is raised  

BiCGSTAB for Multiple Right Hand Side (MRHS) MRHS = 256 Conf. Coeff: 1.96
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13825.4 13783.2 13773.5 13750.9 13738.0 13753.8 13749.2 13774.0 13766.4 13763.6 13767.80 24.41 15.13 13782.93 13752.67 13825.40 13738.00 87.40
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Figure 41: A double log plot for the average execution time of MRHS BiCGStab solver for various matrix dimensions and different MRHS widths. 
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The developed implementation of our BiCGStab_MRHS is composed of several kernels, 

shown in the appendix. The following Table 15, shows the count of their multiply-add 

operations as well as the computed GFLOPS/s for sample matrices extracted from the 

reservoir, while Figure 42, plots the computed GFLOPS/s for various dimensions. Without 

loss of generality, consider the kernel shown in Figure 39 that computes alpha.  Besides 

the obvious count for multiplication and addition operations, the kernel computes a 

reduction task that has been shown to have an order of �����(�)� operations! 

 

 

Table 15: Performance FLOPS for the kernels constituting the BiCGSTAB merged implementation 

 compute_p compute_alpha compute_S compute_X 

N 
 

× ��� 

Op. 

Cont 

× ��� 

Time 

(s) 

GFLOP 

/s 

Op. 

Cont 

× ��� 

Time 

(sec) 

GFLOP 

/s 

Op. 

Cont 

× ��� 

Time 

(sec) 

GFLOP/

sec 

Op. 

Cont 

× ��� 

Time 

(sec) 

GFLOP 

/s 

2,7 40,5 2.85 0.04 32,4 1.95 0.04 37,8 3.79 0.03 72,9 3.91 0.05 

5,4 86,4 3.42 0.14 70,2 2.35 0.16 81,0 4.44 0.10 156,6 4.76 0.18 

10,8 183,6 4.94 0.40 151,2 3.61 0.45 172,8 5.72 0.33 334,8 6.39 0.57 

21,6 388,8 6.62 1.27 324 5.67 1.23 367,2 9.32 0.85 712,8 9.16 1.68 

43,2 820,8 4.97 7.14 691,2 2.57 11.62 777,6 8.13 4.13 151,2 6.47 10.1 

86,4 172,8 6.86 21.77 146,8 2.93 43.30 164,1 10.79 13.15 319,6 9.38 29.4 
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Figure 42: GFLOPS/s for the kernels used to program the BiCGSTAB merged for various matrix dimensions 
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Similar to the discussion in the previous section and as there is no reuse of loaded matrix 

elements, it is clear that the presented kernels feature computations that are memory and 

bandwidth bounded. The peak FLOPS of the device (1.31 teraflops for double precision) 

is much less than the results plotted in Figure 42. This is mainly because the measured 

execution time of each kernel is high. After all, GFLOPS/s is calculated as: 

GFLOPS

s
=

number of multiply or add operations∗ problem size

Execution time∗ 10�
 

 

The measured execution time shown in Table 15  was high because of the overhead 

associated with launching a kernel inside a kernel and managing the described earlier 

parent-child relation.  

 

3.6.4 Concluding Remarks for this Section 

Creating more parallelization opportunities by utilizing dynamic parallelism has been 

examined in light of implementing a parallel BiCGSTAB with multiple right hand sides 

MRHS. Such solvers play a key role in history matching applications and inverse problems 

in general. The utilized method is promising and can be further enhanced. Moreover, the 

same approach can be applied in the near future to other solvers like QMR and GMRES to 

compare performance.  
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4 CHAPTER 4 

PARALLEL MODELING AND IMPLEMENTATION OF 

FORWARD RESERVOIR SIMULATION 

 

4.1 The Parallel Model 

 

The goal of parallel programing is to provide tools and techniques for either solving big 

problems faster or to run larger instances of the given problem for the same time interval 

that was used to execute their serial counterpart. Exposing application concurrency refers 

to the art of breaking down the main problem into independent logical tasks35 that could be 

later executed in parallel after mapping them to corresponding physical processing 

elements. It is then no wonder that restructuring the problem to exploit any available 

concurrency is indeed first mandatory step before implementing any serial algorithm using 

a suitable parallel programming environment. The process for finding concurrency starts 

by a decomposition step performed on program data and the associated tasks. It is followed 

by an analysis step where the decomposed parts are grouped, ordered, or share their own 

data.  

                                                 
35 A task is a sequence of instructions that operate together as a group. 
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Just as various complex algorithms and software modeling techniques have emerged as a 

necessity for developing large sequential applications, large scale massively parallel 

programs are in more demand for either making use of such techniques or even developing 

new aiding tools. This could be attributed to the observed fact that the life cycle of a parallel 

program is very long, error prone, complex and requires special attention to the underlying 

hardware resources [116]. Although exposing program concurrency may be achieved by 

developing and analyzing the dependency graph that in turns may be constructed in many 

ways [117], those methods are suited to express concurrency of computationally expensive 

algorithms or small scale systems. 

As our reservoir simulator is more complicated, we tend to utilize more elegant methods 

from the software engineering general-purpose UML modeling [118, 119] which 

essentially provides standard graphs to visualize the design of large scale systems and their 

associated relations. Throughout the development process, we have constructed several 

related and complementary diagrams that describe the whole system from various design 

viewpoints to eventually aid in understanding and analyzing the parallel program.  

While the Activity Diagram represents the behavioral part of the system, Deployment 

Diagram, also called Topology or Collaboration Diagram, shows the structural aspect and 

demonstrates how software and hardware work together [120]. The Deployment Diagram 

is usually the first recommended  step in the modeling of traditional large scale parallel 

applications [116, 121]. The Activity Diagram shows the execution flow of the processes 

and what actions are performed to achieve an ultimate goal. In the context of parallel 

application modeling, this diagram provides means of representing communication, 



173 

 

synchronization and computational operations[116, 119]. Sequence Diagram as well as 

Communication or Collaboration Diagram, are also utilized to add another perspective to 

the behavioral description of the system. While the Sequence Diagram depicts dynamic 

system elements as they interact overtime, Collaboration Diagram also shows how system 

components are spatially related [122].  

A quick glance at our sequential implementation of the reservoir simulator reveals and in 

a broader sense a number of write after write [7, 102] data hazards for each flow 

calculation. The issue has been resolved by giving off some space in order to create 

independent tasks. Instead of having one variable location being updated sequentially, 

multiple copies of the same variable have been allocated with proper renaming. Moreover, 

by refereeing back to the computational model of the developed forward simulator, Figure 

51 and Figure 52 in the appendix, one can establish the associated corresponding detailed 

Activity Diagram, Figure 43. Without loss of generality, the concurrent operations of flow 

calculations from north to south are shown in Figure 44.  
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Figure 43: The Activity 
Diagram for the reservoir 

simulator, with its 
computational scheme 
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Figure 44: The Activity Diagram for a sample North-South flow calculation inside the Newton Iteration 
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As result, the following can be concluded about the matrix assembly stage36: 

 The system operates on large data structures. Basically large arrays that store 

(�� &�� ,��� &���) values.  

 Unlike the Newton and time loops, and if managed properly, the grid iterations are 

independent and do not carry dependency. 

 The data portions of the arrays are read independently, for every flow direction.  

 The update of the variables inside the array is done through multiple consecutive 

function calls.    

The previous behavior and the established notes suggest that we start the parallelization 

process by data decomposition step over the large arrays and incorporate task 

decomposition whenever needed.  

The process of data decomposition is about mapping a global index space into a task local 

index space [9]. It is associated with a granularity level37 that determines the amount of 

data each chunk holds. The more the granularity gets smaller, the more independent tasks 

that are created and the more communication overhead to manage the dependencies among 

the resulting chunks is required. It has been suggested that a good data decomposition will 

poses the following characteristics [9]: 

 It has to yield dependencies that scale at a lower dimension than the computational 

effort associated with each chunk; i.e. making chunks large enough so that the 

                                                 
36 Before calling the linear solver 
37 A coarse-grained decomposition results in smaller number of large chunks which decrease 
communication overhead. A fine-grained decomposition, leads larger number of smaller chunks which 
facilitates load balancing and scheduling. 
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computational effort required to update data, offsets any resulted dependency 

overhead. Moreover, larger chunks will offer more flexibility when scheduling 

operations on the processors.  

 Preserve load balancing among the execution elements. If not, then the speed at 

which the computation finishes will be haunted by the speed of the lowest process; 

i.e. the one with more work. This will be soon reflected on the overall performance 

that suffers as the problem being parallelized is scaled38. After all, better scaling is 

achieved through the minimization data movement and reducing the serial 

bottlenecks39 to the limit [6].  

The analyzed concurrency pattern presents an additional force that influences the way tasks 

are mapped to processing elements. The simulator consists of multiple independent tasks40 

or weakly related tasks that share a common data structure as well as a sequence of tasks 

with a static and regular flow ordering pattern. When applicable the so called not true 

dependency was removed by suitable code transformations41. Moreover, a replication of 

the data structure was done when necessary. Whenever applicable, the whole program has 

been restructured to create more work with more potential concurrency. Also, optimized 

routines in Thrust library like reduction and their special data structure has been employed 

and utilized. 

                                                 
38 This is achieved by either increasing resources or increasing problem dimensions.  
39 Such as exclusive-access mechanism such as locks, semaphores, or synchronization barriers 
40 In such a case, the focus will be on maximizing the efficiency of scheduling by ensuring load balancing 
41 Some iterative expressions can be transformed into closed from expressions to remove any loop carried 
dependency. 
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Throughout the program execution, each function call can be thought of as a task42 which 

in turn may be composed of other tasks. Moreover, as the iterations in the most inner loop 

that spans all grid points are independent, each iteration, or even group of iterations, could 

be thought of as a separate task43 that in turns operate on its assigned data portion. Again, 

the general rule of thumb lies in ensuring the creation of enough independent tasks that 

keep the processors busy. In CUDA terms, a global function will launch a number of thread 

blocks that handles specific portion of the input data. Threads in the associated blocks will 

then bring to shared or local memory necessary related data, calling any necessary device 

functions and operate on them.  

The previous tasks could also be grouped in a way that makes it easier for managing 

dependency. The temporal dependency in the simulator loops puts further restrictions on 

data flow44 and directly influences the way different tasks could be grouped. As mentioned 

earlier, the shared data arrays in ( �� &  ��), are solely read during matrix assembly stage. 

Before passing them to the next iteration they are modified and written back after solving 

the assembled ill conditioned unsymmetrical sparse linear system. The decomposed tasks 

utilize a shared data structure and their interaction is also synchronous as they occur at 

regular time intervals. Therefore, proper synchronization should also be introduced to 

avoid any race conditions.  

                                                 
42 In this case, this task decomposition is referred to as functional decomposition. 
43 This style of task-based decomposition leads to what is sometime called loop-splitting algorithms.  
44 This sequential flow could be exploited by pipelining. 
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Table 16, lists some utilized optimizations in the developed FRS code. More detailed 

information with examples could be found in [123, 124].  

Table 16: List of utilized optimizations in the developed parallel FRS code 

Target 

Optimizations 

Details 

  
Shared Memory 

Utilization 

Intensive use of device shared memory and making use of its broadcast 

property to serve data among threads at a fast pace. 

Titling To handle large vectors, each thread at first load data into shared memory 

and performs the corresponding desired operation. It then stores the result 

back to global memory before another kernel take data accumulated in this 

new vector in global memory and continue operating on it. 

Memory 

Coalescing 

A warp can access a number of successive memory locations in a single 

transaction. Therefore, maximizing BW utilization. 

Occupancy and 

Latency Hiding 

Launching enough threads to keep resources busy. 

Data Transfer Minimize copying, and makes use of asynchronous data transfer between 

host and device by utilizing pinned memory and streams. Kepler GK110 

introduces HyperQ mechanism that supports 32 hardware managed 

connections for communication between host and device. As a result, device 
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utilization has been increased as multiple processors on the CPU could 

initiate work on a single GPU at the same time. 

Overlap 

Communication 

and computation 

Host and kernel execution overlap: when possible, the original code was 

restructured in a way that a call to device kernel is followed by a many calls 

to host functions. By default, kernel launch is asynchronous or non-blocking. 

So while the GPU is busy, the host computes part of the algorithm.  If used 

properly, this mix, combined with streaming has great impact on 

performance. 

Computation 

Intensity 

Loop unrolling was utilized to further increase computation intensity. 

 

 

 

4.2 Experiments and Comparisons  

 

We implemented the previous described model and compare the obtained execution time 

with a serial version that makes use of Eigen library [85]. Correctness of results has been 

verified by comparing the output pressure values from the two programs for the given 

well distribution, see the Appendix for more details. Table 17, shows the execution time 

and the obtained speedup. 
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Table 17: The Execution time (ET) for serial and parallel FRS 

 

 

Next, Table 18 and Figure 43 demonstrate how the parallel execution time of the entire 

FRS varies when doubling reservoir dimension. The objective is two folded: First, to 

quantify the importance of the above obtained speedup shown in Table 17, and see what 

reservoir dimension is simulated in the same time used to produce results in the serial 

version. Second: to get an idea on how the developed parallel FRS scales when increasing 

problem size so that further optimizations could be implemented in subsequent work. For 

the sake of experimentations, only 25 wells were used.  
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Table 18: The parallel execution time of CUDA based FRS for various grid dimensions 

 

In accordance with common observation on GPUs, data shows that the GPU simulation 

becomes more efficient with increasing model size. They reflect the fact that GPUs need a 

large amount of independent work to operate at maximum efficiency. The serial 

implementation of FRS took 311.55 minutes to solve a problem with 230,400 grids. On the 

other hand, the interpolated data from Figure 45, speculates that a problem with 18,873402 

grids could be solved in parallel in 311.55 minutes. In other words the CUDA parallel 

implementation of FRS enables solving an 82 times larger grid dimension, given the same 

time to produce results from the counterpart serial implementation. 

 

 

 

 

 

Parallel Oil Reservoir Simulation Conf. Coeff: 1.96

A
ve

ra
ge

ST
D

 

M
ar

gi
n

 E
rr

o
r

U
p

p
e

r 
B

o
u

n
d

Lo
w

e
r 

B
o

u
n

d

M
ax

 

M
in

R
an

ge

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

75.0 74.8 74.6 74.5 74.7 74.7 74.8 74.7 74.7 74.7 74.72 0.12 0.07 74.80 74.65 74.96 74.50 0.46

170.6 170.5 170.6 170.9 170.6 170.9 170.6 170.2 170.6 170.6 170.61 0.19 0.12 170.72 170.49 170.89 170.23 0.66

259.4 258.6 258.9 258.9 258.7 259.0 258.7 258.7 259.0 259.0 258.89 0.24 0.15 259.04 258.74 259.41 258.57 0.84

414.8 414.5 415.0 414.7 414.6 414.2 414.6 415.1 414.9 414.2 414.66 0.32 0.20 414.85 414.46 415.10 414.16 0.94

570.3 570.2 569.5 570.7 570.0 569.6 570.9 570.1 569.9 569.6 570.07 0.47 0.29 570.35 569.78 570.92 569.50 1.42

885.8 884.4 884.0 884.4 885.0 885.5 885.2 884.0 885.5 885.3 884.91 0.67 0.42 885.32 884.49 885.82 883.97 1.85

1162.3 1165.9 1164.8 1165.9 1164.3 1165.5 1165.4 1164.2 1164.0 1165.2 1164.75 1.09 0.68 1165.43 1164.07 1165.93 1162.33 3.60

1879.6 1882.8 1881.5 1881.6 1882.5 1877.9 1881.9 1882.6 1881.0 1880.1 1881.14 1.53 0.95 1882.09 1880.19 1882.80 1877.94 4.86

460800

921600

1843200

10800

28800

57600

115200

230400

C
o

e
ff

. M
at

. 

Le
ad

in
g 

D
im

.

Parallel Execution Time(sec)



183 

 

 

 

 

 

Figure 45: A double-log plot for the parallel execution time of our developed FRS for various geometries 
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4.3 The Parallel FRS Graphical User Interface (GUI) 

 

With the goal of deploying a real time version of the parallel simulator, a client-server 

application that is suitable for such heterogeneous configuration has been developed. The 

following technologies have been utilized: 

Client Side  

 HTML5, CSS, Java Script,  

 (Shiny): A web application framework for R45. 

 

Middle Layer (R + scripting to communicate with the Server)  

Server Side (Simulation Program (C++ and CUDA)). 

 

 

 

The GUI enables basic control like setting reservoir dimensions as well as loading some 

configuration files. Following are some snapshots.  

                                                 
45 http://shiny.rstudio.com/  
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Figure 46: GUI Snapshot showing the resulting pressure at Injectors 
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Figure 47: GUI Snapshot showing the resulting pressure at Producers 
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Figure 48: GUI Snapshot showing water cut values 
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Figure 49: GUI Snapshot showing how data is loaded into the system 
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4.4 Concluding Remarks and Future Work 

 

This work has studied and implemented a CUDA based parallel implementation for a 

flexible, two phase, 3D Forward Reservoir Simulation (FRS), and reviewed all related 

issues. Results show that CUDA parallel implementation of FRS enables solving an 81 

times larger problem than the serial counterpart. Moreover, if accompanied by proper 

preconditioning, BiCGSTAB was shown to be a stable solver that could be incorporated in 

such simulations instead of the costly GMRES. This work is a founding stone for many 

interesting work to come. Future work includes imposing further optimizations on the 

CUDA program, MIC implementation, utilizing Multigrid preconditioners, OpenACC 

comparison, trying different solvers like QMR and others.   

 

  



190 

 

This page was intentially been left blank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



191 

 

 

5 Appendix A 

Work Completed Under Directed Research  

A.1 Computational Model for Reservoir Simulation 

 

The goal of Forward Reservoir Simulation (FRS) is to model fluid flow and mass transfer 

in porous media to eventually draw conclusions about the behavior of certain flow variables 

and well responses. Starting with initial values for pressure and saturation together with 

other reservoir parameters, (FRS) eventually produces new enhanced values of those state 

variables (P� and S�) at different time steps given the initial reservoir properties Figure 50 

 

 

Figure 50: General Scheme for Forward Reservoir Simulation 
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Figure 51, presents a general description of our developed FRS model that is utilized later 

to introduce the computation model. The Forward Model consists of three main iterations 

Figure 52, namely L1, L2 and L3 and optionally a fourth one L4. 

 

 The outer most (Loop L1):  is the temporal loop which repeats the simulation for 

different time steps that are usually measured in days. 

 The middle iteration (Loop L2):  is Newton iteration that achieves the linearization. 

During this iteration the resulted sparse linear system of the form Ax = b is solved.   

 The most inner one (Loop L3):  is the spatial loop that visits all system grid cubes 

and form the corresponding non-linear system to be linearized, solved and refined 

during the middle iteration (L2) 

 Optional (Loop L4): this loop is available if iterative methods are used to solve the 

linear system. Generally speaking, iterative methods are favored over direct 

methods for large sparse linear systems, because of their computational and storage 

efficiency. More details were presented in the survey in the preceding section. 

 

In previous iterations, L2 accounts for around 67% of the computational complexity in the 

whole forward modeling process. After the discretization step, the system of non-linear 

algebraic equations for each phase is then written in terms of its corresponding residual 

equation R� &  R�. The famous Newton Iteration achieves system linearization by 

repeatedly refining a nearby obtained approximation after solving a linear system with the 

Jacobian as the coefficient matrix. The Jacobian is obtained for each phase by deriving the 
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residual equation with respect to both P� &  S� at each grid point and all its neighbors. It is 

worth mentioning that the condition number for the assembled Jacobian matrix ranges from 

around 1.279E+05 in the beginning of the simulation time and reaches 4.708E+06 at the 

end. 
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Figure 51: General Description for the Forward Reservoir Simulation Model 
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Figure 52: General Computational Scheme for the Forward Oil-Black model: When assembling the linear system. All grid points are 
visited. Newton Iteration repeatedly solves the system of linear equations formed in the grid iteration 
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A.2 Validating Reservoir Results  

 

Validating the correctness of parallel program output was done in two stages. First, an 

already verified MATLAB code developed by [19, 20] that utilized a direct solver was 

compared against the implemented serial C++ program for small grid dimensions (20 

x30x2). No flow boundary condition was initially assumed, six injectors with specified 

water rate and seven producers with specified total rate were utilized. The distribution of 

the wells is shown in Table 19, while Figure 53, shows the permeability map with the 

distribution of wells shown on the map.  

Table 19: Well distribution for both the producer and the injector over grid space of (20 x 30 x 2) 

X-Coor Y-Coor Z-Coor Stb/day P limit Psi 

1 1 1 -550 7000 

10 1 1 -850     7000 

5 5 1 550 2000 

1 10 1 350 2000 

10 10 1 600 2000 

1 20 1 -550 7000 

10 20 1 -850 7000 

5 15 1 500 2000 

15 5 1 600 2000 

20 1 1 -550 7000 

20 10 1 650 2000 

15 15 1 600 2000 

20 20 1 -550 7000 
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Figure 53: Permeability map for the utilized wells shown in Table 19 
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Figure 54 and Figure 55 demonstrate the two versions for the running simulator when the 

effect of capillary pressure is included and plot P�� for the injectors and producers against 

a similar configuration where capillary was not included. Six injectors with specified water 

rate and seven producers with specified total rate were utilized. Next Figure 56 and Figure 

57 show the running simulator when the constant pressure boundary condition is assumed 

from certain directions (m-HJ, m-J) with a value of 5000, no flow boundary condition is 

assumed for all other directions. Again six injectors with specified water rate and seven 

producers with specified total rate were utilized. 

In the second verification phase we consider larger grid dimensions (240 x 240 x 2) and 

test the serial C++ code against our developed parallel version. As mentioned before, the 

serial version uses Egien library to provide implementation of the BiCGSTAB solver and 

the ILU preconditioner while our parallel program utilizes a program we wrote for 

BiCGSTAB code based on various related cuSPARSE and cuBLAS library calls.  
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Figure 54: Pwf at Injectors, Pc is included, No Flow BC for 20*30*2, specified flow rate at injector 
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Figure 55: Pwf at Producers, Pc is included, No Flow BC for 20*30*2, specified total rate at producer 
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Figure 56: Pwf at Injectors. Constant Flow BC (5000psi) at m-J and m-HJ, No Flow BC for the rest. Water-oil reservoir of 
dimensions (20*30*2) and specified flow rate at 6 injectors 
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Figure 57: Pwf at Producers. Constant Flow BC (5000psi) at m-J and m-HJ, No Flow BC for the rest. Water-oil 
reservoir of dimensions (20*30*2) and specified total rate at 7 producers 
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6 Appendix B 

CUDA Kernels Utilized in This Work  

B.1 BiCGSTAB Merged Implementation 

 

 
__global__ void  reduced_Omega(double *vector_Neum, double 
*vector_Deno, double *alpha_phat, double *x, double 
*s_hat, double *t, double *r, double *s,int data_size ){ 
 
    __shared__ double Inter_Blk_Neum[blocksPerGrid]; 
    __shared__ double Inter_Blk_Deno[blocksPerGrid]; 
 
    __shared__ double shared_Omega; 
 
    unsigned int Index = threadIdx.x; 
    int tid = threadIdx.x + blockIdx.x * blockDim.x; // 
global thread ID 
 
    if( Index < blocksPerGrid){ 
         
        Inter_Blk_Neum[Index]= vector_Neum[Index]; 
        Inter_Blk_Deno[Index]= vector_Deno[Index]; 
 
        __syncthreads(); 
 
        UnrolledBlockReduce(Index, Inter_Blk_Neum, 
Inter_Blk_Deno,blocksPerGrid); 
 
    } 
 
    __syncthreads(); // make thread 0 waits all others 
     
    if(Index == 0){ 
 
        shared_Omega = 
Inter_Blk_Neum[0]/Inter_Blk_Deno[0]; //broadcast from 
shared memory 
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        global_Omega = shared_Omega; 
    } 
 
    __syncthreads(); //make all threads, wait for thread 
zero to come 
 
    double omega = shared_Omega; 
 
    while (tid < data_size){ 
 
        x[tid] =  x[tid] + alpha_phat[tid] + 
omega*s_hat[tid]; 
        r[tid]= s[tid]- omega*t[tid]; 
 
        tid += blockDim.x * gridDim.x; 
    } 
} 
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_global__ void per_Block_Omega(double *t,double *s, double 
*vector_Neum, double *vector_Deno,double *alpha_phat, 
double *r, double *s_hat, double *x ,int data_size){ 
 
     __shared__ double 
Intra_Blk_Omega_Neu[threadsPerBlock]; 
     __shared__ double 
Intra_Blk_Omega_Deno[threadsPerBlock]; 
 
     double current_t=0; 
 
    int tid = threadIdx.x + blockIdx.x * blockDim.x; // 
global thread ID 
    unsigned int Index = threadIdx.x; 
 
    Intra_Blk_Omega_Neu[Index] = 0; 
Intra_Blk_Omega_Deno[Index] = 0; 
    /* omega = ( t'*s) / ( t'*t ) */ 
 
    while (tid < data_size ){ 
 
        current_t = t[tid]; 
 
        Intra_Blk_Omega_Neu[Index] += current_t * s[tid]; 
        Intra_Blk_Omega_Deno[Index]+= current_t * 
current_t; 
 
        tid += blockDim.x * gridDim.x; 
    } 
 
    __syncthreads(); 
 
    if( Index < blocksPerGrid){ 
        UnrolledBlockReduce(Index, Intra_Blk_Omega_Neu, 
Intra_Blk_Omega_Deno,threadsPerBlock); 
    } 
    __syncthreads(); 
//Write the resulted per block reduced rho to global 
memory 
    if (0 == Index) { 
 
        vector_Neum[blockIdx.x] = Intra_Blk_Omega_Neu[0]; 
        vector_Deno[blockIdx.x] = Intra_Blk_Omega_Deno[0]; 
    } 
} 
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__global__ void per_BLK_alpha(double *r_tld, double *v, 
double *vector_rtld_v,int data_size) { 
 
    __shared__ double Intra_Blk_rtld_v[threadsPerBlock]; 
 
    int tid = threadIdx.x + blockIdx.x * blockDim.x; // 
global thread ID 
    unsigned int Index = threadIdx.x; 
 
    double current_rtld_v =0; // r_tld[i]*v[i] 
 
    while (tid < data_size ){ 
 
        current_rtld_v += r_tld[tid] * v[tid]; 
        tid += blockDim.x * gridDim.x; 
    } 
 
    if(Index < threadsPerBlock ){ 
        Intra_Blk_rtld_v[Index] = current_rtld_v; 
        __syncthreads(); 
 
        UnrolledBlockReduce(Index, 
Intra_Blk_rtld_v,threadsPerBlock); 
    } 
    __syncthreads(); 
 
    //Thread 0 from each block will write the resulted per 
block reduced rho to global memory 
    if (Index == 0 ) { 
        vector_rtld_v[blockIdx.x] = Intra_Blk_rtld_v[0]; 
    } 
} 
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__global__ void compute_S(double *r,double *v, double *s, 
double *p_hat, double *alpha_phat, double *vector_S 
,double *global_Alpha, int data_size) { 
 
    int tid = threadIdx.x + blockIdx.x * blockDim.x; // 
global thread ID 
    unsigned int Index = threadIdx.x; 
    __shared__ double  alpha_sh; 
 
    if(Index == 0)      alpha_sh = *global_Alpha; 
 
    __shared__ double Intra_Blk_S[threadsPerBlock]; // for 
reduced S value 
    double s_quare = 0, s_value =0; 
 
    __syncthreads(); 
 
    double local_Alpha = alpha_sh; 
 
    while (tid < data_size ){ 
        s_value = r[tid] - local_Alpha*v[tid] ;   // 
s[tid] = r[tid] - global_Alpha * v[tid]; 
        s_quare += s_value *s_value; 
        s[tid] = s_value; 
        alpha_phat[tid] = local_Alpha*p_hat[tid]; 
 
        tid += blockDim.x * gridDim.x; 
    } 
    __syncthreads(); 
 
    if(Index < threadsPerBlock ){ 
        Intra_Blk_S[Index] = s_quare; 
        __syncthreads(); 
 
        UnrolledBlockReduce(Index, 
Intra_Blk_S,threadsPerBlock); 
    } 
 
    __syncthreads(); 
 
    //Thread 0 from each block will write the resulted per 
block reduced rho to global memory 
    if (Index == 0 ) { 
        vector_S[blockIdx.x] = Intra_Blk_S[0]; 
    } 
} 
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__global__ void per_BLK_Rho_Beta(double *r_tld, double *r, 
double *vector_Beta, double *vector_rho, double 
*global_Alpha, double *global_rho1 ,int data_size) { 
 
========================================================== 
//      INPUT: 
    //              r_tld, r: to perform dot product 
    //              cons_vec[4]: (rho_1, alpha, omega, 
data_size ) 
    //              --------------------------------------
---------------------------------- 
    // 
    //      OUTPUT: 
    //              vector_Beta, vector_rho: contains per 
block reduced values of beta and rho 
    //  
========================================================== 
 
    unsigned int Index = threadIdx.x; 
    __shared__  double shared_Constants[3];  
 
    if(Index == 0 ){ 
        shared_Constants[0]= *global_rho1; 
    } 
    if(Index == 32 ){ 
        shared_Constants[1]= *global_Alpha; 
    } 
    if(Index == 64 ){ 
        shared_Constants[2]= global_Omega; 
    } 
    __syncthreads(); 
 
 
//Allocating shared memory for intra (within) block 
reduction: Intra_Blk 
    __shared__ double Intra_Blk_rho[threadsPerBlock]; 
    __shared__ double Intra_Blk_Beta[threadsPerBlock]; 
 
    double rho_1 = shared_Constants[0]; double alpha = 
shared_Constants[1]; double omega = shared_Constants[2]; 
    double current_rho=0; 
 
    int tid = threadIdx.x + blockIdx.x * blockDim.x; // 
global thread ID 
    Intra_Blk_rho[Index] = 0; Intra_Blk_Beta[Index] = 0; 
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    while (tid < data_size ){ 
 
        current_rho = r_tld[tid] * r[tid]; // partial rho: 
rho_0, rho_1, rho_2 
 
        Intra_Blk_rho[Index] += current_rho; 
        Intra_Blk_Beta[Index] += (current_rho/ rho_1) * 
(alpha / omega); 
 
 
        tid += blockDim.x * gridDim.x; 
    } 
    __syncthreads(); 
 
    if(Index < threadsPerBlock ){ 
        UnrolledBlockReduce(Index, 
Intra_Blk_Beta,Intra_Blk_rho,threadsPerBlock); 
    } 
 
    __syncthreads(); 
 
    //Thread 0 from each block will write the resulted per 
block reduced rho to global memory 
    if (Index == 0 ) { 
 
        vector_Beta[blockIdx.x] = Intra_Blk_Beta[0]; 
        vector_rho[blockIdx.x] = Intra_Blk_rho[0]; 
    } 
} 
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__global__ void compute_P(double *p, double *r, double 
*r_tld,   double *v,  double *vector_Beta, double 
*vector_rho,int data_size){ 
 
    int tid = threadIdx.x + blockIdx.x * blockDim.x; // 
global thread ID 
    unsigned int Index = threadIdx.x; 
 
    __shared__  double omega; 
    if(Index ==0){ 
    // let th0 of every block brings omega and share it 
with threads in a block 
        omega =global_Omega;  
    } 
 
    // step_1: Bring vector beta to shared memory 
    __shared__ double Inter_Blk_Beta[blocksPerGrid]; 
    __shared__ double Inter_Blk_Rho[blocksPerGrid]; 
 
    if( Index < blocksPerGrid){ 
        // very optimal if blocks is 32 as it will give 
only one memory transaction 
            Inter_Blk_Beta[Index]= vector_Beta[Index]; 
            Inter_Blk_Rho[Index]= vector_rho[Index]; 
        } 
    __syncthreads(); 
 
    // operate on shared memory 
    __shared__ double p_Sh[threadsPerBlock]; 
    __shared__ double v_Sh[threadsPerBlock]; 
 
    double current_Beta, current_Beta1, current_Beta2, 
current_Beta3, current_Beta4, current_Beta5, 
current_Beta6, current_Beta7; 
    double p_next, p_next1, p_next2, p_next3, p_next4, 
p_next5, p_next6, p_next7 ; 
 
    //#pragma unroll 
    while (tid < data_size ){ 
 
        p_next = 0; p_next1 = 0; p_next2 = 0; p_next3 = 0; 
p_next4 = 0; p_next5 = 0; p_next6 = 0; p_next7 = 0; 
 
        p_Sh[Index] =   p[tid]; 
        v_Sh[Index] =   v[tid]; 
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        //for(int i=0; i<blocksPerGrid;i++){ 
        for(int i=0; i<blocksPerGrid;i+=8){ 
 
            current_Beta  = Inter_Blk_Beta[i]; 
            current_Beta1 = Inter_Blk_Beta[i+1]; 
            current_Beta2 = Inter_Blk_Beta[i+2]; 
            current_Beta3 = Inter_Blk_Beta[i+3]; 
            current_Beta4 = Inter_Blk_Beta[i+4]; 
            current_Beta5 = Inter_Blk_Beta[i+5]; 
            current_Beta6 = Inter_Blk_Beta[i+6]; 
            current_Beta7 = Inter_Blk_Beta[i+7]; 
 
            p_next += current_Beta * (p_Sh[Index]-  omega 
* v_Sh[Index]); 
            p_next1 += current_Beta1 * (p_Sh[Index]-  
omega * v_Sh[Index]); 
            p_next2 += current_Beta2 * (p_Sh[Index]-  
omega * v_Sh[Index]); 
            p_next3 += current_Beta3 * (p_Sh[Index]-  
omega * v_Sh[Index]); 
            p_next4 += current_Beta4 * (p_Sh[Index]-  
omega * v_Sh[Index]); 
            p_next5 += current_Beta5 * (p_Sh[Index]-  
omega * v_Sh[Index]); 
            p_next6 += current_Beta6 * (p_Sh[Index]-  
omega * v_Sh[Index]); 
            p_next7 += current_Beta7 * (p_Sh[Index]-  
omega * v_Sh[Index]); 
        } 
 
        p[tid] = r[tid] + p_next + p_next1 + p_next2 + 
p_next3 + p_next4 + p_next5+ p_next6 + p_next7 ; 
 
        tid += blockDim.x * gridDim.x; 
    } 
} 
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B.2 BiCGSTAB for MRHS System 
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