

MASSIVELY PARALLEL OIL RESERVOIR SIMULATION FOR

HISTORY MATCHING

Ayham Horiah Zaza

Computer Science and Engineering Department

December 2015

© Ayham Horiah Zaza

2015

iv

This dissertation is dedicated to my beloved sister, who had been my emotional anchors,

in memoriam. For my mother, for all her personal sacrifices and support. Dad, family and

friends who shared with me moments of joy and sadness. For my future wife who would

be proud of my achievements. For anyone who instilled in me the inspiration to set high

goals and the confidence to achieve them.

v

ACKNOWLEDGMENTS

This work would have never come to existence without the continuous help of many great
people around me. Whether it was in the form of direct mentoring, general advice or life
experience, they were always there supporting, encouraging and inspiring.

I would like to start by thanking my thesis adviser Dr. Mayez Al-Mouhammed for all the
feedback he provided, the time he spent clarifying things and his patience. Thanks is
extended to both my co-adviser Dr. Faisal Fairag and Dr. Gabor Korvin for their continuous
motivation, kind review, advice and support especially in mathematical related issues. I am
also grateful to Dr. Shokri Selim for all the time he spent explaining things, all his guidance,
encouragement and for his patience. Thanks also to Dr. Moataz Ahmed for his kind
suggestions, inspiration and advice. I would like to thank all of them for all their exerted
efforts and the time they spent following up with my many emails and attending several
presentations. Apology is presented for any unintentional inconvenience in the course of
this work.

I would like to dedicate a special thanks to Dr. Abeeb Awotunde for his extensive, kind
help, patience and motivation when developing the physical model and for introducing me
to the field of petroleum engineering and reservoir simulation. Thanks also to my colleague
Anas Al-Mousa for his kind help and support especially in technical configuration related
issues. I am also grateful to many kind friends and many previous great instructors who
were supporting and encouraging.

Thanks also the Dean of Graduate Studies Dr. Salam Zummo, the Dean of Computer
Science and Engineering, Dr. Adel Ahmed, and both the current and former Chairman of
Computer Engineering Department, Dr. Ahmad Almulhem and Dr. Basem Almadani, for
all their exerted efforts to develop the program. Finally, I would like to acknowledge all
the great facilities available at KFUPM, you have been just a wonderful university!

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES .. IX

LIST OF FIGURES ... X

LIST OF ABBREVIATIONS ... XIII

ABSTRACT ... XV

الرسالة ملخص ..XVII

CHAPTER ONE: INTRODUCTION.. 19

1.1 Statement of the Problem ... 20

1.2 Parallel Computer Architecture: Past and Present .. 22

1.2.1 Multicore System ... 25

1.2.2 From Multicore to Many-core .. 28

1.2.3 Intel Xeon Phi ... 29

1.2.4 NVidia’s GPUs ... 30

1.3 The Programming Model of the Compute Unified Device Architecture (CUDA) 31

1.4 The Forward Reservoir Model ... 33

1.4.1 The Discretization Process .. 35

vii

1.4.2 Assembling the System ... 36

1.4.3 The Linearization Step .. 38

1.5 Computation of Sensitivity Coefficients .. 39

1.5.1 Forward Sensitivity Method ... 41

1.5.2 Adjoint Sensitivity Approach .. 44

CHAPTER TWO: LITERATURE REVIEW ... 49

2.1 Review of Discretization Approaches .. 49

2.2 Linear Solvers Review ... 51

2.3 Review of Sparse Storage Techniques ... 56

2.4 Review of Linear Solver Libraries .. 71

CHAPTER THREE: COMPUTATIONAL MODELS, EXPERIMENTATIONS AND

RESULTS .. 74

3.1 Computational Model for Reservoir Simulation .. 75

3.1.1 The Computational Model of the Forward Simulation Scheme... 75

3.1.2 The Computational Model of the Inverse Simulation Scheme .. 78

3.2 Analytical Parallel Linear Solver Selection ... 84

3.2.1 The Generalized Minimum Residual Method (GMRES) ... 87

3.2.2 The Bi-Conjugate Gradient Method (BiCG) ... 90

3.2.3 The Bi-Conjugate Gradient Stabilized Method (BiCGSTAB) ... 92

3.2.4 The Quasi-Minimal Residual Method (QMR) .. 94

3.2.5 Linear Solver Selection Based Tradeoffs ... 96

3.2.6 The Study of Concurrency Profile for BiCGSTAB and QMR .. 99

3.3 Experimental Parallel Linear Solver Selection ... 115

3.4 Special Case: Sparse Matrix Vector Multiplication for Hepta-Diagonal Matrices 132

viii

3.5 Parallel Implementation of the selected Linear Solver for Matrices with Single (RHS) 136

3.5.1 Introduction ... 136

3.5.2 Merging Operations ... 138

3.5.3 Experiments and Comparisons ... 149

3.6 Parallel Implementation of the selected Linear Solver for Matrices with Single (RHS) 159

3.6.1 Introduction and Motivation .. 159

3.6.2 Implementation Strategy.. 161

3.6.3 Performance Evaluation ... 164

3.6.4 Concluding Remarks for this Section... 170

CHAPTER FOUR: PARALLEL MODELING AND IMPLEMENTATION OF FORWARD

RESERVOIR SIMULATION ... 171

4.1 The Parallel Model .. 171

4.2 Experiments and Comparisons .. 180

4.3 The Parallel FRS Graphical User Interface (GUI) .. 184

4.4 Concluding Remarks and Future Work .. 189

APPENDIX A WORK COMPLETED UNDER DIRECTED RESEARCH 191

A.1 Computa�onal Model for Reservoir Simula�on ... 191

A.2 Valida�ng Reservoir Results ... 196

APPENDIX B CUDA KERNELS UTILIZED IN THIS WORK ... 203

B.1 BiCGSTAB Merged Implementa�on .. 203

B.2 BiCGSTAB for MRHS System ... 212

REFERENCES.. 216

VITAE ... 223

ix

LIST OF TABLES

Table 1 : Flynn Taxonomy for classifying computer systems26

Table 2 : MIMD machines according to their attached memory and communication

schemes ...27

Table 3 : The main tasks the constitute Krylov Linear Solvers with an anticipated

associated parallel complexities ...87

Table 4 : The Storage Requirement for the four solvers ..96

Table 5 : Number of reductions in the four nominated algorithms..............................97

Table 6 : Summary of the number of main transactions within an iteration97

Table 7 : The number of available concurrent operations in QMR and BiCGSTAB. N

is matrix leading dimension ..100

Table 8 : Estimated parallel cost based on the perspective required steps to complete

its operations in parallel when assuming Infinite Resources106

Table 9 : Two consecutive patterns possibilities for tasks representing Krylov

Solvers ..113

Table 10 : Three consecutive patterns possibilities for tasks representing Krylov

Solvers ..114

Table 11 : Condition number for various samples of the reservoir simulator116

Table 12 : TESLA K20X GPU ACCELERATOR ..117

Table 13 : Comparison of different compute capabilities for GPU Architecture117

Table 14 : Performance FLOPS for the kernels constituting the BiCGSTAB merged

implementation ...156

Table 15 : Performance FLOPS for the kernels constituting the BiCGSTAB merged

implementation ...168

Table 16 : List of utilized optimizations in the developed parallel FRS code179

Table 17 : The Execution time (ET) for serial and parallel FRS181

Table 18 : The parallel execution time of FRS various grid dimensions182

Table 19 : Well distribution for both the producer and the injector over grid space of

(20 x 30 x 2) ..196

x

LIST OF FIGURES

Figure 1 : Memory Hierarchy in NVidia GPU ..32

Figure 2 : Sample Sparse Matrix with arbitrary values ...57

Figure 3 : From top to bottom: COO, CRS and CCS representation for matrix shown in

Figure 2 ...59

Figure 4 : JDS representation for matrix shown in Figure 2 ...62

Figure 5 : TJDS representation for matrix shown in Figure 264

Figure 6 : Block coordinate storage representation ...66

Figure 7 : Overhead of using BCOO for various block sizes68

Figure 8 : The Computational Model for Oil Reservoir History Matching76

Figure 9 : Sample snapshot of the assembled linear system for FSR, (J, I and H): is the

maximum number of steps in the z, x and y directions, respectively77

Figure 10 : Inverse Model: Forward Sensitivity Approach ..81

Figure 11 : The computational model for the Adjoint Sensitivity Approach83

Figure 12 : QMR Data Dependency Graph ...101

Figure 13 : QMR Data Dependency Graph ...102

Figure 14 : Concurrency Profile of QMR with N=64 ...104

Figure 15 : Concurrency Profile of BiCGSTAB with N=64...105

Figure 16 : QMR Span ..107

Figure 17 : BiCGSTAB Span ..108

Figure 18 : A comparison between the estimated parallel cost based on the perspective

required steps for QMR and BiCGSTAB Algorithms, with matrix leading

dimension N = 1024. The smaller the parallel cost, the better.109

Figure 19 : The Abstract Parallel Complexity Graph (APCG) for BiCGSTAB and

QMR ...112

Figure 20 : Average Parallel Execution Times for Sample_0120

Figure 21 : Average Parallel Execution Times for Sample_31121

Figure 22 : Average Parallel Execution Times for Sample_62122

Figure 23 : Average Parallel Execution Times for Sample_93123

Figure 24 : Average Parallel Execution Times for Sample_124124

Figure 25 : Solvers Parallel Execution time for various storage formats with relative

residual semi-log plot. Sample_0. Convergence is independent of the utilized

storage scheme ..125

xi

Figure 26 : Solvers Parallel Execution time for various storage formats with relative

residual semi-log plot. Sample_31. Convergence is independent of the

utilized storage scheme ...126

Figure 27 : Solvers Parallel Execution time for various storage formats with relative

residual semi-log plot. Sample_62. Convergence is independent of the

utilized storage scheme. ..127

Figure 28 : Solvers Parallel Execution time for various storage formats with relative

residual semi-log plot. Sample_93. Convergence is independent of the

utilized storage scheme. ..128

Figure 29 : Solvers Parallel Execution time for various storage formats with relative

residual semi-log plot. Sample_124. Convergence is independent of the

utilized storage scheme. ..129

Figure 30 : BiCGSTAB Parallel Execution time for various storage formats with relative

residual semi-log plot. All Extracted Sample. Convergence is independent of

the utilized storage scheme ...131

Figure 31 : The average execution time of SpMV for various storage schemes and

different related matrix dimensions. Here the input size has been studied

within each scheme separately. ..134

Figure 32 : The average execution time of SpMV for various storage schemes and

different related matrix dimensions. The focus here is see how each storage

scheme behaves for a given matrix dimension. ..135

Figure 33 : BiCGSTAB Data Dependency Graph (DDG), main operations are

highlighted ..137

Figure 34 : The normal flow for various threads cooperating to compute sequence of

operations in BiCGSTAB Algorithm ...139

Figure 35 : One possibility for merging arithmetic operations of the snippet of

BiCGSTAB code, shown in Figure 34 ...142

Figure 36 : Average Parallel Execution time for the two versions of the implemented

solvers ...154

Figure 37 : Average Parallel Execution time for the two versions of the implemented

solvers ...155

Figure 38 : GFLOPS/s for the kernels used to program the BiCGSTAB merged for

various matrix dimensions ..157

Figure 39 : The Kernel Function for compute_alpha ..163

Figure 40: Data and some statistics for a version of BiCGSTAB that solves a system

with MRHS. Whenever GPU memory cannot be allocated on the device,

device allocation fail flag is raised ...166

Figure 41 : A double log plot for the average execution time of MRHS BiCGStab solver

for various matrix dimensions and different MRHS widths.167

xii

Figure 42 : GFLOPS/s for the kernels used to program the BiCGSTAB merged for

various matrix dimensions ..169

Figure 43 : The Activity Diagram for the reservoir simulator, with its computational

scheme shown in Figure 52 ..174

Figure 44 : The Activity Diagram for a sample North-South flow calculation inside the

Newton Iteration ...175

Figure 45 : A double-log plot for the parallel execution time of our developed FRS for

various geometries ..183

Figure 46 : GUI Snapshot showing the resulting pressure at Injectors185

Figure 47 : GUI Snapshot showing the resulting pressure at Producers186

Figure 48 : GUI Snapshot showing water cut values ..187

Figure 49 : GUI Snapshot showing how data is loaded into the system188

Figure 50 : General Scheme for Forward Reservoir Simulation191

Figure 51 : General Description for the Forward Reservoir Simulation Model194

Figure 52 : General Computational Scheme for the Forward Oil-Black model: When

assembling the linear system. All grid points are visited. Newton Iteration

repeatedly solves the system of linear equations formed in the grid

iteration ...195

Figure 53 : Permeability map for the utilized wells shown in Table 19197

Figure 54 : Pwf at Injectors, Pc is included, No Flow BC for 20*30*2, specified flow rate

at injector ..199

Figure 55 : Pwf at Producers, Pc is included, No Flow BC for 20*30*2, specified total

rate at producer ...200

Figure 56 : Pwf at Injectors. Constant Flow BC (5000psi) at m-J and m-HJ, No Flow BC

for the rest. Water-oil reservoir of dimensions (20*30*2) and specified flow

rate at 6 injectors ...201

Figure 57 : Pwf at Producers. Constant Flow BC (5000psi) at m-J and m-HJ, No Flow

BC for the rest. Water-oil reservoir of dimensions (20*30*2) and specified

total rate at 7 producers ..202

xiii

LIST OF ABBREVIATIONS

FRS : Forward Reservoir Simulator

RHS : Right Hand Side

MRHS : Multiple Right Hand Side

GUI : Graphical User Interface

PDE : Partial Differential Equation

CPU : Central Processing Unit

GPU : Graphical Processing Unit

ILP : Instruction Level Parallelism

SMX : Streaming Multi-processors

CUDA : Compute Unified Device Architecture

FVM : Finite Volume Method

C.V : Control Volume

ILU : Incomplete Lower Upper

GMRES : Generalized Minimum Residual Method

xiv

BiCG : Bi-Conjugate Gradient Method

BiCGSTAB : Bi-Conjugate Gradient Stabilized Method

QMR : Quasi-Minimal Residual Method

COO : Coordinate Storage Scheme

CSR : Compressed Row Storage Scheme

CCS : Compressed Column Storage Scheme

ELLPACK : A form of Jagged Diagonal Storage Scheme

HYB : Hybrid Storage Scheme

MV : Matrix Vector Multiplication

SpMV : Sparse Matrix Vector Multiplication

LAS : Linear Algebra Solver

xv

ABSTRACT

Full Name : Ayham Horiah Zaza

Thesis Title : Massively Parallel Oil Reservoir Simulation for History Matching

Major Field : Computer Science and Engineering

Date of Degree : Dec. 2015

Petroleum Reservoir modeling is a challenging process that attempts inferring reservoir

structure and configurations through the estimation of essential spatial properties like

porosity and permeability. The general model consists of two consecutive and

computationally expensive simulated paradigms; the forward and the inverse models. The

goal of Forward Reservoir Simulation (FRS) is to model fluid flow and mass transfer in

porous media to eventually draw conclusions about the behavior of certain flow variables

and well responses. Any developed (FRS) is prone to significant errors as the initial data

that defines the reservoir and the actual values of reservoir parameters are not necessarily

the same. As a result, history matching or the inverse model repeatedly improves the

simulated reservoir past performance after observing weaknesses in current data to suggest

modifications in subsequent iterations. Both models eventually attempt solving a huge and

computationally very expensive sparse linear system having either one or multiple right

hand side (RHS) in the forward or the inverse model, respectively. By considering the state

of art advances in massively parallel computing and the accompanying parallel

architecture, this work aims primarily at developing a parallel simulator for oil reservoir

on many-core processors by implementing a suitable parallel preconditioned linear solver

xvi

for both (single & multiple RHS) and exploiting several optimizations in both storage and

implementation, to speed up the computation and minimize the overall simulator execution

time. To offer more flexibility a graphical user interface (GUI) with simple visualization

and controls will also be offered.

xvii

 ملخص الرسالة

 أیھم نواف حوریة ظاظا :الاسم الكامل

 :عنوان الرسالة

 علوم وھندسة الحاسب الآلي التخصص:

 م٢٠١٥ كانون الأول :تاریخ الدرجة العلمیة

المحاك�������اة الحاس�������وبیة عملی�������ة عل�������ى ال�������رغم م�������ن التح�������دیات العلمی�������ة المص�������احبة لھ�������ا، تھ�������دف

م�����ن خ�����لال اس�����تقراء اً إل�����ى التنب�����ؤ بماھی�����ة ھ�����ذه الحق�����وللطریق�����ة عم�����ل الحق�����ول النفطی�����ة أساس�����

ن الخص������ائص البنوی������ة الرئیس������ة كص������فات الص������خور المكون������ة ونفاذی������ة الموائ������ع م������ن جمل������ة م������ل

یعتم������دان بش������كل كبی������ر نم������وذجین متت������ابعین لھ������ذه المحاك������اة عل������ى الع������ام الھیك������ل یق������ومخلالھ������ا.

معرف�����ة كیفی�����ة . غ�����رض أول ھ�����ذین النم�����وذجین حس�����ابیة المعق�����دةعل�����ى ج�����م ھائ�����ل م�����ن العلمی�����ات ال

م�����ن س�����ریان وت�����دفق الموائ�����ع م�����ن خ�����لال الطبق�����ات المكون�����ة للحق�����ل النفط�����ي واس�����تنتاج ق�����یم أولی�����ة

ی��������أتي دور ل��������بعض المتغی��������رات المص��������احبة. لیس��������ت بالض��������رورة دقیق��������ة، خ��������لال افتراض��������ات

لال مقارن�������ھ النت�������ائج النم�������وذج الث�������اني لتحس�������ین الق�������یم الخارج�������ة م�������ن النم�������وذج الأول م�������ن خ�������

 المتنبئ���������ة م���������ع ق���������راءات س���������ابقة، وتحلیلھ���������ا واس���������تباط ش���������روط أفض���������ل لتولی���������د نت���������ائج أدق

ش�����كل مت�����زامن، ح�����ل سلس�����لة نظ�����م م�����ن بیتطل�����ب الأم�����ر ف�����ي كلت�����ا الح�����التین و .وافتراض�����ات أحس�����ن

مربع������ة ھیكلی������ة وھائل������ة ملیئ������ة بعناص������ر ص������فریة وفةفالمع������ادلات الخطی������ة، مجموع������ة ف������ي مص������

ف�����ي النم�����وذج الأول، أو متع�����دد كم�����ا ف�����ي الث�����اني. یھ�����دف ھ�����ذا البح�����ث لط�����رف أیم�����ن أوح�����د كم�����ا

التط�����ورات الس�����ریعة المتعاقب�����ة ف�����ي مج�����ال الحوس�����بة المتزامن�����ة أح�����دثأساس�����اً، وبالاس�����تفادة م�����ن

، إل�����ى تط�����ویر برن�����امج متكام�����ل یعم�����ل عل�����ى حواس�����ب كثی�����رة الأنوی�����ة، لمحاك�����اة عملی�����ة المتوازی�����ة

تس������ریع عملی������ة الحص������ول عل������ى النت������ائج بغ������رض م������ن الخزان������ات الأرض������یة اس������تخراج ال������نفط

xviii

لإعط������اء ص������ورة متكامل������ة، س������یتم أیض������اً تط������ویر واجھ������ة للمس������تخدمین تمك������نھم م������ن . المرج������وة

 التحكم ببعض متغیرات البرنامج واستعراض النتائج.

19

1 CHAPTER 1

INTRODUCTION

From food production, power generation to transportation systems and almost every other

aspect of daily life, our modern society continues to ask for more and more energy with oil

being the number one resource that addresses that heavily increasing demands. Despite

the huge technological advances in oil industry, recovering the remaining available oil is

limited by our knowledge and understanding of oil reservoirs [1]. The process of

Reservoir Simulation requires large amount of memory storage as well as extensive

computations to eventually provide vital information about the production rate, cost

management, optimal well placement and many other reservoir parameters. As the

computation for practical reservoir dimensions may last for days, speeding up the process

by taking advantage of parallel computing is indispensable.

Like many other complex systems in nature, the behavior of oil reservoir can be modeled

using a set of non-linear partial differential equations (PDEs) that describe how the entire

system evolve in time, space or both. For many practical scenarios, obtaining a closed form

analytical solution for the governing (PDEs) that completely describe the problem is

extremely difficult or even impossible. For that reason various discretization schemes have

been developed and utilized to approximate the solution of the governing (PDEs), yet

20

maintaining stability and leading sound results with accepted convergence level. Such

approximations result in a large sparse system of algebraic equations that needs to be

further solved.

The details of the problem are described in the next section. After that, the entire system

model is presented followed by shedding some light on the computational model. Literature

survey for discretization schemes and linear solvers is then introduced before finally stating

the deliverables, methodology and the objectives out of this research.

1.1 Statement of the Problem

Petroleum Reservoir modeling is a challenging process for inferring reservoir structure and

configurations through the estimation of essential spatial properties like porosity and

permeability. As reservoirs extend over wide geographical areas, collecting enough

samples efficiently and accurately to approximate flow conditions over a reasonable grid

size is impracticable both economically and technically. This is mainly attributed to the

fact that, wells are the only window through which various samples could be drawn. As a

result and in order to approximate the estimation of reservoir parameters, indirect

measurements or inverse modeling is a widely utilized alternative. When applied in

petroleum engineering context, the inverse problem consists of two iterative and

consecutive parts: the forward model and history matching – the inverse model.

At the beginning of the first process, the forward model assumes initial values for porosity

and permeability and tries to predict resulting estimates of pressure and saturation by

21

discretizing the governing partial differential equations (PDE’s) using a previously defined

numerical scheme. Suitable desired boundary conditions and well constraints are imposed

before finally and simultaneously solving the resulting set of nonlinear algebraic equations.

After finishing all time iterates, the final resulting solution is fed to the inverse model which

in turns searches the reservoir characteristics space to find the best variable estimate that

matches the calculated pressure and saturation values.

The inverse process is very challenging as its obtained solution is very sensitive to the input

data that is naturally subjected to measurement and modeling errors. At the heart of inverse

model lies the formulation and computation of sensitivity matrix that measures how an

induced change in reservoir behavior at one place could be carried out throughout the entire

system. It is computationally very expensive, and various methods were suggested to

compute it. Two such famous approaches are the forward sensitivity and the adjoint

sensitivity methods. Moreover, when the size of this sensitivity matrix is even large,

approximation techniques may be utilized to further reduce its dimension.

By considering the state of art advances in massively parallel computing and the

accompanying parallel architecture, this work aims primarily at developing a parallel

simulator for oil reservoir on many-core processors by implementing a suitable parallel

preconditioned linear solver for both (single & multiple RHS) and exploiting several

optimizations in both storage and implementation, to speed up the computation and to

minimize the overall simulator execution time. To offer more flexibility a graphical user

interface (GUI) with simple visualization and controls will also be offered.

22

1.2 Parallel Computer Architecture: Past and Present

Aiming for more and more performance has always been a driving force for any

technological advances in computer systems ever since it was invented. Despite all the

ambiguities associated with quantifying what the word performance solely indicates, the

development trend was geared and motivated by a necessity of solving complex, practical

and large scale real life problems,. As a result, machines with several architectural

taxonomies have been built to serve different needs.

With a Central Processing Unit (CPU) interconnected with parallel wires to a memory chip

that stores low level instructions and user data, the classical von Neumann model [2] laid

the most successful foundational architecture that both dominated and advanced computer

industry for quite some time. The (CPU) that features special fast storage elements called

registers, comprise a control unit responsible not only for tracking program flow but also

determining the next fetched instruction to be later executed by the arithmetic and logic

unit (ALU).

As processor’s throughput, the amount of work that can be completed per unit time, is

much higher than the rate at which data arrives from main memory, various considerations

over the years of computer system development were suggested to overcome that

bottleneck. The improvements took many directions ranging from enhancing the

performance of existing components and inventing novel technologies up to introducing

new architectural taxonomies.

23

The presence of different memory hierarchies that originally revolved around exploiting

the concept of data temporal and spatial localities, helped to some extent in bridging the

previous latency gap. The idea was based on trading off space and power consumption with

speed. This lead to introducing and manufacturing special cache memories which are small

in size but supports fast data access, organized at different levels between the CPU and

main memory. According to a predefined scheme, cache memory maps a portion of data

from main memory to its lines and serve them directly, upon a hit, to the processor when

requested. If a processor requested data that is not available in cache, then data is fetched

from main memory and some unused old data blocks are then replaced according to certain

mechanism. Regardless of the mapping scheme or any resulting coherency overhead, the

effectiveness of caches is prominent when the probability of not finding requested data in

cache (miss rate) is small. At the first glance, it is obvious that, the miss rate is lowered

when the cache size is made bigger. Nevertheless, and based on the intensive study of [3]

that relates the cache sizes and the program working set, [4] has indicated that the benefit

of further increasing cache size would be minimal and will not contribute to the overall

performance as used to be in the past. [4] indicated that currently available cache sizes are

big enough to hold the data needed to be accessed through out the lifecycle a given program

in order to complete its needed calculations.

Dating back to 1965, Gordon Moore, co-founder of Intel Corporation, formulated an

observation that was later known as Moor’s Law and predicted the number of transistors

per inch on integrated circuits to be doubled every 18 months [5]. The observation held

true for quite good time until it finally hit classical physics walls. The more transistors

shrink in size, the faster the electronic response becomes and hence the faster the integrated

24

circuit is [4]. However, as the frequency of operation increases, the associated power

consumption increases in a quadratic relation1. Current technology still cannot cope with

that excessive amount of dissipated resulting heat that if pushed further, may either melt

the chip or result in an unreliable behavior [6].

Moor’s prediction of the huge increase in transistors’ count, had paved the road for a new

speed optimization era where more space is invested to deliver better performance.

Instruction Level Parallelism (ILP) techniques [7] such as Superscalar Instruction Issue

and Instruction Pipelining, are two currently widely utilized strategies that utilized the

previous tradeoff and often been exploited to their possible extreme. Pipelining is centered

on breaking down instructions into smaller pieces to be later processed at multiple

staggered independent stages. The simultaneous work flow among different stages will

eventually achieve a throughput of executing one instruction per clock cycle. Moreover

and in addition to utilize complex circuitry as in pipelining, superscalar machines make use

of duplicated additional hardware functional units to dynamically fetch, issue and process

multiple instructions at the same time. While simultaneous issue of six instructions in

superscalar machines, is about the useful limit for most programs on real processors,

1 The capacitance is the ability of the circuit to store energy � =

�

�
 Or � = �. �.

Work is moving the charge against the voltage: � = � ∗ � == > � = �. ��.

Power is work per unit time: � =
�

�
= �. � == > � = �. ��. �

25

increasing the size of the pipeline beyond a certain depth has not been proven contribute to

better performance of the processor because of the inherent practical limits2 [4, 6].

Just as the previous two techniques, Speculative Execution and Branch Prediction are also

other forms of ILP. They again take advantage of the exponential increase in the number

of transistors and advanced manufacturing technologies to introduce other components for

boosting up performance [7]. In order to enhance speculation, a buffer is utilized to keep a

history record of already taken branches inside a program, so that they are utilized later by

processors for any upcoming branches. Although keeping such records consumes space

and power [6], and despite the fact that programs’ behavior is not completely predictable,

such statistical inference had lead a boost in performance but only up to a certain point [4].

1.2.1 Multicore System

In parallel and not far from the previous chronological development, many attempts were

dedicated to making use of multiple cooperating processors to either reduce the overall

execution time of very intensive computational simulations or to solve a given problem at

larger scales. By taking the combination of instructions’ flow and data streams, Flynn [2,

5, 7] proposed a coarse famous taxonomy to categorize computer systems. Table 1

Although SIMD machines may yield a very high throughput especially when processing

vector instructions, such machines suffer from a main drawback stemmed from their

2 Pipelining is accomplished by reducing the amount of logic per stage to reduce the time between clocked
circuits, and there is a practical limit to the number of stages into which instruction processing can be
decomposed

26

original design; all computations must proceed in lock step and therefore free processing

elements that had completed their job cannot start other tasks [8].

Table 1: Flynn Taxonomy for classifying computer systems

 Data Streams

Single Multiple

In
st

ru
ct

io
n

s

S
in

gl
e

The uniprocessor

Ex. von Neumann Architecture

SIMD

The same instruction is executed by
multiple processors while operating
on different data streams.

Ex. Vector Architecture

M
u

lt
ip

le

MISD

A single data stream that utilizes
successive functional units

Ex. No Commercial model available
yet

MIMD

Each processor fetches its own
instructions and uses its own data.

Ex. General-Purpose
Multiprocessors

MIMD can be further classified into two categories based on their attached memory

organizations: shared memory systems and distributed memory systems. Distributed

memory system is also categorized according to the access pattern to be either distributed

shared memory or clusters, Table 2.

27

Table 2: MIMD machines according to their attached memory and communication schemes

 Memory System

Shared Distributed

Organization Processors share a single centralized

memory

Memory is physically distributed and private

to each processor.

communication Buses or switches Switches, Multidimensional meshes,

communication networks, internet

Characteristics The main memory has a
uniform (symmetric) access
time from any processor.

 Implicit communication via
load and store from a shared
variable.

 Explicit Synchronization

Also known as:

 Symmetric multiprocessors
(SMPs)

 Uniform Memory Access
(UMA)

Two communication schemes:

 Distributed Shared Memory (DSM):
o Communication via a logical

shared address space.
o Also called non-uniform

memory access (NUMAs), as
the access time for varies
according to the location of a
data in memory

o Implicit communication
o To mitigate the discrepancy in

memory access time,
processors are shipped with
caches and a coherency
protocol.

 Multicomputers
o Separate computers connected

on a local area network
o Popularly called clusters
o Explicit Communication via

message passing
o Implicit Synchronization

Famous

Programming

Environment3

[9]

OpenMP [10]:

Implemented as set of extensions to

(C/Fortran)

MPI [11]

Implemented as a library called from

programs written in a sequential

programming language

3 Java is also famous for both memory systems and enjoys lot of software engineering benefits. However,
it is slow compared to the other two environments and suffer from several deficiencies in the domain.

28

The programming effort needed to write parallel applications targeted to run on shared

address space is minimal compared to other schemes as no data structure is needed to be

distributed among processors. It is worth mentioning that such systems do not scale. This

is due to the fact that increasing the number of processors, will increase the contention for

memory bandwidth which is already a limiting factor [9].

1.2.2 From Multicore to Many-core

Many-core machines have emerged naturally as an answer to the continuous demand and

need for more performance. They have been developed by considering the tricks and

limitations that has been learnt over the years of continuous improvement on the design of

both single and multicore systems. In addition to exploiting all possible optimizations to

their limits, many-core machines came to existence after realizing that ILP could only

deliver constant factors of speedup [6]. Moreover, it has been firmly realized that clock

speed could not be increased anymore without melting the chip. As a result, the design

consideration for many-core systems was centered on optimizing the architecture for power

rather than performance [9]. On NVidia’s GPUs for instance and being generated from

simple cores operating at MHz clock, teraflop performance, or even exaflop in the near

future, is achieved via hundreds of thousands cooperating threads4 performing the same

task simultaneously.

4 Multiple threads exploit parallelism through latency hiding

29

Unlike the previous trend in manufacturing high performance computing machines,

designing dedicated throughput oriented devices rather than utilizing general purpose

latency oriented ones had enabled smarter utilization of Moor’s observation. Doubling the

number of transistors every eighteen month on a chip is now used to create either many-

core processors, or single chips having multiple processor cores [4, 6, 12].

The details for the most widely used many core systems is presented next.

1.2.3 Intel Xeon Phi

Taking advantage of the new implemented 218 instructions not to mention the dedicated

vector processing unit (VPU) and if a given code is highly parallel, efficiently vectorizable,

scalable and able to hide the I/O communication [13], then it can effectively enjoy the

teraflop performance offered by the power efficient Xeon Phi coprocessor [14]. The

accelerator that coexists with the main processor and operates at about its third speed

supports various execution models including heterogeneous programming mode5,

coprocessor native execution mode6 and Symmetric execution7 mode [13]. Through either

data marshaling or virtual shared memory model, the host processor and Intel Xeon Phi

communicate for exchanging data [13].

5 Also known the offload mode, supported by OpenMP 4.0
6 As the Intel Xeon phi has its own micro OS, it can be viewed as another node connected to the main
system. Cross compilation is required.
7 The application runs on both the main processor and the accelerator. Communication is done through
message passing interface.

30

1.2.4 NVidia’s GPUs

The product line at NVidia is continuously introducing new generations of high

performance power efficient hardware. Besides the offered extreme computing

capabilities, the new Kepler architecture [15] has introduced more features that enables

increased GPU utilization and simplify parallel program design. For example, by allowing

kernels to have full control on spawning other kernels, dynamic parallelism gives more

flexibility for parallelizing nested loop iterations and performing recursion. Moreover, and

to better utilize the system’s multicores, Hyper-Q allows multiple simultaneous connection

lines from those cores to launch work on the GPU, thus supporting computation and

communication overlapping optimization.

With a support to 2688 CUDA Cores, 6 GB memory with 250 GB/s bandwidth, the Tesla

K20 GPU is capable of delivering 1.32 TF and 3.95 TF double and single precision peak

performance, respectively. The accelerator that is made of more than 7.1 Billion transistors

is shipped with 15 streaming multiprocessors (SMX) and 1.5 MB L2 cache. Each SMX

supports a maximum of 2048 threads, 16 thread blocks, 64K 32-bit registers, up to 48K

shared memory. Each thread block can have a maximum of 1024 threads, while every

thread can have a maximum of 255 registers. The computing Grid can support a maximum

of 2�� − 1 threads. Four warps each containing 32 threads can be issued and executed

concurrently8. Threads within a warp can share data through the new implemented Shuffle

instruction and therefore reduce the amount of shared memory needed per thread block9.

8 This is because of the available quad warp scheduler and the eight instruction dispatch units.
9 This has a direct relation with the amount of threads and thread blocks that can be allocated.

31

As this work is implemented on this architecture by utilizing its accompanying parallel

computing platform -CUDA, the next section is dedicated to describing this programming

model and its associated optimizations in more details.

1.3 The Programming Model of the Compute Unified Device

Architecture (CUDA)

The NVidia GPU memory, Figure 1, is organized at different levels each of which varies

in speed, usage, size, and scope10 [15]. Tesla K20x GPU features a 6 GB global memory

with 250 GB/s bandwidth. Data stored in global memory are allocated and destroyed from

the host and are visible by all threads in the application. With a similar scope and certain

considerations11, the read only 512 KB Constant Memory provides a relatively faster

access speed than the global memory by reducing bandwidth usage through caching

constant values and broadcasting them to all threads in a warp. At the block level and being

visible to all threads in the block, the configurable 64 KB shared memory and in the

absence of bank conflicts, provide even much faster access speed and allow data sharing

and reuse among threads within the block. Finally, and with a lifetime of the thread that

created it, registers are considered the fastest memory elements requiring zero clock cycle

per instruction in the absence data dependency. Kepler based devices support a maximum

of 255 32-bit register per thread.

10 See also: http://docs.nvidia.com/cuda/kepler-tuning-guide/#axzz3V6tnqhWI
11 Warps of threads read the same location

32

Figure 1: Memory Hierarchy in NVidia GPU

33

1.4 The Forward Reservoir Model

Forward Reservoir Simulation (FRS) is a predictive mathematical process that models fluid

flow and mass transfer in porous media. Regardless of the discretization approach or grid

mesh type, FRS will eventually draw conclusions at the behavior of certain flow variables

and well responses to either utilize it in the development of new fields to estimate the

production rate for instance, or to instantiate another process, namely, the inverse model

and history matching.

Our implemented model fully describes the 3D flow process of the two immiscible phases

(water, oil) and accounts for various physical properties in the flowing medium like

permeability, porosity, oil pressure, water saturation as well as the interacting forces such

as gravity and capillary. Permeably is the capacity of the rock to transmit fluid through

its connected pores when the same fluid fills all the interconnected pores [16]. A

porous medium is a solid containing void spaces (pores), connected or unconnected,

dispersed within it in either a regular or random manner. And porosity is the ratio of the

volume of the pores to the total bulk volume of the media [17]. Our simulated reservoir

will be described as having isotropic permeability distribution and a heterogeneous

geometry12. At the analysis stage, the mass balance equation for every phase is constructed

and the associated velocities are expressed by means of Darcy’s law that linearly relates

12 Those are properties of the porous media:
Isotropic: permeability is constant in all directions, i.e. it does not exhibit directional bias.
Heterogeneous: porosity is changing with location.

34

the flow rate to pressure drop through geometry, viscosity and permeability.

Mathematically, the mass balance equation can be derived as:

 − �(����⃗�)+ ��

��
����

�
=

�

��
(������), (1.1)

where, the subscript � ϵ [oil (o),water (w)], ��⃗� is velocity vector,�� the density,��
����

the flow rate, �� is the bulk volume, � the porosity of the medium, and S� is phase

saturation.

Darcy Law is given by:

 1
.f rf f f

f

u k k p Z

,
(1.2)

with � representing absolute permeability tensor of the medium , ��� is the relative

permeability of phase �, �� is the viscosity of phase �, ������⃗ is the velocity of phase �, � the

applied pressure drop, Z is the depth of the reservoir and � is the specific gravity of the

fluid.

Expanding equation (1.1) using suitable flow units, and after substituting the velocity from

equation (1.2) we obtain the following equations for each phase,

�

��
�

���������

����

���

��
� Δ� +

�

��
�

���������

����

���

��
� Δ�

+
�

��
�

���������

����

���

��
� Δ� + ���� =

��

��

�

��
�

∅��

��
�.

(1.3)

35

�

��
�

���������

����

���

��
� Δ� +

�

��
�

������� ��

����

���

��
� Δ�

+
�

��
�

���������

����

���

��
� Δ� + ���� =

��

��

�

��
�

∅��

��
�.

(1.4)

Two more equations are then needed to close the system. In the two-phase system

considered in this work, we require that:

 �� = �� − �� , (1.5)

 �� + �� = 1 , (1.6)

where, � is the formation volume factor, �� and �� are constants, ��� and ��� are the

relative permeability for oil and water respectively. Finally �� is the capillary pressure.

The simulator will handle different boundary conditions and well constrains. Natural grid

indexing is utilized and the above equation is then discretized using the finite volume

method [18] on a structured grid.

After discretizing equations (1.3) and (1.4), and after providing initial state variables (�� &

��) as well as reservoir properties, FRS solve for the corresponding state variables values

at each iteration. The details of the process are described next.

1.4.1 The Discretization Process

The goal of this step is to approximate the solution of the governing non-linear partial

differential equations provided by (1.3) and (1.4) after imposing certain boundary

conditions of interest, by a system of non-linear algebraic equations that are iteratively

solved. At the analysis stage, the domain of interest, the reservoir, is subdivided into a finite

36

number of grid cubes, control volumes, that spans the entire 3D space. By following the

finite volume approach, the flow equations at the center of each grid cube are then

integrated over that volume, shape functions between the center and the edges are then

assumed and interpolation13 is performed in an attempt to summarize the total flow across

and within the cube by a single point in the center. This will lead to a non-linear algebraic

equation that approximates the original (PDE) and resembles the flow at the center of the

control volume taking into account the contribution of other flows coming from all the six

neighboring directions (North, South, East, West, Top and Bottom) as well as extra flow

sources coming from the wells for instance. The previous process is repeated until all the

originally subdivided volumes are visited.

1.4.2 Assembling the System

The mathematical derivation for the developed models follows exactly the formulation

presented by Abeeb [19, 20].

The residual equation of the discretized system is given by the following14

 ��⃗ ���(��⃗ ���,��⃗ �,�⃗ ,��;�⃗)= 0,��⃗ (1.7)

where �⃗ is the vector of known reservoir properties and ��⃗ is the vector of the state variables

given by:

 ��⃗ = ���,�,��,�,… ,��,�,��,�,���,�,. . . ,���,������
�
 (1.8)

13 Depending on the required accuracy, the shape functions and the interpolation could be linear,
quadratic or any other higher order.
14 Assumptions include: fully implicit approach, three-dimensional reservoir system with � grid blocks and
������ wells.

37

��⃗ ��� consists of the residual due to flow in and out of reservoir grid blocks, ��⃗���
��� and the

residual due to flow into or out of the wells in the reservoir, ��⃗����
��� . Thus ��⃗ ��� may be

represented by:

 ��⃗ ��� = �
��⃗���

���

��⃗����
���

�, (1.9)

where:

 ��⃗���
��� = ���,�

���,��,�
���,��,�

���,��,�
���,. . . ,��,�

���,��,�
����

�
 (1.10)

and

 ��⃗����
��� = ������,�

��� ,�����,�
��� ,. . . ,�����,�����

��� �
�

, (1.11)

��⃗���
���consists of the residuals representing the two phases present in the reservoir:

 ��⃗�
�����⃗�

 ���,��
 ���,�⃗��

 ���,�⃗�
 �,��

 �,��⃗��� ,��;��⃗� = 0,��⃗ (1.12)

and:

 ��⃗�
�����⃗�

 ���,��
 ���,�⃗��

 ���,�⃗�
 �,��

 �,��⃗��� ,��;��⃗� = 0,��⃗ (1.13)

while ��⃗����
��� is the well residual given by:

 ��⃗����
�����⃗�

 ���,��
 ���,�⃗��

 ���,�⃗�
 �,��

 �,��⃗��� ,��;��⃗� = 0�⃗ (1.14)

38

In Equations (1.12) through (1.14), ��⃗��� is the initial porosity distribution and ��⃗ is the

permeability distribution in the reservoir. For a fixed total production rate constraint, we

have

 ��⃗����,�
��� = � � ���,�

����− ��,�

� ����

�����,�

= 0 (1.15)

where ���,�
���� is the flow rate of phase �ℎ (�ℎ is either oil or water) at the ��� completion

given by:

 ���,�
����= ���,�

����������,�
��� − ���

��� − ���,�
������� (1.16)

while ���,�
��� and ���,�

��� are the mobility ratio and specific gravity respectively of phases �ℎ

at the ��� completion in well �. ��� is the well index at completion �.

1.4.3 The Linearization Step

Before the system of non-linear equations that was presented in equation (1.7) is

simultaneously solved, a linearization step is necessary. The Newton Iteration achieves that

goal by repeatedly refining a nearby approximation obtained after solving a linear system

with the Jacobian as the coefficient matrix. For every iteration we solve the linear system

39

 ����,������⃗ ���,� = − ��⃗ ���,� (1.17)

and updated the solution:

 ��⃗ ���,��� = ��⃗ ���,� + ���⃗ ���,� (1.18)

In Equation (1.17), the Jacobian matrix ����,� is given by:

 ����,� =
���⃗ ���,�

���⃗ ���,�
 (1.19)

At the ��� iteration.

As the practical dimensions of the modeled space are very high (M ~ billions), special care

should be taken for choosing a suitable solver15.

1.5 Computation of Sensitivity Coefficients

Any developed forward reservoir simulation is prone to significant errors as the initial data

that define the reservoir model and the actual values of reservoir parameters are not

necessarily the same. This lack of information is due to the fact that wells are the only

window to the reservoir where some properties can be drawn. Not only well dimensions

are very narrow, but also they are distributed over wide areas. As a result drawing

15 Details will be provided later for various solvers comparisons.

40

conclusions about reservoir behavior in-between wells or interpolating reservoir

parameters among wells is subjected to significant mismatch with the actual values. To

counter this mismatch, repeated improvement of the simulated reservoir past performance

are performed after observing weaknesses in data and suggesting modifications needed to

improve the model [21].

History matching is the application of inverse theory to petroleum reservoir engineering,

where direct or indirect observations at either well locations or well-head respectively are

used to estimate variables that describe the physical properties of the system. Such

information could be described by sensitivity coefficients which relate small changes in

model variables such as permeability, to changes in the state variables such as pressure or

saturation. The high computational cost required when processing sensitivity coefficients

not only influences the optimization methodology, but also forces certain compromises and

tradeoffs. [19, 22] Two famous approaches for computing sensitivity coefficients are the

forward sensitivity [19, 22-24] and the adjoint-state [19, 22, 25, 26].

Both the forward sensitivity approach and the adjoint method require the simultaneous

solution of a linear system with multiple right hand side independent vectors, assembled in

a matrix that has a column dimension Σ. Although, the two methods produce the same

results, Σ in both approaches differs widely and the choice for which one to apply is highly

driven by the size of data and model spaces. When the number of data to match is

significantly smaller than the number of parameters to estimate, the adjoint method is

favored over the forward sensitivity approach. Σ in this case contains information about

data for which sensitivities are to be calculated and independent of the number of

41

parameters. On the other hand, Σ in the forward sensitivity case stores redundant

information about model variables but is preferred when the number of parameters is small.

When both data space and model space are of high dimensions, the computation of

sensitivity coefficients is very expensive and the use of parallel machines is a must or other

approximations are utilized. One of which is presented in [19].

To start with, the following sections present the mathematical derivations for both

approaches. Again, we follow the same formulation as presented by Abeeb in [19]

1.5.1 Forward Sensitivity Method

Recall the general representation of the residual equations in (1.1)

 ��⃗ ���(��⃗ ���,��⃗ �,�⃗ ,��;�⃗)= 0�⃗ (1.20)

A perturbation, δα��⃗, of the model parameter, α��⃗, induces a perturbation, δu�⃗, of the state

variable, u�⃗, and a perturbation of the residual R��⃗ as given by

 ��⃗ (��⃗ ��� + ���⃗ ���,��⃗ � + ���⃗ �,�⃗ ,��;�⃗ + ��⃗) = 0�⃗ (1.21)

An expansion of Equation (1.20) leads to

 ��⃗ ��� +
���⃗ ���

���⃗ ���
 ���⃗ ��� +

���⃗ ���

���⃗ �
 ���⃗ � +

���⃗ ���

��⃗
 ��⃗ + �(��)= 0.��⃗ (1.22)

42

Dropping higher order terms and recognizing that R��⃗ ��� = 0 leads to the first order

approximation

 �������⃗ ��� = − � ������⃗ � − ������,���⃗ (1.23)

in which

 ���� =
���⃗ ���

���⃗ ���
 (1.24)

is the Jacobian matrix obtained from the simulator at the last step of the Newton-Raphson

iteration,

 � ��� =
���⃗ ���

���⃗ �
 (1.25)

is a block-diagonal matrix containing the derivative of the accumulation terms with respect

to the state variables, at the previous time step n and

 ���� =
���⃗ ���

��⃗
 (1.26)

is a very sparse matrix programmed into the simulator and obtained at the last step of the

Newton-Raphson iteration. Differentiating Equation (1.23) with respect to α��⃗ gives

 �������� = − � ����� − ����, (1.27)

where

 �� =
���⃗ �

��⃗
 (1.28)

43

is the sensitivity matrix required to solve the inverse problem.

In Equation (1.25) the entries of the block-diagonal matrix, D���, are

 ��� ��,�� ��
��� =

���

��
�
�(� ����)

���
�

�

�

, (1.29)

 ��� ��,��
��� =

���

��
�
�(� ����)

���
�

�

�

, (1.30)

 ��� ,�� ��
��� =

���

��
�
�(� ����)

���
�

�

�

, (1.31)

and

 ��� ,��
��� =

���

��
�
�(� ����)

���
�

�

�

, (1.32)

for m = 1,2,. . . M . The Jacobian matrix, the matrix containing partial derivatives of the

accumulation terms, does not change for all parameters. Thus we only need to compute

them once at every time. In Equation (1.26) Y��� is the derivative of the residual with

respect to model parameters and is given by:

 ���� =
���⃗ ���

��⃗
=

⎣
⎢
⎢
⎢
⎡��⃗���

���

��⃗

��⃗����
���

��⃗ ⎦
⎥
⎥
⎥
⎤

 , (1.33)

44

Except where otherwise noted,

 �⃗ = �� ��⃗. (1.34)

The derivative of the state variables with respect to lnk�⃗ is given by

���⃗

� �� ��⃗
= �

���⃗

��
 (1.35)

If we use the wavelets16 of α��⃗ as model parameters, Equation (1.27) becomes:

 ������
��� = − � �����

� − ������, (1.36)

where

 ��
��� =

���⃗ ���

��⃗
=

���⃗ ���

��⃗
��, (1.37)

and

 �⃗ = ��⃗, (1.38)

1.5.2 Adjoint Sensitivity Approach

16 The wavelet transform is a tool that cuts up data into different frequency components, and then studies
each component with a resolution matched to its scale. [27] I. Daubechies, Ten lectures on wavelets vol.
61: SIAM, 1992.

45

Consider any scalar-valued function Ψ (α��⃗) which depends on u�⃗ �(α��⃗) and is thus represented

by

1

, .
N

n

n
u

(1.39)

in which

1

: 1,2,... .
N

n n

n
u u n N

(1.40)

Where:

1

,
N

n

n
u

represents the computed data at time index (n) where the measurement are made. Define

Ψ � by adjoining the constraints f⃗ in (1.20) to η using adjoint variables17 λ�⃗

 Ψ ��u�⃗ ���,λ�⃗ ,α��⃗� = η + �[�λ�⃗����
�

f⃗���]

�

���

 (1.41)

In Equation (1.41) λ�⃗��� is the vector of adjoint variables at time-step n + 1 and it is of the

same dimension as δu�⃗ ���, the solution of Equation(1.18). At any feasible solution, δu�⃗���
���,

 f⃗����u�⃗���
���,u�⃗���

� ,α��⃗� = 0 (1.42)

17 For comprehensive description please see [19] A. A. Awotunde, "Relating time series

in data to spatial variation in the reservoir using wavelets," Ph.D. Thesis,
Department of Energy Resource Engineering, Stanford University, 2010.

46

and as such

 Ψ ��u�⃗���
���,λ�⃗ ,α��⃗� = η�u�⃗���

���,α��⃗� = Ψ (α��⃗). (1.43)

Taking the total differential of Equation (1.41) we have

∂Ψ � = ∂η + � ��λ�⃗����
� ∂f⃗���

∂u�⃗ ���
 δu�⃗ ��� + �λ�⃗����

� ∂f⃗���

∂u�⃗ �
 δu�⃗ �

�

���

+ �λ�⃗����
� ∂f⃗���

∂α��⃗
 δα��⃗�

(1.44)

By considering the fact that the initial conditions are fixed

 δu�⃗ � = 0�⃗ (1.45)

And after certain manipulations, it can be shown that Eq. (1.44) will lead to [19]:

∂Ψ � = � ���λ�⃗��
� ∂f⃗�

∂u�⃗ �
 + �λ�⃗����

� ∂f⃗���

∂u�⃗ �

�

���

+
∂η

∂u�⃗ �
�δu�⃗ ��+ �

∂η

∂α��⃗

+ � ��λ�⃗��
� ∂f⃗�

∂α��⃗
�

�

���

�δα��⃗

(1.46)

47

We choose λ�⃗� so that the first term in Equation (1.46) vanishes. That is,

 �λ�⃗��
� ∂f⃗�

∂u�⃗ �
 + �λ�⃗����

� ∂f⃗���

∂u�⃗ �
+

∂η

∂u�⃗ �
= 0�⃗ (1.47)

Equation (1.45) may be written as

 (J�)�λ�⃗� = − �(D���)�λ�⃗��� + �
∂η

∂u�⃗ �
�

�

� (1.48)

At the last time step λ�⃗� �� is zero. Thus

 (J�)�λ�⃗� = − �
∂η

∂u�⃗ �
�

�

 (1.49)

Equations (1.48) and (1.49) are the adjoint equations through which all the adjoint variables

λ�⃗� are evaluated. Substituting Equation (1.48) into (1.47) and using the definition of Y� we

obtain

 ∂Ψ � = �
∂η

∂α��⃗
+ � ��λ�⃗��

�
Y��

�

���

� ∂α��⃗ (1.50)

Differentiating Equation (1.50) with respect to � results in

∂Ψ �

∂α��⃗
=

∂η

∂α��⃗
+ � ��λ�⃗��

�
Y��

�

���

 (1.51)

Equation (1.51) gives the sensitivity of the scalar-valued function η to model parameters α���⃗.

Equations (1.49) and (1.50) are solved backward in time forn = N,N − 1,… ,1. Consider

48

that we have measurements of well pressure, p�� for all the N time steps. We may choose

to compute the sensitivity of p��(t�) for any (� ∈ 1,2,…) or a linear or nonlinear

combination of all the p��(t�). In fact, to compute gradient of the objective function,Φ we

only need to replace η with Φ in Equations (1.48), (1.49) and (1.51). [19]

49

2 CHAPTER 2

LITERATURE REVIEW

In this section, we review existing literature in areas relevant to this study. It covers a

review for the discretization methodologies, and linear solvers.

2.1 Review of Discretization Approaches

Due to its simplistic formulation, ease of programming and previously accepted

consistency, stability, and convergence, Finite Difference Method (FDM) was very famous

in old literature. After the domain of interest is partitioned into structured grids, FDM

approximate the derivatives in the domain’s governing Partial Differential Equations

(PDE’s) by manipulating the equation’s Taylor Series Expansion. Depending on the

aimed accuracy, several schemes are derived and utilized. For example, in one dimensional

discretization, the truncation error decreases by O(∆x�) in the case of Central Difference

and by O(∆x) when Forward or Backward Differences are used. Whether block centered

or point distributed discretization is considered, and after imposing suitable boundary

conditions, such difference approximations yield a system of algebraic equations that

eventually reduces to a banded sparse linear system. [28, 29]

50

Unlike FDM, Finite Element Method (FEM) has the ability to handle complex geometries

and deal with variable material properties not to mention its rigorous mathematical

foundations primarily reflected in error estimation. Moreover, when applied to reservoir

simulation, it plays a role in reducing grid orientation effects [30]. Over the years and after

its deployment as a numerical procedure for solving (PDE’s), various flavors and

enhancements were suggested. In their book “Computational Methods for Multiphase

Flows in Porous Media” Zhangxin et al. [30], detailed the previous issues and presented in

depth elaboration on various (FEM) as well as case studies. Such variations include:

Control Volume Finite Element, Discontinuous Finite Elements, Mixed Finite Element,

Characteristic Finite Element and Adaptive Finite Element Methods. The general (FEM)

approach could be described as follows: The domain of interests is first subdivided into

unstructured non-overlapping elements that are usually triangles or tetrahedral in 2D or 3D

cases respectively. After that, the variation of the solution inside an element is expressed

by a shape-interpolation- function that form a linear distribution having its values vanish

outside the corresponding element. The differential form of the governing PDE’s is

transformed to their equivalent integral form by either utilizing the variation principle or

through the method of weighted residuals of the weak formulation if preserving physical

laws is desired. Finally, element equations and load vectors for each element are

determined to form matrix equations, boundary conditions are imposed, and the final

assembled system of simultaneous equations is solved. [31, 32]

The Finite Volume Method (FVM) has become widely accepted in simulating fluid

behavior not only because it naturally produces conserved discretization for the associated

physical laws, but most importantly because of its flexibility. The method utilizes mesh

51

dependent control volumes instead of grid intersection points to model unstructured grids

without the need to perform coordinate transformation. As a direct result, the programming

effort is much less compared to (FEM). The process begins by subdividing the domain of

interests into a finite number of contiguous non-overlapping elements called control

volumes (C.V). At the center of each (C.V) the associated governing (PDE’s) are integrated

with respect to the variables of interest. Interpolation is used to express variable values at

the (C.V.) surfaces before the final assembly of the algebraic equations is formed and

solved. [18, 33, 34]

2.2 Linear Solvers Review

As the discretization process of PDE’s for practical problems will eventually lead to a set

of algebraic equations with huge sparse coefficient matrix, Equation (2.1) , and given the

associated storage issues and other limitations in direct linear solvers, researchers in the

field of computational science and engineering continued to favor iterative methods in their

applications.

 �� = �, (2.1)

where: � is the coefficient matrix of the system

Although a clear boundary between the two classifications is very blur as indicated by [35],

and since they are context specific, one can still classify linear solvers into direct and

52

iterative, to provide better rationalization when picking up the right solver for any

application of interest.

If the coefficient matrix (A) is non-degenerate, non-singular, direct solvers in the absence

of rounding errors, offer the exact solution in finite steps with robust and predictable

behavior without putting any constrains on the type of A. On the other hand, as the problem

size gets bigger, direct solvers start exhibiting memory problems given their demand for

long recurrence. Moreover, and because of the fill in problem, data structure used to store

the original sparse coefficients is continuously altered and never preserved as lot of

previously zero entries become non zero as the factorization proceeds [36, 37].

Over the past 30 years, sparse direct solvers continued to develop and various strategies

were introduced to guarantee more stable LU decomposition with minimal fill-in [38] or

that preserves sparsity [39]. Despite all of the attempts, and because of the large storage

demand and the processing requirements that is inherently sequential, some authors believe

that the use of direct methods in practice is still limited to 2D mathematical modeling as

reported by [40]. On the other hand, because of direct methods’ superior robustness and

because computers are getting faster, many other authors [35] believe many problems will

be solved by methods from both approaches.

The most famous direct approach is Gauss elimination. In its general form, the method

decomposes matrix (�) into both lower and upper triangular forms (LU). To solve the

system in (2.1) forward elimination is performed first before back substitution takes place.

With special consideration for the sparse case, Scott in [40] considered many numerical

examples and reviewed frontal and multifrontal methods that are derived by combining

53

Gauss elimination and finite element approaches. Such methods are characterized by

reducing storage and processing demands by interleaving matrix assembly with the

elimination steps.

Motivated by Strassen's algorithm [41] that utilizes recursion to speed up matrix

multiplication, not to mention recursion highlighted success in computational problems

when applied to dense matrices, Dongarra and others in [42] attempted a recursive

approach for the LU factorization of sparse matrices. Although, they reported an efficient

storage and speedup compared to multifrontal methods for most sparse matrix profiles,

recursion suffers from substantial drawbacks from software engineering perspective [43],

which in turns limit its scalability and performance in parallel computing. First although

recursion leads a very concise and readable code, it is sequential in nature as it is executed

in memory stack that forces Last In First Out (LIFO) sequence of function calls. Second,

recursion relies on long recurrence making it not suitable for practical problems with big

� as it demands excessive memory storage.

On the other hand, and although they, might suffer from convergence issues and

compromised accuracy, Iterative Methods are highly favored in the solution of large sparse

systems. First, they preserve system sparsity as they do not modify the coefficient matrix.

Second and most important, beside vector updates, the essential operation in almost all

iterative solvers is matrix vector multiplication [36] that is characterized by its inherent

parallelism. Moreover, and although iterative approaches are problem specific, it has been

shown that the convergence could be enhanced by the use of suitable preconditioner.

54

Starting with an initial guess for the vector � in equation (2.1), iterative methods continue

to refine that solution according to a certain criteria until convergence, if exists, to the

desired accuracy. The overall idea lies behind replacing the system of equations by some

nearby system which is easily solved [37, 44]. Such methods could be further classified

into two main groups: stationary methods like Jacobi, Gauss Seidel, Successive over

Relaxation, and non-stationary like Krylov subspace based methods [36, 45, 46].

The discretization of flow equations that governs two-phase oil water reservoir behavior

that results from the forward modeling, using finite volume approach will yield a sparse

system having ill-conditioned unsymmetrical coefficient matrix with Hepta-diagonal

profile and 2 × 2 block representing each entry. Moreover, the inverse problem requires

solving either the same matrix, forward sensitivity approach, or its transpose in the case of

adjoint sensitivity approach, with multiple right hand side.

As a result and with the aim of writing the parallel code for the complete simulator, we

review four applicable preconditioned Krylov methods of interest. In order to select one

solver for our final implementation, we will be analyzing the part of a computation that can

be parallelized as well as the usually addressed issues of storage and convergence. At this

stage, we will only focus on general observations and leaving the detailed parallel analysis

to a later stage. Given that perspective, the remaining lines in this section will review the

following suggested solvers: The Generalized Minimum Residual Method (GMRES) by

Saad and Schultz [47], The Bi-Conjugate Gradient Method (BiCG) by Fletcher [48], the

quasi-minimal residual method (QMR) by Freund and Nachtigal [49], and finally, the Bi-

Conjugate Gradient Stabilized (Bi-CGSTAB) by Van der Vorst [50].

55

By definition, the Krylov subspace generated by the coefficient matrix A and the

accompanying residual r� = b − Ax� is denoted by: K�(A;r�), with k indicating the

iteration and given by: K�(A;r�) ∈ span (r�,A r�,A� r� … ,A��� r�)

Krylov methods are classified according to the way x is chosen from the constructed

subspace that contains the successive approximate solutions into: [37]

1. The Ritz–Galerkin Approach: constructs �� for which the residual is orthogonal

to the current subspace: � − ��� ⊥ Κ�(�;��). This leads to Conjugate Gradients,

The Lanczos method, FOM, GENCG methods.

2. The Minimum Norm Residual Approach: identifies x� for which the Euclidean

norm ‖b − Ax�‖� is minimal over Κ�(A;r�), then we have: GMRES, MINRES,

ORTHODIR

3. The Petrov–Galerkin Approach: x� is found so that the residual b − Ax� is

orthogonal to some other suitable k-dimensional subspace. This leads to BiCG and

QMR.

4. The Minimum Norm Error Approach: Determine x� in A�Κ�(A�;r�) for which

the Euclidean norm ‖x� − x‖� is minimal. This leads to SYMMLQ and GMERR

5. Hybrid Approaches

a. CGS, Bi-CGSTAB

b. Bi-CGSTAB(L), TFQMR, FGMRES, and GMRESR

For extensive review of direct solvers and various implementation variations, one might

consider [45, 51-53]. A comprehensive survey for preconditioning techniques is presented

in [54]. For a complete survey on iterative solution methods, please check [35]. For a very

56

quick algorithmic treatment and comparison [45]. The books by [37, 55] presents a

comprehensive treatment of the subject with a focus on the theory and finally, [56]

describes various aspects of the parallel implementation of iterative solvers.

2.3 Review of Sparse Storage Techniques

Motivated by reducing storage requirements and avoiding unnecessary computations,

sparse matrix representations have evolved to efficiently identify, operate on, and

manipulate all non-zero matrix elements. As opposed to dense matrices, a sparse matrix is

a matrix in which most of the elements are zero. Sparsity is the associated term that

measures the fraction of non-zero elements to the total sparse matrix dimension. For

example the sparsity of the general sparse matrix with arbitrary values shown in Figure 2

is calculated as:

�������� =
������ �� ��������

����� ������ �� ��������
=

20

81

⇒ �������� = 0.247

Perhaps, the most easy and obvious approach to store sparse matrices, is to store the spatial

coordinates of their elements according to some traversing rules together with their

corresponding values. For a 2-D matrix, such index representation could be abstracted by

a state graph with nodes representing the first spatial coordinate, and directions

representing the second [55]. The famous coordinate storage scheme (COO) [57] stores

matrix information in three separate arrays (value, column-coordinate, row-coordinate)

each with a length equals the total count of the non-zero elements Figure 3.

57

Figure 2: Sample Sparse Matrix with arbitrary values

58

(COO) could be further optimized by trading off some computation with storage leading

to two other representations: compressed row storage (CRS), and compressed column

storage (CCS), Figure 3. In those schemes either the row-coordinate vector in (CRS) or the

column-coordinate vector in (CCS) are replaced by another smaller vector that only stores

values pointing to the first corresponding non-zero element in the value vector. The

corresponding number of non-zero elements is then easily calculated by subtracting two

consecutive indices in the replaced vector [45].

It can be observed from previous figures, that the maximum length of the vector holding

the pointers in both (CRS) and (CCS) equals respectively the number of rows and columns

in the original matrix. As a result, establishing a case where either of those representations

outperforms the other in terms of minimizing storage space is an easy task indeed. For

example, let � × � be the row and column dimensions of matrix �. If (� < �) and the

matrix is full rank, then CRS is more favorable. The reverse also holds true. This indeed

motivates the necessity for either developing an intelligent algorithm that statically detects

and selects the best storage scheme for a given input matrix, or a reconfigurable one that

dynamically changes its internal data structure to fulfill the previous need.

For very large matrix dimensions and unlike (COO), one drawback of both (CRS) and

(CCS) is that restoring and identifying the indices of the original matrix elements after

performing some tiling is cumbersome. This in turn present another scheme's selection

compromise namely choosing between saving storage space or flexible tiling with easy

indexing and reduced computation. The previous observation goes both ways regardless of

tiling precedence, i.e. whether it occurred before compressing the storage or afterwards.

59

Figure 3: From top to bottom: COO, CRS and CCS representation for matrix shown in Figure 2

60

To analyze and compare storage requirements, the total number of non-zero elements will

be ignored as this is going to be constant among all representations, not to mention that

storing the complete array that holds those elements is not optional. Moreover, and without

loss of generality and to compare various methods, the following analysis assumes the

matrix to be a 2x2 Blocked-Hepta Diagonal. Let �,�,��� � be

Let N be the matrix dimension. Then it can be shown18 that the total number of non-zero

elements is less than (14 �). As a result, the total storage required by (COO) is less than

14 � × 3 = 42�

On the other hand, the storage required by the compressed scheme is

14 � + 14 � + � = 29�

The following limit can be established for comparing the compressed storage to the naïve

coordinate storage when the matrix is very large,

lim
� → �

42 �

29 �
= 1.45,

which means that (COO) will demands at most around 50% more storage space than either

(CRS) or (CCS)! i.e. if (CRS) takes 4GB of memory to store large input matrix then (COO)

will at most take 6 GB.

The Jagged Diagonal Storage (JDS) [55, 58] the generalization of ELLPACK-ITPACK

[59] first traverses the original sparse matrix row wise, shifts left nonzero elements, and

18 Assuming 7 diagonals each contains 2 elements per row.

61

then stores the associated column index, Figure 4. The resulting shifted rows are then

rearranged in a descending order according to the maximum nonzero elements count per

row; an array of pointers is kept to indicate and later restore those permutations. Nonzero

elements are then stored column wise and pointers to indicate the start of each column are

recorded [60].

In one way or another, (JDS) is a mix between (CRS) and (CCS) with an extra intermediate

permutation stage. Consider the sample matrix we chose for analysis. The initial startup

overhead consists of two vectors each of length 14 � for storing the values and column

indices, and one vector of length � that holds permutations and another varying in length

but at most of size � for row pointers. Hence, the storage requirement for (JDS) is

���� = 2(14 �)+ 2� = 30 �

Therefore comparing the storage space requirement to the compressed formats presented

earlier (CRS) and (CCS) yields,

lim
� → �

30�

29�
= 1.03

Which means that as the matrix dimension gets extremely large, then the extra storage

demanded by (JDS) could be neglected compared to either (CRS) or (CCS)!

62

Figure 4: JDS representation for matrix shown in Figure 2

63

Neglecting start up computational overhead, (JDS) format will force the nonzero elements

to be factorized into (� × �) matrix where (�) is the maximum number of nonzero

elements in a given row of the original matrix. Hence, matrices with (JDS) representation

can be tiled or partitioned easily to suit different parallel platforms. However, unless

dynamic load balancing is established, (JDS) will suffer from sever performance and

scalability issues. Moreover, as column indices are stored separately, matrix vector product

operation could be performed efficiently.

Just as the relation between (CRS) and (CCS), and as its name implies, the Transposed

Jagged Diagonal Storage (TJDS) format, follows exactly the same logic of (JDS) but with

main operations being transposed. Instead of being moved left, nonzero elements are

shifted upwards. Columns are sorted in a decreasing order and nonzero elements' row

indices are saved before storing the value array row by row, Figure 5. In certain

applications like matrix vector multiplication and because columns are initially permuted,

no extra vector is needed to store these permutations as they are already captured and

recovered by reordering the unknown vector accordingly [61]. Thus, it would further save

some space. By following the previous analysis on our sample matrix, and evaluating

Matrix Vector Multiplication, the following is obtained

����� = 2(14 �)+ � = 29 N,

which is the same space as required by (CSR), but in the same time offering more flexibility

and enjoys the characteristics of (JDS).

64

Figure 5: TJDS representation for matrix shown in Figure 2

65

Although specialized formats can further optimize storage, their domain of application is

very tied and problem specific. Skyline Storage (SS) assumes a triangular matric, and

traverses matrix elements column wise in upper triangular or row wise in lower triangular

until it hits the diagonal. It stores data in tow arrays: one for the actual values and another

is a pointer to the start of each row.

Compressed Diagonal Storage (CDS) traverses the sparse matrix in a diagonal fashion and

stores a reference to indicate the diagonal of interest [62].

Despite the fact of their embarrassingly parallel nature [9], matrix vector multiplication

(MV) operations are characterized to be bandwidth bound. That is because MV operations

suffers from limited temporal locality [63] so they do not enjoy the so called surface to

volume effect; i.e. they only perform �(��) ���������� on �(��) ���� [64]. To tackle

this issue, and to increase the density of computation per memory transaction especially on

modern many-core architectures, various sparse block storage techniques with either

padding or by variable block size were utilized [65].

Block coordinate storage (BCOO) approach [66], scans the original sparse matrix row by

row and groups nonzero elements into blocks of a predetermined size. Until all blocks are

visited, elements at each block are recorded in a separate victor. Two other arrays are used

to store the row and column indices to indicate the start of each block while a third vector

holds pointers to the start of the first element in the next block. Example for 3x3 blocks is

shown in Figure 6.

66

Figure 6: Block coordinate storage representation

67

Again, let � be the sparse matrix dimension, � the block size and � the number of blocks.

It is clear then that the length of the array that holds the desired matrix elements is less than

or equal the area of each block times the total number of blocks. i.e.

�����_�������� ≤ �� × �

Specifying the optimal block dimension and shape autonomously is a little bit challenging.

All the previously described formats can be thought of as having blocks of

dimension (1 × 1). Assuming an optimal block dimension has been chosen, it is then

obvious how blocked schemes outperform other representations. After all, we are shrinking

the size of index arrays to point to group of data rather than a single one, and of course, the

larger this group the more saving is achieved. The catch here is that, if blind block

decomposition is initiated, the array that was supposed to hold only nonzero elements

might be dominated by zeroes. Consider for instance storing an identity matrix using

(BCOO), and a block of size �, then the number of nonzero elements per block is (�) and

the overhead storage is (�� − �)! Figure 7

In an attempt to handle the previous issue, and to achieve better performance, Hierarchical

Sparse Matrix Storage Format (HSF) were suggested in [67] as well as some adaptive

blocking techniques were suggested [68].

68

0000000001

0000000010

0000000100

0000001000

0000010000

0000100000

0001000000

0010000000

0100000000

1000000000

Figure 7: Overhead of using BCOO for various block sizes

69

Just like the natural rise of (CRS) and (CCS) as an optimal substitute to (COO), compressed

versions of (BCOO) can be also established and derived. The vectors that stores the spatial

coordinates of each block are further compressed column or row wise and substituted by a

suitable pointer arrays; leading to Blocked Compressed Row Storage (BCRS) and Blocked

Compressed Column Storage (BCCS) respectively. Despite the huge performance benefits

offered by Blocking techniques, it has been reported to result in more than 70%

performance degradation if not utilized properly [66].

When it comes to the general purpose massively parallel machines (GPU’s), and besides

the memory bottleneck problem associated with sparse matrix vector multiplications, there

exists additional constrains to achieve better machine utilization. For example, processing

many short rows will make loop overhead dominates the computational aspect [64, 69].

Various rows lengths lead to load imbalance and indirect device memory access degrades

performance. As a result, and despite the huge advantage of (CRS) and it’s derived forms

of handling any sparsity pattern, the fact that those techniques require separate vectors to

store indices will give rise to more memory transactions and hence limiting performance.

Moreover, and although some sparse storage schemes access the stored coefficient matrix

contiguously, they suffer from irregular access to the multiplicand vector x [70, 71].

Therefore, if the matrix structure is known priory, specific optimizations could be exploited

and a great boost in performance could be achieved if the right representation scheme was

chosen properly.

In an attempt to exploit the diagonal structure that resembles wide range simulation

problems, [72] implemented a blocked version of the diagonal format. In their

70

representation, they are aiming at alleviating the overhead of storing unnecessary diagonal

inter-elements zeros by defining a new data structure that holds the elements of interests

according to predefined degree of freedom (DOF) criteria. [73] introduced a tool to model,

profile and predict the performance of sparse matrix vector multiplication (SpMV) on

GPUs. Based on the modeling and analysis of a given problem, they designed a dynamic

and optimal domain and matrix specific (SpMV) kernel and reported obtaining optimal

solution compared to similar kernels offered by NVIDIA. In his thesis, [74] extensively

analyzed the performance of PETSc [75] GPU implementation with various sparse matrix

storage mechanisms, while [76] studied memory efficiency implications on sparse matrix

operations and introduced a new storage scheme. In his Variable Dual Compressed Blocks

(VDCB) format, and besides memory manipulation, he divides the original matrix into a

number of variable-sized sub-matrices with a bitmap that points to the presence of a non-

zero element. He tested his implementation on FPGA and reported good bandwidth gain

for various test cases.

The issue of sparse matrix vector multiplication has been extensively studied in the past

when CUDA was first introduced. Two famous highly cited papers in [77] and [78]. The

reader is referred to [55, 64, 66, 79-81] For more in depth review of sparse matrices on

CPU, Multicore and Many-Core devices, their representations and comparisons, [62, 82]

for studies dedicated to diagonal matrices, and [66, 67, 72, 83] for blocking restructuring

techniques.

71

2.4 Review of Linear Solver Libraries

Over the past decades, researchers from all around the world have kept developing

multipurpose computational libraries and tools that aid advancing their research by

reducing programming overhead and facilitating rapid deployment and testing of their

ideas. When it comes to linear solvers and computational modeling, [84] have not only

listed and categorized dozens of those libraries but also organized them into sections along

with links to their website.

Eigen[85, 86] is an excellent and reliable sequential library that provides headers to

perform various linear algebra routines. The library has been developed to take advantage

of object oriented C++ and its expression templates, features an easily declared, directly

accessed matrix and vector data structures. Eigen is flexible and enables easily integrated

functions, code reuse and abstraction while maintaining good performance by supporting

various optimizations like explicit vectorization, loop unrolling and static memory

allocation. The open source library is released under MPL219, is supported by many

compilers and has been successfully deployed in many interdisciplinary projects ranging

from simple extensions, mobile applications to demanding simulations. A list of those

projects is listed on the library main page. Eigen supports both dense and sparse matrix

functions with neatly organized, in depth class documentation and test examples. The

library also supports multi-threading using OpenMP [10] and if available the Intel Math

Kernel (MKL) library [87].

19 h�ps://www.mozilla.org/MPL/2.0/

72

When it comes to GPUs, NVIDIA provides a CUDA Sparse Matrix library (cuSPARSE)

for manipulating and operating on sparse matrices [88]. The library provides a collection

of basic linear algebra functions that are called from C++ programs. They reported around

8x faster performance gain over their direct competitor Math Kernel Library (MKL)

offered by Intel [87]. The library has been used extensively by the researchers as it provides

fast and reliable performance with ease of programming and development effort. For

example [89] utilize it to implement (ILU) and Cholesky factorization for iteratively

solving linear systems, while [90] used it to accelerate the modeling of deformation of soft

tissue using (FEM). [91] made use of the library to boost image segmentation

implementation; and [92] apply it for image reconstruction.

 Similar to cuSPARSE, the CUSP library [93] provides a wrapper for many functions in

cuSPARSE.. It was designed solely to take advantage of the intensive computational aspect

of the massively parallel NVidia's GPUs. It is released under the Apache 2.0 open source

license. The CUSP library is an inevitable starting point for CUDA developers writing

parallel scientific computing applications. The library not only provides abstraction and

easy to call cuSPARSE and cuBLAS [94] routines, but also reports good performance.

Moreover, the developed applications can be smoothly integrated with THRUST library

[95] to enable fast prototyping. CUSP could be used directly by including the associated

interface files, and provides dozens of graph algorithms and sparse linear algebra routines

easily deployed with many available sparse storage schemes and preconditioners.

73

PARALUTION [96] supports dozens of well-organized and easily deployed methods for

performing plenty of sparse matrix linear algebra routines. Not only it supports various

parallel hardware architecture [CPU, NVIDIA GPU, AMD GPU, Xeon Phi (MIC)], but it

can also be configured to run on various operating systems and use various plugins. The

library comes with useful ready to run examples, and the online documentation provides

class hierarchies and in depth implementation details. This open source project exploits

object oriented programming paradigm in C++, taking advantage of code reuse,

inheritance, clarity, maintainability and abstraction. It is released under GPLv320. The

library implements various sparse storage schemes with neat functions to covert among

them. The list of the provided linear solvers along with the available preconditioners is

quite intense as well. Although vectors defined under this library can be easily accessed

directly, matrices are not. The issue that has been discussed in the user manual along with

some suggested solutions. The library generic implementation and independence,

facilitates fast prototyping and testing. Nevertheless, this comes with a price of degrading

performance as was tested in our simulator.

20 http://www.gnu.org/licenses/gpl-3.0.html

74

3 CHAPTER 3

COMPUTATIONAL MODELS, EXPERIMENTATIONS

AND RESULTS

This chapter describes the computational aspect of the simulator. The first section starts by

presenting the general operations for both the forward and the inverse models. Section two

provides an analytical study for selecting a suitable linear solver for both reservoir

problems. Section three then presents an exhaustive experimental evaluation of two

nominated parallel solvers in section two applied for matrices extracted from our developed

simulator. We concluded that although GMRES is a widely used solver for sequential

reservoir simulation; BiCGSTAB with proper preconditioning provides faster performance

on parallel machines. In section four and with the focus on the reservoir resulting matrix

specific structure, we experiment the issue of parallel sparse matrix vector multiplication

on Hepta-Diagonal Matrices. After that, we make use of the famous operation merging

trick to attempt implementing a faster version of BiCGSTAB algorithm. Finally, section

six extends the implementation presented in section five to implement a same parallel

solver but dedicated for multiple right hand side matrices encountered in reservoir history

matching.

75

3.1 Computational Model for Reservoir Simulation

Figure 8 describes the whole history matching process from computational perspective.

The process starts by the forward simulation model by assuming certain reservoir

parameters and repeatedly estimating the values of other state variables. At the end of this

process, the system then starts the inverse model based on the final retained values of the

estimated state variables. The inverse model leads to the computation of the sensitivity

matrix that is eventually used in history matching. The sensitivity matrix could be obtained

by either the forward sensitivity approach or the adjoint state method. Regardless of the

followed method, obtaining sensitivity matrix requires the solution of a linear system with

multiple RHS. To reduce the dimensionality of the system, some reduction techniques are

optionally utilized. The details for each individual step are described next.

3.1.1 The Computational Model of the Forward Simulation Scheme

Without loss of generality, Figure 9 shows how the final assembled system for small grid

dimension looks like.

76

4.

5.

6.

7.

8.

9.

Figure 8: The Computational Model for Oil Reservoir History Matching

77

Figure 9: Sample snapshot of the assembled linear system for FSR, (J, I and H): is the maximum number of
steps in the z, x and y directions, respectively

78

For a 3D problem and two simulated phases discretized using Finite volume method, it is

clear that the maximum number of non-zero elements at each row is 14. Let m be the total

number of grid cubes, then the size of the Jacobian matrix is (2m × 2m), and the total

number of non-zero elements are at most (14 × 2m). As a result, the fraction of non-zero

elements in the system is less than

14 × 2m

2m × 2m
=

7

m

It is obvious that special care should be taken when selecting a suitable solver for

implementation, especially for practical dimensions (m = 10�), as most of the operations

on the zero elements are not necessary and should be avoided to reduce the computational

complexity.

Not only the Jacobian matrix is sparse, but also it is unsymmetrical, ill-conditioned and has

a special Hepta-Diagonal structure. That thing also influences the selection or

implementation of any linear solver. More details on this computational model could be

found in the Appendix.

3.1.2 The Computational Model of the Inverse Simulation Scheme

 Forward Sensitivity Approach

The forward sensitivity process starts right after completing the whole forward reservoir

simulation, for a given time step and for the initially assumed reservoir parameters. It

repeats until the estimated parameters are matched. At this stage, we aim at simultaneously

solving the system.

79

 A��× �� × X��× � = B��× �

B = {b�,b�,… b�} & m is the total number of grid blocks

The coefficient matrix A is the same Jacobian matrix obtained in the forward model that is

blocked Hepta-Diagonal and sparse. It is also ill-conditioned and unsymmetrical. B is a

combination between diagonal matrix and other hepta diagonal sparse matrices. Figure 10,

demonstrates the computational aspect of this approach. The figure shows four modules

used to formulate the linear system with multiple right hand sides (RHS) that are described

as follows:

 Module 1: Computing the partial Derivatives (Or Jacobian matrix (J) for the last

retained values of (�� & ��) from current iteration. The matrix structure and

characteristics are the same as the previous one in the forward model.

 Module 2: blocked diagonal matrix (D) of size (2� × 2�) that represent the mass

accumulation for each phase Eq. (1.25) and calculated using Eq.(1.29)

 Module 3: matrix (Y) of size (2� × �). It is constructed by analytically taking the

derivative of the residual equations (��& ��) with respect to the perturbed

parameter (�). This matrix is also sparse blocked-hepta diagonal.

 Module 4: The sensitivity matrix, denoted by S, of size (2� × �) , initially zero

and updated at every time iteration. The assembled system solves the system of

multiple RHS for new S.

80

The final assembled system will have the form as presented in Eq. (1.27). Again this is

computationally very expensive for practical reservoir dimensions and special care should

be taken when choosing a suitable solver. One characteristic of Equation (1.27) is that the

matrix J is the same for all the independent multiple right-hand-side vectors and the huge

cost of either its factorization or preconditioning is alleviated by its repetitive utilization in

the solution. Nevertheless, if the number of parameters of the system is very huge, the

(RHS) size will also be very huge and the computational time of solving the previous

system becomes prohibitive. Moreover, the forward sensitivity approach computes the

sensitivities of the state variables at all grids leading to redundant calculations as

sensitivities at well locations are the only ones required in the solution of the inverse

problem.

An alternative that addresses the last two limitations is the adjoint-state method in which

the computational time depends mainly on the number of data to be matched. The adjoint

method also has the property of directly computing the sensitivities of well variables at

well locations only.

81

Figure 10: Inverse Model: Forward Sensitivity Approach

82

Adjoint Sensitivity Approach

From computational perspective, the goal is again to solve a system with many (RHS) in

order to get the sensitivity matrix that is used later for matching data. Unlike the forward

sensitivity method, the width of the (RHS) in this case is the actual data to be matched

rather than the number of parameters to be estimated. Moreover, and unlike the previous

approach, the adjoint method requires the forward reservoir simulator (FRS) to complete

all its time iterations, and to store some needed data, like the Jacobian for all iterations.

After that, and starting from the last time step, the assembled system of multiple (RHS) is

solved in a backward substitution manner [Eq. (1.48)] and the sensitivity matrix is built at

each backward step. The whole computational model is better explained in Figure 11. The

J & D elements that constitute the multiple (RHS) are the same as the ones described in

module 1 and 2 in the forward sensitivity approach, except we are taking the transpose of

the Jacobian matrix. �
��

����⃗ �
� contains the derivatives of the data to be matched with respect

to state variables (P�& S�). λ��⃗� is initially the adjoint variable resulted by adjoining the

constrains to the data to be matched. Let k:number of data to be matched. Then λ�⃗� is of

size 2m × k, while �
��

����⃗ �
� is of size k × 2m .

83

Figure 11: The computational model for the Adjoint Sensitivity Approach

84

3.2 Analytical Parallel Linear Solver Selection

The finite volume discretization of flow equations that governs two-phase oil water

reservoir behavior in the forward modeling will yield a sparse system having ill-

conditioned unsymmetrical coefficient matrix with Hepta-diagonal profile and 2 × 2 block

representing each entry. Moreover, the inverse problem requires solving either the same

matrix, forward sensitivity approach, or its transpose in the case of adjoint sensitivity

approach, with multiple right hand side.

With the goal of writing a parallel code to speed up the computational process for our

black-oil simulator, this section reviews four applicable preconditioned Krylov methods of

interest. Our final selection will depend on analyzing the concurrency of each algorithm as

well as the usually addressed issues of storage, accuracy and convergence. Given that

perspective, the following iterative solvers will be nominated for further study: The

Generalized Minimum Residual Method (GMRES) by Saad and Schultz [47], The Bi-

Conjugate Gradient Method (BiCG) by Fletcher [48], the quasi-minimal residual method

(QMR) by Freund and Nachtigal [49], and finally, the Bi-Conjugate Gradient Stabilized

(Bi-CGSTAB) by Van der Vorst [50].

The rationale behind selecting the above four for further analysis is three folded. First, the

coefficient matrix (A) of interest has certain properties that put further restrictions on any

selection. Because of its very large dimensions and the sparsity pattern, direct methods will

be excluded because of their reported memory demands. Moreover, as (A) is ill-

conditioned, stationary iterative methods will not be considered because of issues related

85

to convergence. Finally, since (A) is unsymmetrical, some Krylov based methods dedicated

for symmetrical systems will not be taken into account. Second, to study the variation

among the same classification class, we chose to include QMR and BiCG as representatives

of the Petrov–Galerkin approach. For interclass comparison we study BiCGSTAB from

the hybrid camp and the famous GMERS for its desirable reported stability from the

minimum norm residual methods. Third, as sound parallel implementation will eventually

serve in reducing the overall execution time or enabling larger problems to be handled with

the same sequential time, the selected solver should have high degree of data independency

regardless of the amount of work involved. Moreover, the selected algorithms should be in

harmony with the target parallel architecture as the later imposes additional constrains.

With different permutations and various scaling, Krylov subspace methods share common

operations ranging from an embarrassingly parallel tasks like sparse matrix vector

multiplication, to norm calculations, dot product as well as vector updates, Table 3. It is

worth mentioning such a table is constructed with relaxed but unified assumptions and its

only purpose is to give a general overview. The estimation of the Required Steps to

Complete Tasks in Parallel is established by assuming infinite processing and memory

resources, zero communication penalty and by neglecting all other overhead. Without loss

of generality, in reduction example like vector multiplication and assuming a matrix

dimension of size (�), at least ���(�) steps are needed before producing the final answer

[97]. Moreover, matrix vector multiplication can be seen as the process of performing (�)

independent reductions. Assuming that every worker will be responsible for calculating

one element in the resulting vector by processing its corresponding row and column, then

86

each calculation will require log (�) steps. Finally and given the above assumptions, vector

update is done instantly in one step. On the other hand the estimation of the available

parallel work is established as follows: the reduction operation requires � processing

elements at the beginning, �/2 in the next iteration, followed by �/4 and so on. In other

words, the total work that could be completed in parallel could be calculated as:

����������������= � +
�

2
+

�

4
+ ⋯ + 2 + 1

= � �1 +
1

2
+

1

4
+ ⋯ +

1

�
�.

Between the above parentheses is a Harmonic Series with its sum equals ln(�)+

����� ���ℎ����� ��������. Therefore and for the reduction case,

����������������= �. ���(�)

87

Table 3: The main tasks the constitute Krylov Linear Solvers with an anticipated associated parallel
complexities

Operation Required Steps to complete

Operations in Parallel

(Infinite Resources)

Estimated Available

Parallel Work

Example

Work Sharing �(���(�)) �����(�)21

Matrix-vector

multiplication. (��)

Solving a sparse

preconditioned

linear system
�(�) assumed �� (assumed) �� = �

Reduction �����(�)� ����(�)
Vector multiplication.

(�. �)

Vector Update �(1) �
� = � ± �

Vector Scaling �(1) � � = ��

Scalar operation �(1) 1
� = � ± � or

� = � × �

3.2.1 The Generalized Minimum Residual Method (GMRES)

GMRES identifies x� for which the Euclidean norm ‖b − Ax�‖� is minimal over the

Krylov subspace generated by A and r�. As much as the method is well known for its

robustness [37, 45, 47], it is also characterized by demanding large resources as the

computation proceeds. The method is based on the Arnoldi-modified Gram-Schmidt

procedure to build orthogonal basis of the Krylov subspace [56] and produces an upper

Heisenberg matrix before finally the approximated solution is computed. [55] showed that

if the coefficient matrix A is positive definite, then GMRES algorithm converges for any

dimension of the considered Krylov space. To address storage issues, restarted versions

21 N for the all the rows, and N.LOG(N) for every reduction in a row

88

were introduced where only intermediate results are used in order to compute the next m

iterations as initial data after the already accumulated data are erased [56]. The challenge

remains in picking up suitable value of such (m) as its value is problem specific and bad

choice may either result in unnecessary slow convergence or even failing of convergence.

One realization of the algorithm as presented by [45] is shown in Algorithm 1. To obtain

the final solution, GMRES requires solving an upper triangular system after applying some

plane rotations. Let (�) be the matrix leading dimension and (m) the restart value. Besides

storing the original matrix, we notice the need for a long recurrence22 for computing the

Arnoldi iteration. Moreover, GMRES needs to store five main arrays of size (N); they are

namely (�,��,�, y and x). Moreover an array of size (� ∗ �) is needed to store v���. As a

result, and by ignoring spaces required to store scalars or vectors of small sizes compared

to (�) like the space needed to store (�), the minimal total storage required by GMRES

is:

���������� = ����� �� ����� �ℎ� �������� ������ + �(5 + �).

22 Dependencies needed by subsequent iterations

89

Algorithm 1: Preconditioned GMRES (m) Method as presented in [45]

90

The main transactions per iteration in GMRES Algorithm, can be approximated as

follows:(2� + � + 2) reduction operations23, (� + 2) vector updates and (� + 1) matrix

vector multiplications. Although the sequence of operations in GMRES Algorithm, could

be mapped directly to efficient parallel GPU kernels, the algorithm itself poses an inherent

sequential behavior [98].

3.2.2 The Bi-Conjugate Gradient Method (BiCG)

As a generalization for the famous CG solver and following the Petrov–Galerkin approach,

BiCG identifies x� for which the residual b − Ax� is orthogonal to some other suitable k-

dimensional subspace [37]. By utilizing both the original coefficient matrix A, and its

transpose A�, the BiCG method aims at generating two CG-like sequences of vectors that

are mutually orthogonal to be used to update the residual as well as the search direction

[45]. As the method may either breakdown and because of the reported irregular

convergence behavior [35, 45], other approaches such as QMR and Bi-CGSTAB were

suggested as a replacement. The general algorithm [45] for this process is shown in

Algorithm 2.

BiCG method consists of a series of sparse matrix vector multiplications as well as vector

updates. The implementation of the algorithm is straight forward. By comparing its

sequence of operations with the previously shown one in GMRES, we expect BiCG to

scale better and to consume less storage. Nevertheless, due to its failure conditions and to

account for the case where A� is not present, we will consider one of its enhancements.

23 Every matrix vector multiplication operation has an embedded reduction task

91

Algorithm 2: Preconditioned BiCG Method as presented in [45]

92

Besides the space needed to store the original matrix, the algorithm needs ten auxiliary

vectors of size N to process data. Those are (r,r�,z,z�,p,p�,q,q�,b and x). As a result the

minimal total storage required by BiCG is

STORE���� = Space to Store the Original Matrix+ 10N.

For the main transaction per iteration, there are four reduction operations, five vector

updates (lines:10,11,18,19,20), and two matrix vector multiplication.

3.2.3 The Bi-Conjugate Gradient Stabilized Method (BiCGSTAB)

Bi-CGSTAB can be seen as a product of BiCG algorithm and repeated application of

GMRES algorithm of degree one [45]. In that sense, the operation with �� is transformed

to another polynomial in �. The convergence is smoother and may even be faster than

BiCG [35]. A preconditioned version of BiCGSTAB as presented by [45] is shown in

Algorithm 3.

Similar to BiCG, the main operations of the algorithm consists of sparse matrix vector

multiplication as well as vector updates and dot products. The sequential implementation

is also straight forward. BiCGSTAB makes use of ten vectors to complete its computation

in addition to the original matrix storage. We can identify (x,b,r,r�,p,p�,v,s,s� and t). As a

result the minimal total storage required by BiCGSTAB is

STORE�������� = Space to Store the Original Matrix+ 10N

For every iteration, we can identify seven reduction operations, four vector updates, and

finally two matrix vector products.

93

Algorithm 3: Preconditioned BiCGSTAB Method as presented in [45]

94

3.2.4 The Quasi-Minimal Residual Method (QMR)

With almost similar computational cost and parallelization properties as BiCG, QMR was

designed originally to avoid the irregular convergence behavior as well as one of the two

breakdown situations of BiCG by solving a reduced tridiagonal system in a least-square

sense [45]. QMR uses a look-ahead variant of nonsymmetrical Lanczos process to generate

basis vectors that is induced by matrix � and can be implemented using short recurrences

[49]. Beside the smooth convergence property compared to BiCG, it is possible to obtain

error bounds for QMR similar to the standard bounds for GMRES [49]. Algorithm 4, shows

a preconditioned version of OMR as presented by [45].

Again besides the storage space for the input matrix, QMR demands a minimum of sixteen

additional vectors to find the solution vector and residual. Those are

mainly (b,r,x,v,v�,w ,w�,y,y�,z,z�,q,p,p�,s and d). Therefore, the minimal total storage

required by QMR is

STORE��� = Space to Store the Original Matrix+ 16N

When it comes to the main operations within an iteration, we can identify seven reductions,

eight vector updates, and finally two matrix vector products.

95

Algorithm 4 :
Preconditioned

QMR Method as
presented in [45]

96

3.2.5 Linear Solver Selection Based Tradeoffs

We aim at selecting a solver that suits the most our implemented oil reservoir simulator.

Despite their tremendous flavors and the dozens of available implementations nicely

summarized in [99], picking up a universal and efficient parallel sparse linear solver is very

challenging as many mutually interacting and application specific factors stands in the way.

Table 4 summarizes the obtained analysis of the storage requirement for the four nominated

solvers. It can be seen that both BiCG and BiCGSTAB demands the least storage among

the four solvers if practical restart values are used in GMRES.

Table 4: The Storage Requirement for the four solvers

Linear Solver Storage Requirement

GMRES(m) ������ + �(5 + �)

BiCG ������ + 10�

BiCGSTAB ������ + 10�

QMR ������ + 16�

One can also anticipate the parallel behavior of an algorithm from the number of required

reductions. Usually, the more the reductions, the longer the sequential steps to be followed

and roughly the lower the scalability of an algorithm. Let m be the restart number in

GMRES and Iter: the number of required iterations, Table 5 lists the needed reductions for

the nominated algorithms based on previous analysis.

97

Table 5: Number of reductions in the four nominated algorithms

Algorithm Number of Reductions

GMRES �2m + 2 + � i

�

���

 � ∗ Iter

BiCG 4 ∗ Iter

BiCGSTAB 7 ∗ Iter

QMR 7 ∗ Iter

Table 6 summarizes the main transactions per iteration that are utilized by every solver.

Such operations could be transformed later to efficient GPU parallel kernels. As those

algorithms are composed of the same operations but with different ordering and counts,

they all poses good degree of data parallelism. Generally speaking and according to

Amdahl’s Law [100], an algorithm with fewer number of transactions would be more

scalable and faster. However, this is true and should only be interpreted per iteration. The

overall speed of a given Krylov solver is subjected to many other factors including the

utilized preconditioner, the matrix condition number and the convergence characteristics.

Table 6: Summary of the number of main transactions within an iteration

 Reduction

(Dot Product)

Matrix Vector

Product

������ ������

� = �� + ��

GMRES(m) 2m + i+ 2 i+ 2 m + 1

BiCG 4 2 5

BiCGSTAB 7 2 4

QMR 7 2 8

98

The convergence of Krylov subspace methods depends on the spectral properties of both

the coefficient and preconditioned matrix. Convergence comparison can be achieved by a

numerical experiments with a clear stopping criteria and using an appropriate norm. The

only convergence result for Krylov subspace method is given in the following theorem

[101]. Similar inequality also hold for the remaining three solvers.

Theorem: Let �(�) denote the iterate generated after � steps of GMRES iteration, with

residual �(�). If � is diagonalizable, that is , � = ����� where � is the diagonal matrix

of eigenvalues of � and � is the matrix whose columns are the eigenvectors, then

��(�)�

‖�(�)‖
≤ �(�) ���

��∈��,��(�)��
���

��

�������� ,

where �(�) = ‖�‖‖���‖ is the condition number of �.

Accuracy depends on how many iterations the solver is allowed to perform. Theoretically,

for all these solvers, Cayley-Hamilton theorem states that the exact solution (100%

accuracy) is obtained in at most � iterations where � the size of the matrix is.

The following points summarize our selection criteria for the linear solver:

 First we exclude the famous GMRES algorithm, as it demands lot of computational

resources. A suitable preconditioner will be utilized to improve the convergence

with other solvers.

99

 We also exclude BiCG, as it poses some related convergence problems not to

mention the existence of an enhancement with similar parallel behavior which also

belong to the same class of BiCG.

 To choose between QMR and BiCGSTAB we further try to analyze concurrency

profile

3.2.6 The Study of Concurrency Profile for BiCGSTAB and QMR

Independent of the number of available processors, assignment or orchestration, the

concurrency profile shows the number of tasks that could be performed concurrently in a

given time [102]. It could be derived and constructed by plotting the number of available

operations at every level in the dependency graph versus the level number. Figure 12 and

Figure 13. The number of available concurrent operations per iteration, in the

preconditioned version of the two solvers is shown in Table 7. Estimated available parallel

work was taken from Table 3.

100

Table 7: The number of available concurrent operations in QMR and BiCGSTAB. N is matrix leading
dimension

Level QMR BiCGSTAB

1 � + �����(�) � + �����(�)

2 2� �

3 2�� ����(�)

4 2����(�) 1
5 4N 3�

6 2�� + ����(�) ��

7 3� �����(�)

8 �����(�) � + ���(�)

9 � ���(�) 2�

10 1 ����(�)

11 3� + �����(�) ��

12 2�� �����(�)

13 2����(�) 2����(�)

14 2� 5�

15 1

16 1

17 4�

18 2�

101

Figure 12: QMR Data Dependency Graph

102

Figure 13: QMR Data Dependency
Graph

103

The resulting plots of concurrency graphs are shown in Figure 14 and Figure 15. The total

amount of computational work is then calculated by estimating the area under the resulting

constructed line segments. [102] has showed if the previous assumptions were considered

and if unlimited number of processors were utilized, then the maximum achievable speed

up is less than or equal the value of average parallelism24. Despite our relaxed assumptions,

especially for the parallel amount of work involved in solving the preconditioned system,

the average parallelism in BiCGSTAB algorithm is slightly higher than its counterpart in

QMR algorithm.

24 Average Parallelism is calculated by dividing the area bounded by the line segments in the dependency
graph over the horizontal access extent.

104

Figure 14: Concurrency Profile of QMR with N=64

105

Figure 15: Concurrency Profile of BiCGSTAB with N=64

106

Next we attempt to further exploit the dependency graphs Figure 12 and Figure 13 as well

as the constructed concurrency profiles Figure 14 and Figure 15, for comparing the QMR

and BiCGSTAB Algorithms in terms of their estimated parallel cost. We start by

identifying the span of each algorithm25, Figure 16 and Figure 17. We then associate every

link in the path with a cost function based on the perspective required steps to complete its

operations in parallel when assuming Infinite Resources, as was demonstrated in Table 3.

To summarize that in numbers, Table 8 shows the quantification of the estimated parallel

cost when a matrix of leading dimension � = 1024, while Figure 18, plots the acquired

results.

Table 8: Estimated parallel cost based on the perspective required steps to complete its operations in parallel
when assuming Infinite Resources

Algorithm Estimated required steps to

complete operations in parallel

for the SPAN

Summary of Parallel

Cost

Estimated

Parallel Cost

for N = 1024

QMR ��� (�)+ 1 + � + ��� (�)

+ 1 + � + 1 + ��� (�)

+ ��� (�)+ 1 + 1 + �

+ ��� (�)+ 1 + 1 + 1 + 1 + 1

5���(�)+ 3� + 10 3132

BiCGSTAB ���(�)+ 1 + ���(�)+ 1 + 1

+ � + ���(�)+ ���(�)+ 1

+ ���(�)+ � + ���(�)

+ 2���(�)+ 1

8���(�)+ 2� + 4

2132

25 The span: is the longest serial path of the algorithm

107

Figure 16: QMR Span

108

Figure 17: BiCGSTAB Span

109

Figure 18: A comparison between the estimated parallel cost based on the perspective required steps for QMR and
BiCGSTAB Algorithms, with matrix leading dimension N = 1024. The smaller the parallel cost, the better.

110

To enable a more compact realization of the parallel cost and the associated algorithmic

complexity, we introduce a new universal graphical abstraction model which conserves

data dependency. When applied to Krylov subspace methods and without loss of

generality, the method takes the following steps:

1. Construct a data dependency graph for the selected algorithm (DDG).

2. The related tasks are grouped into functions that can be efficiently invoked from

optimized library. For example, Intel Math Kernel Library [87] and CUBLAS [94]

3. Analyze the parallel complexity of each of the grouped tasks. The work flow of

Krylov solvers consists of known building blocks detailed Table 3

4. Associate each edge in the dependency graph with a weight equals the estimated

parallel cost, Table 3

5. Extract the span, the longest path of the algorithm.

6. Construct the Abstract Parallel Complexity Graph (APCG) by converting every

node in the span to an abstract node (AN) represented by a box whose width is

proportional to the estimated parallel cost in step 3. The order of the operations

should remain preserved.

The construction of the Abstract Parallel Complexity Graph (APCG) is mainly based on

functional decomposition with its associated temporal dependency, which in turns yields

limited scalability according to Amdahl’s Law. Nevertheless, that decomposition and the

resulted (APCG) is not only a primary step in the analysis procedure that guides

implementing an optimized parallel code, but also servers the following advantages:

111

1. Presents a global abstract visual analytical way for comparing various parallel

algorithms.

2. Structuring functional parallelism to better make use of parallel design patterns to

support automatic parallelism.

3. Shedding light on the limitations associated with certain algorithms and their

inevitable serial behavior.

4. Optimizing parallel programs by pipelining the consecutive task groups,

discovering common patterns and controlling the granularity levels by single or

hierarchical merge of two or more nodes. Useful parallel patterns could be found

in [6, 9]

Figure 19, shows the constructed graph for both BiCGSTAB and QMR. General speaking,

the parallel computational work inside any algorithm is achieved by either a single thread

or many cooperating threads. The associated presented earlier complexities

�O(n),O�Log(n)�,O(1)� will depend on the operational context throughout the program

execution. We will call the flow of data from operations requiring O(1) to another O(1) a

linear operation. A scatter, one to many, operation takes place from tasks requiring O(1)

followed by either O�Log(n)� or O(n) operations. The opposite is a reduction, many to

one, operation. The final combination is the broadcast, many to many, that mimics the flow

of data from operations with O�Log(n)� or O(n) to other operations of either O�Log(n)�

or O(n). An example of a linear operation is vector update followed by vector scaling. One

optimization is to merge such operations together so that they are performed by the same

worker. Other examples could be constructed in the same way.

112

Figure 19: The Abstract Parallel Complexity

Graph (APCG) for BiCGSTAB and QMR

113

For example, referring to Figure 19, the possibilities of two extracted consecutive patterns

are presented in Table 9, along with their associated interpretations. Similarly, other n-way

patterns could also be constructed by grouping three or more consecutive patterns. The first

combinations of a tri-pattern are in Table 10.

Table 9: Two consecutive patterns possibilities for tasks representing Krylov Solvers

one to many

(scatter)

Many to

one(gather)

Many to one

One to Many

Many to many

(broadcast)

Many to many

(broadcast)

Many to many

(broadcast)

114

Table 10: Three consecutive patterns possibilities for tasks representing Krylov Solvers

Linear

One-many-one

(scatter-gather)

One-one-many

(linear-scatter)

One-one-many

(linear-scatter)

One-many-one

(scatter-gather)

One-one-many

(linear-scatter)

One-many-many

(scatter-broadcast)

One-many-many

(scatter-broadcast)

One-many-many

(scatter-broadcast)

As the span, the sequential path, of BiCGSTAB is shorter than the span of QMR, we may

expect BiCGSTAB to scale better than QMR. Nevertheless, this is somehow a relaxed

conclusion as lot of other factors may take place, one of which was discussed above about

the combination of some operations to create a shorter path. For instance, if we merged all

tasks taking O(1) with either its predecessor or successor, then QMR will have a shorter

span than BiCGSTAB!

115

Based on the above discussion, we decide to select BiCGSTAB, as the chosen solver to be

parallelized and incorporated in our parallel reservoir simulator. A support to this choice

will be further verified via experimentations.

3.3 Experimental Parallel Linear Solver Selection

Objectives:

 Examining how the parallel execution time of various already implemented parallel

iterative linear solvers in CUSP library is affected with various sparse storage

mechanisms.

 To get an initial insight about the solver that suits our developed reservoir

simulator.

Experimental Setup and Conditions:

 Five large matrix samples at different time iterations of the forward reservoir

simulator have been extracted and their condition number was measured Figure 9.

 Each sample represents a 3-D structured grid with (2 x 2) block entries distributed

in a Hepta-diagonal fashion as resulted from finite volume discretization.

 Matrix representing Sample_0 is assembled at the first time iteration of the

simulator, and its coefficients are a combination of various reservoir parameters

(permeability, compressibility …), oil pressure values �� and water saturation

levels ��.

116

 As the simulation time proceeds, elements composing the coefficient matrix

changes as both �� ��� �� get updated and other samples are extracted.

 Tests were performed on a node in an HPC cluster offered by the Information

Technology Center at KFUPM featuring a Xeon E5-2680 10-Core, 2.8 GHz (Dual-

processor) and Tesla k20x GPU [103], Table 12 . A Comparison of different

compute capabilities for GPU Architecture is presented in [103].

Table 11: Condition number for various samples of the reservoir simulator

Matrix Dimension [120,000 x 120,000]
Avg. Number of
Non-Zeros

[1512800]

Sampling Time Condition Number
0 1.279E+05
31 1.112E+06
62 1.873E+06
93 3.548E+06
124 4.708E+06

117

Table 12: TESLA K20X GPU ACCELERATOR26

Table 13: Comparison of different compute capabilities for GPU Architecture27

26 http://www.nvidia.com/content/PDF/kepler/Tesla-K20X-BD-06397-001-v05.pdf

27 http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf

118

Method:

 We start first by examining how the parallel execution time of different solvers is

behaving with different sparse storage mechanisms.

 We use the CUSP implemented CUDA versions of the solvers. Each matrix in

Table 11, and with a given storage format were tested across various restarted

versions of GMRES (5, 15, 50, 1000) and BiCGSTAB.

 To speed up convergence, we made use of the available Bridson approximate

inverse preconditioner that reduces the fill-in and improves convergence vi

reordering elements in coefficient matrix [104].

 Each experiment was repeated ten times and the average as well as some statistics

were reported, Figure 20 to Figure 24. T1 to T10 represents the recorded time for

every experiment.

 Each of the previous samples was examined using four available different sparse

storage mechanisms: Compressed Row Storage (CSR), ELLPACK (ELL), Hybrid

(HYB), and Coordinate Format (COO).

Results and Discussion

Figure 25 to Figure 30 show the results of plotting the execution time for different matrix

storage schemes at different samples drawn from our simulator and for the two mentioned

preconditioned iterative linear solvers. Every Sample plot is accompanied with another

semi-log plot that shows the relative residual per-iteration with a minimum28 tolerance

28 It may also reach 1e-7 or 1e-8 depending on the matrix sample

119

value of 1� − 6 . Let � be the iteration number, and the residual ��� = ‖� − ��‖�, then

the relative-residual is calculated as ������ = log��(���(�) /���(0)). The following are

observed and concluded:

 Solver convergence is independent of the utilized storage scheme. However, the

solver execution time is.

 Even for the same matrix structure but with different data values, it is difficult to

specify an absolute storage scheme that gives the best performance time. For

example, in Sample_0 and for all solvers, COO outperforms HYB. This is not the

case for �����(5) in Sample_93. This could be attributed to the utilized

preconditioner that approximate the inverse by exploiting the reordering property

to minimize the fill in [93] [104] [105] .

 As time step in our reservoir advances, more iterations would be needed for

reaching an accepted convergence level. This is clearly seen in the relative error

plot as it is steeper in early reservoir samples. Compare for instance the relative

error in Sample_0 and Sample 93. The previous behavior is due to an increase in

the condition number of the assembled system as the time advances; the thing that

in turns require more iteration to converge.

 A proper restarted version of �����(�) may be shown to outperform

BiCGSTAB for different storage formats. However, automatic identification of an

optimal restart value is not possible. Moreover, and although �����(�) enjoys a

smoother convergence behavior shown in the relative residual plot, it demands lot

of storage space.

120

Figure 20: Average Parallel Execution Times for Sample_0

0 Conf. Coeff: 1.96

So
lv

e
r

Sp
ar

ci
ty

A
ve

ra
ge

ST
D

M
ar

gi
n

 E
rr

o
r

U
p

p
e

r
B

o
u

n
d

Lo
w

e
r

B
o

u
n

d

M
ax

M
in

R
an

ge

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

HYP 1.75 1.73 1.74 1.73 1.77 1.74 1.77 1.74 1.77 1.74 1.748 0.016 0.010 1.758 1.738 1.770 1.730 0.040

ELL 1.74 1.73 1.77 1.75 1.77 1.74 1.76 1.73 1.74 1.73 1.746 0.016 0.010 1.756 1.736 1.770 1.730 0.040

CSR 1.63 1.62 1.7 1.62 1.6 1.59 1.59 1.62 1.59 1.59 1.615 0.034 0.021 1.636 1.594 1.700 1.590 0.110

COO 1.69 1.69 1.73 1.69 1.74 1.69 1.75 1.68 1.75 1.72 1.713 0.028 0.017 1.730 1.696 1.750 1.680 0.070

HYP 1.83 1.79 1.73 1.72 1.72 1.72 1.72 1.74 1.71 1.74 1.742 0.038 0.024 1.766 1.718 1.830 1.710 0.120

ELL 1.75 1.73 1.72 1.74 1.76 1.75 1.75 1.75 1.75 1.74 1.744 0.012 0.007 1.751 1.737 1.760 1.720 0.040

CSR 1.64 1.62 1.63 1.62 1.65 1.64 1.63 1.63 1.62 1.62 1.630 0.011 0.007 1.637 1.623 1.650 1.620 0.030

COO 1.67 1.71 1.68 1.72 1.68 1.68 1.67 1.66 1.63 1.66 1.676 0.025 0.016 1.692 1.660 1.720 1.630 0.090

HYP 1.8 1.77 1.75 1.75 1.77 1.76 1.74 1.76 1.78 1.78 1.766 0.018 0.011 1.777 1.755 1.800 1.740 0.060

ELL 1.77 1.76 1.76 1.77 1.75 1.76 1.78 1.8 1.75 1.75 1.765 0.016 0.010 1.775 1.755 1.800 1.750 0.050

CSR 1.65 1.69 1.65 1.66 1.65 1.66 1.64 1.65 1.7 1.66 1.661 0.019 0.012 1.673 1.649 1.700 1.640 0.060

COO 1.75 1.69 1.67 1.69 1.68 1.67 1.68 1.72 1.7 1.76 1.701 0.032 0.020 1.721 1.681 1.760 1.670 0.090

HYP 1.94 1.9 1.88 1.9 1.94 1.89 1.89 1.94 1.89 1.89 1.906 0.024 0.015 1.921 1.891 1.940 1.880 0.060

ELL 1.89 1.91 1.87 1.88 1.92 1.88 1.91 1.88 1.89 1.88 1.891 0.017 0.010 1.901 1.881 1.920 1.870 0.050

CSR 1.77 1.78 1.77 1.78 1.8 1.77 1.78 1.79 1.77 1.79 1.780 0.011 0.007 1.787 1.773 1.800 1.770 0.030

COO 1.81 1.82 1.81 1.85 1.82 1.84 1.82 1.84 1.8 1.81 1.822 0.016 0.010 1.832 1.812 1.850 1.800 0.050

HYP 1.87 1.81 1.81 1.85 1.81 1.86 1.81 1.8 1.85 1.81 1.828 0.026 0.016 1.844 1.812 1.870 1.800 0.070

ELL 1.78 1.76 1.78 1.7 1.71 1.75 1.71 1.73 1.72 1.71 1.735 0.030 0.019 1.754 1.716 1.780 1.700 0.080

CSR 1.69 1.64 1.72 1.7 1.66 1.66 1.67 1.71 1.67 1.71 1.683 0.027 0.017 1.700 1.666 1.720 1.640 0.080

COO 1.73 1.73 1.73 1.72 1.73 1.77 1.74 1.84 1.74 1.76 1.749 0.035 0.022 1.771 1.727 1.840 1.720 0.120

G
M

R
ES

(1
0

0
0

B
iC

G
S

T
A

B

Condition Number 1.279E+05 Matrix_Sample

Parallel Execution Time

G
M

R
E

S(
5)

G
M

R
ES

(1
5

)
G

M
R

E
S

(5
0)

121

Figure 21: Average Parallel Execution Times for Sample_31

31 Conf. Coeff: 1.96

So
lv

e
r

Sp
ar

ci
ty

A
ve

ra
ge

ST
D

M
ar

gi
n

 E
rr

o
r

U
p

p
e

r
B

o
u

n
d

Lo
w

e
r

B
o

u
n

d

M
ax

M
in

R
an

ge

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

HYP 2.98 3.03 3.08 2.99 3.03 2.97 3 3.06 3.06 3.08 3.028 0.041 0.026 3.054 3.002 3.080 2.970 0.110

ELL 2.75 2.75 2.72 2.84 2.73 2.79 2.7 2.77 2.71 2.8 2.756 0.044 0.027 2.783 2.729 2.840 2.700 0.140

CSR 2.72 2.62 2.77 2.68 2.62 2.79 2.68 2.74 2.65 2.81 2.708 0.069 0.043 2.751 2.665 2.810 2.620 0.190

COO 2.99 2.95 2.98 3.05 3.08 2.95 2.98 3 3.06 3.08 3.012 0.051 0.032 3.044 2.980 3.080 2.950 0.130

HYP 2.54 2.64 2.59 2.53 2.63 2.62 2.54 2.53 2.53 2.59 2.574 0.045 0.028 2.602 2.546 2.640 2.530 0.110

ELL 2.49 2.41 2.41 2.48 2.43 2.54 2.49 2.5 2.47 2.56 2.478 0.051 0.031 2.509 2.447 2.560 2.410 0.150

CSR 2.46 2.4 2.37 2.38 2.36 2.36 2.47 2.39 2.37 2.36 2.392 0.041 0.025 2.417 2.367 2.470 2.360 0.110

COO 2.51 2.7 2.54 2.68 2.58 2.54 2.53 2.6 2.49 2.49 2.566 0.074 0.046 2.612 2.520 2.700 2.490 0.210

HYP 2.68 2.61 2.62 2.6 2.65 2.61 2.6 2.62 2.6 2.68 2.627 0.032 0.020 2.647 2.607 2.680 2.600 0.080

ELL 2.54 2.55 2.59 2.57 2.54 2.6 2.55 2.59 2.57 2.5 2.560 0.030 0.019 2.579 2.541 2.600 2.500 0.100

CSR 2.51 2.45 2.5 2.49 2.44 2.44 2.49 2.44 2.45 2.43 2.464 0.030 0.019 2.483 2.445 2.510 2.430 0.080

COO 2.56 2.68 2.61 2.58 2.63 2.59 2.58 2.63 2.59 2.59 2.604 0.035 0.022 2.626 2.582 2.680 2.560 0.120

HYP 4.58 4.6 4.63 4.62 4.61 4.62 4.58 4.62 4.62 4.6 4.608 0.018 0.011 4.619 4.597 4.630 4.580 0.050

ELL 4.5 4.55 4.55 4.51 4.53 4.5 4.52 4.52 4.52 4.56 4.526 0.021 0.013 4.539 4.513 4.560 4.500 0.060

CSR 4.43 4.48 4.42 4.42 4.41 4.44 4.42 4.43 4.47 4.44 4.436 0.023 0.014 4.450 4.422 4.480 4.410 0.070

COO 4.52 4.51 4.46 4.54 4.55 4.52 4.5 4.55 4.57 4.55 4.527 0.032 0.020 4.547 4.507 4.570 4.460 0.110

HYP 2.58 2.5 2.68 2.52 2.51 2.62 2.51 2.51 2.51 2.6 2.554 0.062 0.039 2.593 2.515 2.680 2.500 0.180

ELL 2.45 2.45 2.49 2.48 2.48 2.46 2.44 2.44 2.45 2.44 2.458 0.019 0.012 2.470 2.446 2.490 2.440 0.050

CSR 2.4 2.4 2.37 2.37 2.36 2.48 2.49 2.43 2.4 2.39 2.409 0.045 0.028 2.437 2.381 2.490 2.360 0.130

COO 2.62 2.56 2.67 2.6 2.52 2.53 2.59 2.52 2.51 2.53 2.565 0.053 0.033 2.598 2.532 2.670 2.510 0.160

G
M

R
ES

(5
)

G
M

R
ES

(1
5

)
G

M
R

ES
(5

0
)

G
M

R
ES

(1
0

0
0

B
iC

G
S

TA
B

Condition Number 1.112E+06 Matrix_Sample

Parallel Execution Time

122

Figure 22: Average Parallel Execution Times for Sample_62

62 Conf. Coeff: 1.96

So
lv

e
r

Sp
ar

ci
ty

A
ve

ra
ge

ST
D

M
ar

gi
n

 E
rr

o
r

U
p

p
e

r
B

o
u

n
d

Lo
w

e
r

B
o

u
n

d

M
ax

M
in

R
an

ge

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

HYP 3.57 3.43 3.46 3.55 3.47 3.44 3.57 3.49 3.44 3.58 3.500 0.061 0.038 3.538 3.462 3.580 3.430 0.150

ELL 3.27 3.25 3.25 3.24 3.25 3.26 3.26 3.24 3.25 3.26 3.253 0.009 0.006 3.259 3.247 3.270 3.240 0.030

CSR 3.08 3.08 3.11 3.08 3.13 3.17 3.17 3.2 3.19 3.08 3.129 0.050 0.031 3.160 3.098 3.200 3.080 0.120

COO 3.49 3.53 3.62 3.52 3.5 3.64 3.48 3.67 3.64 3.49 3.558 0.075 0.047 3.605 3.511 3.670 3.480 0.190

HYP 2.97 3.09 2.9 2.92 2.88 2.98 2.92 2.97 2.89 2.99 2.951 0.063 0.039 2.990 2.912 3.090 2.880 0.210

ELL 2.76 2.76 2.76 2.7 2.7 2.7 2.72 2.77 2.73 2.79 2.739 0.033 0.021 2.760 2.718 2.790 2.700 0.090

CSR 2.73 2.66 2.68 2.68 2.74 2.65 2.7 2.69 2.61 2.71 2.685 0.039 0.024 2.709 2.661 2.740 2.610 0.130

COO 2.88 2.82 2.85 2.8 2.86 2.79 2.86 2.96 2.85 2.93 2.860 0.053 0.033 2.893 2.827 2.960 2.790 0.170

HYP 2.96 2.98 3 3.04 2.95 2.97 3.05 3.08 3.04 3.08 3.015 0.049 0.030 3.045 2.985 3.080 2.950 0.130

ELL 2.89 2.82 2.87 2.82 2.91 2.91 2.83 2.87 2.83 2.85 2.860 0.035 0.022 2.882 2.838 2.910 2.820 0.090

CSR 2.8 2.85 2.8 2.86 2.78 2.8 2.78 2.79 2.81 2.73 2.800 0.037 0.023 2.823 2.777 2.860 2.730 0.130

COO 2.96 2.99 2.99 3.03 2.93 2.94 2.99 3.04 2.92 2.95 2.974 0.041 0.025 2.999 2.949 3.040 2.920 0.120

HYP 5.93 5.93 5.93 5.95 5.99 5.99 5.96 5.99 6.06 5.95 5.968 0.041 0.025 5.993 5.943 6.060 5.930 0.130

ELL 5.87 5.9 5.86 5.85 5.84 5.89 5.83 5.85 5.88 5.87 5.864 0.022 0.014 5.878 5.850 5.900 5.830 0.070

CSR 5.77 5.75 5.79 5.84 5.75 5.8 5.77 5.77 5.74 5.73 5.771 0.032 0.020 5.791 5.751 5.840 5.730 0.110

COO 5.92 5.89 5.85 5.87 5.87 5.86 5.86 5.88 5.88 5.86 5.874 0.020 0.012 5.886 5.862 5.920 5.850 0.070

HYP 3 2.96 2.96 3.05 3.08 3.09 2.97 2.96 2.96 2.96 2.999 0.054 0.033 3.032 2.966 3.090 2.960 0.130

ELL 2.75 2.88 2.89 2.77 2.76 2.82 2.88 2.83 2.71 2.78 2.807 0.063 0.039 2.846 2.768 2.890 2.710 0.180

CSR 2.72 2.8 2.74 2.81 2.73 2.72 2.75 2.86 2.79 2.86 2.778 0.054 0.034 2.812 2.744 2.860 2.720 0.140

COO 2.86 2.97 2.93 2.87 2.95 2.96 2.84 2.94 2.87 2.89 2.908 0.047 0.029 2.937 2.879 2.970 2.840 0.130

G
M

R
ES

(5
)

G
M

R
E

S
(1

5)
G

M
R

E
S

(5
0)

G
M

R
ES

(1
0

0
0

B
iC

G
S

T
A

B

Condition Number 1.873E+06 Matrix_Sample

Parallel Execution Time

123

Figure 23: Average Parallel Execution Times for Sample_93

93 Conf. Coeff: 1.96

So
lv

e
r

Sp
ar

ci
ty

A
ve

ra
ge

ST
D

M
ar

gi
n

 E
rr

o
r

U
p

p
e

r
B

o
u

n
d

Lo
w

e
r

B
o

u
n

d

M
ax

M
in

R
an

ge

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

HYP 4.27 4.25 4.23 4.37 4.37 4.4 4.39 4.33 4.27 4.34 4.322 0.062 0.039 4.361 4.283 4.400 4.230 0.170

ELL 3.86 3.78 3.84 3.79 3.84 3.93 3.94 3.79 3.91 3.79 3.847 0.061 0.038 3.885 3.809 3.940 3.780 0.160

CSR 3.89 3.77 3.86 3.75 3.86 3.79 3.87 3.72 3.84 3.72 3.807 0.065 0.040 3.847 3.767 3.890 3.720 0.170

COO 4.42 4.37 4.37 4.37 4.55 4.45 4.47 4.36 4.38 4.47 4.421 0.063 0.039 4.460 4.382 4.550 4.360 0.190

HYP 3.56 3.64 3.57 3.61 3.55 3.65 3.6 3.53 3.71 3.59 3.601 0.054 0.033 3.634 3.568 3.710 3.530 0.180

ELL 3.29 3.29 3.27 3.3 3.41 3.47 3.4 3.37 3.35 3.37 3.352 0.064 0.040 3.392 3.312 3.470 3.270 0.200

CSR 3.2 3.22 3.23 3.26 3.4 3.23 3.24 3.31 3.32 3.34 3.275 0.064 0.040 3.315 3.235 3.400 3.200 0.200

COO 3.59 3.62 3.6 3.55 3.63 3.64 3.73 3.65 3.6 3.66 3.627 0.049 0.030 3.657 3.597 3.730 3.550 0.180

HYP 3.66 3.59 3.68 3.59 3.53 3.56 3.51 3.58 3.6 3.57 3.587 0.052 0.032 3.619 3.555 3.680 3.510 0.170

ELL 3.48 3.41 3.49 3.45 3.44 3.35 3.36 3.37 3.44 3.46 3.425 0.050 0.031 3.456 3.394 3.490 3.350 0.140

CSR 3.35 3.32 3.32 3.41 3.32 3.37 3.34 3.33 3.32 3.33 3.341 0.029 0.018 3.359 3.323 3.410 3.320 0.090

COO 3.57 3.54 3.64 3.57 3.56 3.62 3.55 3.54 3.59 3.53 3.571 0.036 0.022 3.593 3.549 3.640 3.530 0.110

HYP 9.46 9.51 9.55 9.61 9.5 9.44 9.4 9.37 9.32 9.38 9.454 0.090 0.056 9.510 9.398 9.610 9.320 0.290

ELL 9.31 9.36 9.22 9.27 9.3 9.28 9.37 9.38 9.31 9.26 9.306 0.052 0.032 9.338 9.274 9.380 9.220 0.160

CSR 9.14 9.16 9.15 9.15 9.14 9.26 9.18 9.27 9.21 9.28 9.194 0.057 0.035 9.229 9.159 9.280 9.140 0.140

COO 9.43 9.38 9.38 9.45 9.4 9.42 9.41 9.39 9.41 9.41 9.408 0.022 0.014 9.422 9.394 9.450 9.380 0.070

HYP 3.46 3.4 3.56 3.47 3.43 3.34 3.37 3.56 3.46 3.41 3.446 0.073 0.045 3.491 3.401 3.560 3.340 0.220

ELL 3.21 3.17 3.16 3.16 3.16 3.16 3.17 3.15 3.29 3.23 3.186 0.045 0.028 3.214 3.158 3.290 3.150 0.140

CSR 3.09 3.13 3.14 3.15 3.17 3.14 3.15 3.15 3.23 3.2 3.155 0.038 0.024 3.179 3.131 3.230 3.090 0.140

COO 3.27 3.31 3.36 3.34 3.31 3.31 3.34 3.46 3.31 3.4 3.341 0.055 0.034 3.375 3.307 3.460 3.270 0.190

G
M

R
ES

(5
)

G
M

R
ES

(1
5

)
G

M
R

ES
(5

0)
G

M
R

ES
(1

0
0

0
B

iC
G

ST
A

B

Condition Number 3.548E+06 Matrix_Sample

Parallel Execution Time

124

Figure 24: Average Parallel Execution Times for Sample_124

124 Conf. Coeff: 1.96

So
lv

e
r

Sp
ar

ci
ty

A
ve

ra
ge

ST
D

M
ar

gi
n

 E
rr

o
r

U
p

p
e

r
B

o
u

n
d

Lo
w

e
r

B
o

u
n

d

M
ax

M
in

R
an

ge

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

HYP 5.19 5.18 5.13 4.99 4.99 5.06 5.02 5.1 4.98 5.02 5.066 0.079 0.049 5.115 5.017 5.190 4.980 0.210

ELL 4.4 4.41 4.41 4.53 4.47 4.41 4.57 4.46 4.42 4.59 4.467 0.072 0.044 4.511 4.423 4.590 4.400 0.190

CSR 4.47 4.52 4.4 4.41 4.46 4.52 4.45 4.43 4.43 4.52 4.461 0.046 0.028 4.489 4.433 4.520 4.400 0.120

COO 5.46 5.1 5.24 5.32 5.19 5.13 5.28 5.29 5.28 5.28 5.257 0.102 0.063 5.320 5.194 5.460 5.100 0.360

HYP 3.77 3.71 3.69 3.69 3.78 3.7 3.76 3.75 3.77 3.87 3.749 0.055 0.034 3.783 3.715 3.870 3.690 0.180

ELL 3.55 3.45 3.45 3.54 3.5 3.47 3.48 3.69 3.62 3.63 3.538 0.084 0.052 3.590 3.486 3.690 3.450 0.240

CSR 3.53 3.47 3.45 3.56 3.45 3.37 3.42 3.41 3.39 3.38 3.443 0.063 0.039 3.482 3.404 3.560 3.370 0.190

COO 3.77 3.75 3.82 3.68 3.8 3.68 3.82 3.74 3.68 3.69 3.743 0.058 0.036 3.779 3.707 3.820 3.680 0.140

HYP 4.11 4.1 4.14 4.12 4.07 4.1 4.08 4.17 4.21 4.19 4.129 0.047 0.029 4.158 4.100 4.210 4.070 0.140

ELL 4.02 3.9 3.92 3.84 3.88 3.91 3.93 3.96 4.01 3.9 3.927 0.056 0.035 3.962 3.892 4.020 3.840 0.180

CSR 3.9 3.82 3.81 3.84 3.82 3.83 3.88 3.83 3.83 3.93 3.849 0.040 0.025 3.874 3.824 3.930 3.810 0.120

COO 4.04 4.05 4.09 4.19 4.2 4.15 4.19 4.08 4.19 4.18 4.136 0.064 0.040 4.176 4.096 4.200 4.040 0.160

HYP 12.8 13 13 13.1 12.8 12.8 12.7 12.8 12.9 13.1 12.888 0.138 0.086 12.974 12.802 13.100 12.730 0.370

ELL 12.8 12.9 12.8 12.7 12.7 12.6 12.9 12.8 12.9 12.8 12.792 0.082 0.051 12.843 12.741 12.920 12.640 0.280

CSR 12.7 12.9 12.7 12.6 12.6 12.7 12.6 12.8 12.7 12.8 12.711 0.090 0.056 12.767 12.655 12.890 12.600 0.290

COO 12.7 12.8 12.8 13.1 12.8 12.7 12.8 12.7 12.7 12.8 12.782 0.107 0.066 12.848 12.716 13.060 12.690 0.370

HYP 4.25 4.2 4.2 4.19 4.22 4.27 4.14 4.14 4.18 4.16 4.195 0.043 0.027 4.222 4.168 4.270 4.140 0.130

ELL 3.54 3.69 3.69 3.54 3.6 3.64 3.56 3.49 3.62 3.53 3.590 0.069 0.043 3.633 3.547 3.690 3.490 0.200

CSR 3.71 3.58 3.74 3.59 3.59 3.67 3.59 3.76 3.59 3.75 3.657 0.077 0.048 3.705 3.609 3.760 3.580 0.180

COO 3.76 3.75 3.76 3.77 3.77 3.74 3.75 3.71 3.69 3.77 3.747 0.027 0.017 3.764 3.730 3.770 3.690 0.080

G
M

R
ES

(5
)

G
M

R
ES

(1
5)

G
M

R
ES

(5
0)

G
M

R
ES

(1
0

0
0

B
iC

G
ST

A
B

Condition Number 4.708E+06 Matrix_Sample

Parallel Execution Time

125

Figure 25: Solvers Parallel Execution time for various storage formats with relative residual semi-log plot.
Sample_0. Convergence is independent of the utilized storage scheme

126

Figure 26: Solvers Parallel Execution time for various storage formats with relative residual semi-log plot.
Sample_31. Convergence is independent of the utilized storage scheme

127

Figure 27: Solvers Parallel Execution time for various storage formats with relative residual semi-log plot.
Sample_62. Convergence is independent of the utilized storage scheme.

128

Figure 28: Solvers Parallel Execution time for various storage formats with relative residual semi-log plot.
Sample_93. Convergence is independent of the utilized storage scheme.

129

Figure 29: Solvers Parallel Execution time for various storage formats with relative residual semi-log plot.
Sample_124. Convergence is independent of the utilized storage scheme.

130

Figure 30 shows the execution time of BiCGSTAB Solver for all considered samples with

different storage schemes. The following could be further established and concluded:

 With the use of suitable preconditioner, BiCGStab convergence to the right solution

at minimal execution time compared to GMRES.

 The larger the matrix sample, the higher the condition number and the longer it

takes to converge.

 BiCGSTAB with CSR storage scheme outperformed others from Samples_0 to

Sample_93. It came second in Sample_124.

 Given the above experimental conditions, a suitable preconditioner and the set of

storage schemes we studied, BiCGStab with CSR is considered a suitable tradeoff

that solves our reservoir simulation problem. Although this selection represents a

sub-optimal answer for purely Hepta-Diagonal Systems, it paves the way for

supporting wide range of more interesting simulation conditions29.

 Interested readers in special optimal Blocked Hepta-Diagonal Storage format and

its application to Sparse Matrix Vector Multiplication as well as extensive

comparisons with other formats may refer to SG_DIA scheme presented in [72].

The following section sheds more light on that issue.

29 These includes utilizing unstructured meshes, different discretization or when using multi-well
completion method.

131

Figure 30: BiCGSTAB Parallel Execution time for various storage formats with relative residual semi-log plot.
All Extracted Sample. Convergence is independent of the utilized storage scheme

132

3.4 Special Case: Sparse Matrix Vector Multiplication for Hepta-

Diagonal Matrices

Objectives:

Examining the effect of different sparse storage schemes on the overall parallel execution

time and comparing them for sparse Matrix-Vector Multiplication operation (SpMV) over

Hepta-Diagonal Sample Matrices

Experimental Setup and Conditions:

 Six sample matrices with variable sizes that resemble elements distribution in the

developed FRS have been considered.

 Each sample represents a large matrix with (2 x 2) block entries distributed in a

Hepta-diagonal fashion. The rest of elements are zeros. Figure 9

 Tests were performed on a node in an HPC cluster offered by the Information

Technology Center at KFUPM featuring a Xeon E5-2680 10-Core, 2.8 GHz (Dual-

processor) and Tesla k20x GPU [103], Table 12 . A Comparison of different

compute capabilities for GPU Architecture is presented in [103].

Method

 We use the CUSP implemented CUDA versions of Matrix-Vector Multiplication.

We further implemented SG_DIA found in [72].

133

 The execution time of Sparse Matrix Vector Multiplication was examined using

five different sparse storage mechanisms; four of which were provided by CUSP

library: Compressed Row Storage (CSR), ELLPACK (ELL), Hybrid (HYB), and

Coordinate Format (COO), and the last one is the implementation for the blocked

diagonal format SG_DIA found in [72].

 Each experiment was repeated a number of times and the average parallel executed

time was recorded.

Results and Discussion

Figure 31 demonstrates the average execution time of SpMV for various increasingly

related matrix sizes for every utilized sparse storage schemes, while Figure 32 shows the

execution time of the previous experiment by varying storage format across a given matrix

leading dimension. The following can be concluded:

 Just as expected, for all matrix dimensions and due to its ability to exploit the

reservoir matrix structure, (SG_DIA) outperformed all other schemes. This is more

prominent when comparing it to (COO) as the latest enjoyed the most indirect

addressing problem presented earlier.

 Moreover, as (ELL) is somehow close to (SG_DIA), and as the former has already

been developed to suite sparse matrix vector multiplications on GPUs, it is then no

wonder that (ELL) comes second in performance.

 Just like other formats, and although (SG_DIA) group multiple memory

transactions, it suffers from the described earlier short row problem.

134

Figure 31: The average execution time of SpMV for various storage schemes and different related matrix
dimensions. Here the input size has been studied within each scheme separately.

135

Figure 32: The average execution time of SpMV for various storage schemes and different related matrix
dimensions. The focus here is see how each storage scheme behaves for a given matrix dimension.

136

3.5 Parallel Implementation of the selected Linear Solver for

Matrices with Single (RHS)

3.5.1 Introduction

The goal of parallel programing is to provide tools and techniques for either solving big

problems faster or to run larger instances of the given problem for the same time interval

that was used to execute its serial counterpart. Exposing application concurrency refers to

the art of breaking down the main problem into independent logical tasks30 that could be

later executed in parallel after mapping them to corresponding physical processing

elements. It is then no wonder that restructuring the problem to exploit any available

concurrency is indeed the first mandatory step before implementing any serial algorithm

using a suitable parallel programming environment. The process for finding concurrency

starts by a decomposition step performed on program data and the associated tasks. It is

followed by an analysis step where the decomposed parts are grouped, ordered, or share

their data [9].

Figure 33 shows the established Data Dependency Graph (DDG) of BiCGSTAB

Algorithm, highlights concurrent operations, and demonstrates detailed tasks according to

Table 3. The parallel pattern is directly inferred from the arrows that express data flow

direction. For example, before vector s is correctly computed, α,v,and r� should be

available.

30 A task is a sequence of instructions that operate together as a group.

137

Figure 33: BiCGSTAB
Data Dependency Graph
(DDG), main operations

are highlighted

138

3.5.2 Merging Operations31

Although the algorithm seems to complete its constituting tasks in sequence, various

optimizations could be established to enable better parallel behavior [6] .One of which is

based on the observation that various operations could be merged together taking

advantage of both the commutative and associative properties of real numbers. This will

allow different workers to continue to evaluate the next line of the algorithm without

causing data hazards by accumulating partial results that could be later merged to form the

complete solution. This is opposed to the other approach of establishing a barrier that

forces thread synchronization after completing every operation. For example, and because

of the dependency shown in Figure 33, one way of computing the sequence of operations

extracted from BiCGSTAB Algorithm, shown in Figure 34, could be by first assigning

multiple workers to perform the reduction operation, then they wait until everyone finishes

its assigned job. After that, a single worker computes the scalar value at line 7, before they

cooperate again to compute lines:8. It is worth mentioning that Figure 34 presents an

abstract symbolic view for how the calculations flow. After all, it is well known that

performing a reduction operation in CUDA requires N cooperating threads with LOG N

steps!

31 It is worth mentioning that, a similar trick has been utilized in [106] H. Anzt, S. Tomov, P. Luszczek, I.

Yamazaki, J. Dongarra, and W. Sawyer, "Accelerating Krylov Subspace Solvers on Graphics Processing

Units.".

139

�− ⟵ �̌�. �−

�− = �
�−

�—
� �

�−

�−
�

� = �− + �− . (�− − �− . �−)

Figure 34: The normal flow for various threads cooperating to compute sequence of operations in BiCGSTAB
Algorithm

140

At first glance and given the above dependencies, any CUDA developed parallel

implementation of BiCGSTAB solver seems to be bounded in terms of both bandwidth and

computation. This is due to the fact that, the nature of operations composing BiCGSTAB

algorithm demands many memory loads with minimal computations performed on the

loaded data i.e. computing resources spend the majority of the time busy waiting for data

to be fetched. With the aim of reducing bandwidth pressure and increasing data locality, a

split and merge strategy was adapted. Without loss of generality, the previous snippet of

the algorithm shown in Figure 34, could be implemented as follows:

Let � ≔ ����� ������ �� �������� �� ������ �.

ρ is then calculated as

ρ = � r�. r��
�

�

���

ρ = r�. r��
� + r�. r��

� + ⋯ + r�. r��
�

ρ = ρ� + ρ� + ρ� + ⋯ + ρ�

Let every worker (thread) operate on one element of vector r & r�, multiply them and store

the result in the corresponding indexed location in the resulted ρ vector. Rather than

finishing up the computation and finding the reduced value of ρ, i.e. summing the values

over all indices, each worker continue to the next line of the algorithm, and calculates its

corresponding�β�,β�,β�,… ,β��, where total β is

β = ρ� �
�

� . �����
� + ρ� �

�

� . �����
� + ⋯ + ρ� �

�

� . �����
�

141

Or

β = β� + β� + β� + ⋯ + β�

As a result, instead of having one thread loading two values of vectors r & r�, multiply the

value and store the result back, the kernel proceeds with calculating the corresponding

partial β value using some other constants that has been already brought to shared memory

and broadcasted to all threads within the block. In other words, increasing the

computational intensity per memory operations.

Again, the same logic applies when calculating the P as it requires the value of β to be

available priory. One work around that we adopted is to make every thread computes the

reduced value of β that has been already accumulated in (inter_blk_Beta) vector by the aid

of some other preloaded shared scalars before finally computing the final value of P and

storing it back to global memory.

p� = r� + �p� − ω�. v�� � β�.

�

���

Similarly (r & v). This leads the following relation:

� p�

�

���
= � r�

�

���
+ � β�

�

���
 � �p� − ω�. v��

�

���

Without loss of generality, the following Figure 35, shed more light about such possible

merge.

142

�0

�0

�1

�1

��

��

�0

�0

�1

�1

��

��

βm ��
�

− �− . ���

β1 ��
�

− �− . ���

β0 ��
�

− �− . ���

βm ��
�

− �− . ���

β1 ��
�

− �− . ���

β0 ��
�

− �− . ���

βm ��
�

− �− . ���

β1 ��
�

− �− . ���

β0 ��
�

− �− . ���

βm ��
�

− �− . ���

β1 ��
�

− �− . ���

β0 ��
�

− �− . ���

βm ��
�

− �− . ���

β1 ��
�

− �− . ���

β0 ��
�

− �− . ���

βm ��
�

− �− . ���

β1 ��
�

− �− . ���

β0 ��
�

− �− . ���

Figure 35: One possibility for merging arithmetic operations of the snippet of BiCGSTAB code, shown in Figure 34

143

The same trick was applied when computing vectors α and s at lines:14 and 15, updating

x and r from lines:21 to 22, Algorithm 3. This strategy is easily extended to include the

preconditioner as well as the matrix vector multiplication that follows.

The following code snippet shows kernel implementation for partial values of (ρ,β and P),

CODE 1.

144

CODE 1: GPU Kernels for computing rho, beta and P

__global__ void per_BLK_Rho_Beta(double *r_tld, double *r,
double *vector_Beta, double *vector_rho, double *global_Alpha,
double *global_rho1 ,int data_size) {
===

 unsigned int Index = threadIdx.x;
 __shared__ double shared_Constants[3]; // this will make
use of the broadcast property in shared memory all threads will
read either first, second or third word in the bank and the
returned value will be broadcast

 if(Index == 0){
 shared_Constants[0]= *global_rho1;
 }
 if(Index == 32){
 shared_Constants[1]= *global_Alpha;
 }
 if(Index == 64){
 shared_Constants[2]= global_Omega;
 }
 __syncthreads();
 //Allocating shared memory for intra (within) block
reduction: Intra_Blk
 __shared__ double Intra_Blk_rho[threadsPerBlock];
 __shared__ double Intra_Blk_Beta[threadsPerBlock];

 double rho_1 = shared_Constants[0]; double alpha =
shared_Constants[1]; double omega = shared_Constants[2];
 double current_rho=0;

 int tid = threadIdx.x + blockIdx.x * blockDim.x;
 Intra_Blk_rho[Index] = 0; Intra_Blk_Beta[Index] = 0;

 while (tid < data_size){

 current_rho = r_tld[tid] * r[tid]; // partial rho:
rho_0, rho_1, rho_2

 Intra_Blk_rho[Index] += current_rho;
 Intra_Blk_Beta[Index] += (current_rho/ rho_1) * (alpha
/ omega);

 tid += blockDim.x * gridDim.x;
 }
 __syncthreads();

 if(Index < threadsPerBlock){
 UnrolledBlockReduce(Index,
Intra_Blk_Beta,Intra_Blk_rho,threadsPerBlock);

145

 }
 __syncthreads();

 //Thread 0 from each block will write the resulted per
block reduced rho to global memory
 if (Index == 0) {

 vector_Beta[blockIdx.x] = Intra_Blk_Beta[0];
 vector_rho[blockIdx.x] = Intra_Blk_rho[0];
 }
}

__global__ void compute_P(double *p, double *r, double *r_tld,
double *v, double *vector_Beta, double *vector_rho,int
data_size){

 int tid = threadIdx.x + blockIdx.x * blockDim.x;
 unsigned int Index = threadIdx.x;

 __shared__ double omega;
 if(Index ==0)
 omega =global_Omega; // let th0 of every block brings
omega and share it with threads in a block

 // step_1: Bring vector beta to shared memory

 __shared__ double Inter_Blk_Beta[blocksPerGrid];
 __shared__ double Inter_Blk_Rho[blocksPerGrid];

 if(Index < blocksPerGrid){
 // very optimal if blocks is 32 as it will give only
one memory transaction
 Inter_Blk_Beta[Index]= vector_Beta[Index];
 Inter_Blk_Rho[Index]= vector_rho[Index];

 }
 __syncthreads();

 // operate on shared memory
 __shared__ double p_Sh[threadsPerBlock];
 __shared__ double v_Sh[threadsPerBlock];

 double current_Beta, current_Beta1, current_Beta2,
current_Beta3, current_Beta4, current_Beta5, current_Beta6,
current_Beta7;
 double p_next, p_next1, p_next2, p_next3, p_next4, p_next5,
p_next6, p_next7 ;

 while (tid < data_size){

146

 p_next = 0; p_next1 = 0; p_next2 = 0; p_next3 = 0;
p_next4 = 0; p_next5 = 0; p_next6 = 0; p_next7 = 0;

 p_Sh[Index] = p[tid];
 v_Sh[Index] = v[tid];

 for(int i=0; i<blocksPerGrid;i+=8){

 current_Beta = Inter_Blk_Beta[i];
 current_Beta1 = Inter_Blk_Beta[i+1];
 current_Beta2 = Inter_Blk_Beta[i+2];
 current_Beta3 = Inter_Blk_Beta[i+3];
 current_Beta4 = Inter_Blk_Beta[i+4];
 current_Beta5 = Inter_Blk_Beta[i+5];
 current_Beta6 = Inter_Blk_Beta[i+6];
 current_Beta7 = Inter_Blk_Beta[i+7];

 p_next += current_Beta * (p_Sh[Index]- omega *
v_Sh[Index]);
 p_next1 += current_Beta1 * (p_Sh[Index]- omega *
v_Sh[Index]);
 p_next2 += current_Beta2 * (p_Sh[Index]- omega *
v_Sh[Index]);
 p_next3 += current_Beta3 * (p_Sh[Index]- omega *
v_Sh[Index]);
 p_next4 += current_Beta4 * (p_Sh[Index]- omega *
v_Sh[Index]);
 p_next5 += current_Beta5 * (p_Sh[Index]- omega *
v_Sh[Index]);
 p_next6 += current_Beta6 * (p_Sh[Index]- omega *
v_Sh[Index]);
 p_next7 += current_Beta7 * (p_Sh[Index]- omega *
v_Sh[Index]);

 }
 p[tid] = r[tid] + p_next + p_next1 + p_next2 + p_next3
+ p_next4 + p_next5+ p_next6 + p_next7 ;

 tid += blockDim.x * gridDim.x;

 }

}

147

GPU devices feature a number of memory types that are characterized by their speed and

scope. In addition to operations’ merging, the previous kernels feature the following

optimizations:

 Intensive use of shared memory and making use of its broadcast property.

 Loop unrolling to further increase computation intensity.

 A call to optimized implemented reduction kernel (UnrolledBlockedReduce())

based on various recommendations reported in literature [97, 107].

 Makes use of Asynchronous data transfer between host and device by utilizing

Pinned Memory and streams. Kepler GK110 introduced a HyperQ mechanism that

supports 32 hardware managed connections for communication between host and

device. That improvement has a direct impact on increasing device utilization as

multiple processors on the CPU could initiate work on a single GPU at the same

time [15].

 Host and kernel execution overlap: when possible, the original code was

restructured in a way that a call to device kernel is followed by many calls to host

functions. By default, kernel launch is asynchronous or non-blocking. So while the

GPU is busy, the host performs some other computations. If used properly, this

mix, combined with streaming has great impact on performance.

To preserver dependency when sharing thread results, synchronization was enforced by

exiting every related kernel and launching another one. Whenever necessary, a call to

cudaDeviceSync() after kernel launch was initiated.

148

To elaborate more and without loss of generality, for calculating the values of � and �, each

thread in CODE 1, loads to shared memory part of the global (�) and (�̃) vector, multiply

the corresponding value using shared memory vector called intra-blk-rho, and accumulate

partial sum before finally storing the final result to another vector in global memory called

inter_blk_rho. Now and as the algorithm states, vector inter-block-rho is read by another

kernel to either continue subsequent operations or got reduced on the host. In other words,

whenever necessary, every block reduces given data through partial accumulation of the

results, writes it to global memory and then the final reduction is done on the host by

reading the reduced data by all blocks. This two steps synchronization is necessary as GPU

devices do not allow data to be shared among blocks.

The convergence is checked from the host side at the end of each iteration. One

optimization could be to skip the check for some iterations. However, this requires some

prior anticipation of the number of expected iterations needed before converging to the

right solution. Kernels constituting this program are shown in the appendix.

149

3.5.3 Experiments and Comparisons

Objectives:

To examine the speed up obtained after merging some operations in a CUDA

implementation of BiCGStab Algorithm.

Experimental Setup and Conditions:

 A number of large matrix sets with variable sizes are extracted from our developed

FRS. The dimension has been chosen to double the previous one starting from

(10800 x 10800) and up to (921600 x 921600)

 Each sample represents a 3-D structured grid with (2 x 2) block entries distributed

in a Hepta-diagonal fashion as resulted from finite volume discretization.

 Tests were performed on a node in an HPC cluster offered by the Information

Technology Center at KFUPM featuring a Xeon E5-2680 10-Core, 2.8 GHz (Dual-

processor) and Tesla k20x GPU [103], Table 12 . A Comparison of different

compute capabilities for GPU Architecture is presented in [103].

Method

 Two parallel versions of the BiCGSTAB were programmed. The first one was

solely based on calling cuBLAS and cuSPARSE routines (BiCGSolver_Lib) and

the other utilizes the ideas and optimizations mentioned above

(BiCGSolver_Merged). See the appendix for the two programs.

150

 In both cases and since we are solely interested in evaluating the speedup that

results from merging, we decided to utilize CSR storage schemes.

 It is worth mentioning that other specialized schemes like SG_DIA [72], will

definitely produce a better overall performance to both implementations and for the

considered testing matrices.

 In both cases, we utilized the ILU preconditioner offered by cuSPARSE library.

Again, using other advanced preconditioners will definitely have better overall

performance results.

Program Tuning

Obtaining the best performance out of CUDA-Based parallel programs is beholden by

many design choices that in many cases are contradicting in nature. To manage this and to

help programmers tune their applications according to their desired performance goals,

NVidia provided a number of tools including the visual profiler and occupancy calculator.

It is always intimidating to utilize more resources that grant higher throughput like

registers, but unfortunately that comes with the price of limiting concurrency. After all,

one key aspect at which GPU devices achieve their Tera-flop performance is through

latency hiding. When a given warp32 stalls because of unavailable data and while these data

being fetched from global memory, other warps are context-switched and scheduled for

32 A warp is a group of 32 consecu�ve threads within a block scheduled to be executed by the CUDA
multiprocessor.

151

execution with zero penalty. Similarly, when a block stalls for any reason, other blocks are

switched in by the scheduler. As a result, a smart selection for the number of blocks to be

executed as well as the number of threads used by each block is mandatory for any

successful exploitation of GPU device capabilities for achieving higher performance.

Each streaming multiprocessor (SMX) in Kepler GK110 supports a maximum of 65536

registers, 16 blocks, 2048 threads and 64 warps. Forcing CUDA kernel to use registers for

variables may be achieved by explicitly using scalar variables and via loop unrolling.

However and as mentioned above, using more registers will hinder performance as it limits

the number of lunched blocks. For example, assume we are using 256 threads each uses

100 32-bit registers (50 double private variables). Then each block will demand 256 x 100

= 25600 registers. As a result, the maximum number of blocks that can be launched is

calculated by dividing the maximum number of registers supported by each SMX over the

utilized registers or (65536/25600) = 2 blocks. This means utilizing only 12.5 % of the

maximum blocks allowed per SMX!

In a similar way and although its latency is almost 100x lower than uncached global

memory latency33, the exorbitant use of shared memory may also limit the pledged device

performance. If 48 KB of shared memory is to be used among 8 blocks, then each block

should utilize a maximum of 6 KB shared memory! Moreover, to prompt for higher

bandwidth utilization, shared memory is distributed into concurrently accessed, equally

sized 32 4-Bytes logical banks each with bandwidth of 64 bits per clock cycle. Memory

bank conflict degrades shared memory performance by serializing bank accesses and

33 http://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/

152

occurs when multiple simultaneous requests by different threads are made to the same

bank. Therefore, whenever shared memory is utilized, the associated variables should be

placed under scrutiny to avoid possible bank conflicts. To enable better optimization when

double precision variables are used, device bank size should be configured to be 8 bytes

instead of the default on.

In our developed program, we started with a given number of blocks & threads; and

empirically tuned their figures until the least execution time was obtained for kernels

launching 128 blocks and 256 threads per block. As stated before, the motivation behind

lies in the observation that usually but not necessarily [108], the higher the occupancy ratio,

the more attainable performance.

Moreover and by running the visual profiler, we studied memory bandwidth utilization,

how instruction and memory latency limit the performance by analyzing stalls, compute

resources as well as other offered suggestions. We then came up with a list of optimizations

that we later manually addressed. These include: overlapping communication and

computations, utilizing streams for data transfer, minimizing the number of used registers,

tiling and memory coalescing and others. Table 16.

It is worth mentioning that, there has been several attempts for designing auto-tuning

applications that automatically aim at adjusting several CUDA parameters. Interested

readers may consult [109-114]

153

Results and Discussion

The following Figure 36, presents the data along with some useful statistics while Figure

37, presents a double-log plot for the average execution time for both solvers. It can be

seen that there is an order of magnitude speedup gain between the two implementations. It

is clear that this merging technique utilizes more space than the usual calculation but it

poses the following advantages that contributed to this drop in execution time:

 Increasing work intensity per thread.

 Efficient utilization of resources by allowing data reuse through shared memory.

 Better throughput utilization by reducing global memory transactions.

 Less power consumption due to reducing the loads from global memory.

154

Figure 36: Average Parallel Execution time for the two versions of the implemented solvers

BiCGSTAB Function Calls Implementation Conf. Coeff: 1.96

A
ve

ra
ge

ST
D

M
ar

gi
n

 E
rr

o
r

U
p

p
e

r
B

o
u

n
d

Lo
w

e
r

B
o

u
n

d

M
ax

M
in

R
an

ge

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

526.6 527 528.6 528 523.2 523.7 522.8 522.5 520.9 522.3 524.560 2.722 1.687 526.247 522.873 528.600 520.900 7.700

839.9 844.7 844.1 839.6 840.9 840.9 837.2 831.6 833.3 857 840.920 7.028 4.356 845.276 836.564 857.000 831.600 25.400

1368.8 1373.4 1344.7 1356.8 1340.6 1338.5 1250.1 1341 1341.6 1345.2 1340.070 33.935 21.033 1361.103 1319.037 1373.400 1250.100 123.300

2229.6 2229.4 2213.5 2203.8 2230.8 2412.5 2252.2 2245.7 2386.2 2254 2265.770 72.407 44.878 2310.648 2220.892 2412.500 2203.800 208.700

3924.2 4012.4 3959.6 3988.8 3954.4 3912.5 3962.8 3953.8 3912.9 3871.4 3945.280 40.950 25.381 3970.661 3919.899 4012.400 3871.400 141.000

7300.5 7346.8 7061.9 7369 7317.3 7253.7 7326.6 7375.4 7364.5 7204.4 7292.010 97.263 60.284 7352.294 7231.726 7375.400 7061.900 313.500

13425.3 12863.5 13855.4 13746.3 13335.3 12875.7 13584.6 13465.2 13602.7 13835.8 13458.980 354.246 219.564 13678.544 13239.416 13855.400 12863.500 991.900

10800

28800

57600

115200

230400

460800

921600

Parallel Execution Time(msec)

C
o

e
ff

. M
at

.
Le

ad
in

g
D

im
.

BiCGSTAB Merging Operations Implementation Conf. Coeff: 1.96

A
ve

ra
ge

ST
D

M
ar

gi
n

 E
rr

o
r

U
p

p
e

r
B

o
u

n
d

Lo
w

e
r

B
o

u
n

d

M
ax

M
in

R
an

ge

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

68.6 68.4 68.3 71.8 68.0 68.5 68.5 68.5 68.5 68.6 68.77 1.08 0.67 69.44 68.10 71.80 68.00 3.80

139.6 139.6 139.7 139.5 139.5 139.7 139.7 139.6 139.8 139.6 139.63 0.09 0.06 139.69 139.57 139.80 139.50 0.30

273.6 273.7 273.8 273.7 273.7 273.7 273.9 273.7 273.8 273.8 273.74 0.08 0.05 273.79 273.69 273.90 273.60 0.30

399.9 399.2 399.9 399.1 401.3 401.6 399.7 399.5 399.6 399.9 399.97 0.83 0.52 400.49 399.45 401.60 399.10 2.50

515.7 515.6 515.7 515.7 515.7 515.7 516.2 516.2 516.1 518.5 516.11 0.87 0.54 516.65 515.57 518.50 515.60 2.90

852.7 852.7 853.3 857.9 854.8 853.1 855.6 856.1 855.2 853.0 854.44 1.76 1.09 855.53 853.35 857.90 852.70 5.20

1139.1 1138.3 1137.5 1141.9 1140.7 1139.7 1140.7 1143.4 1138.8 1143.9 1140.40 2.14 1.33 1141.73 1139.07 1143.90 1137.50 6.40

460800

921600

10800

28800

57600

115200

230400

C
o

e
ff

. M
at

.
Le

ad
in

g
D

im
.

Parallel Execution Time(msec)

155

Figure 37: Average Parallel Execution time for the two versions of the implemented solvers

156

Next we analyze the performance flops given the various kernels that composes our

implementation of BiCGStab_Merged for samples extracted from the reservoir. The

following table shows the count of their multiply-add operations as well as the computed

GFLOPS/s while Figure 38, plots the computed GFLOPS/s for various matrix dimensions.

Table 14: Performance FLOPS for the kernels constituting the BiCGSTAB merged implementation

Number of operations 19 20 13 10 23 4

Kernel Name Reduced
Omega

per_blk
Omega

compute S per_blk
alpha

Compute_P per_blk
rho_beta

Vector Size

10800 7.89 12.71 8.26 6.75 1.38 2.06

28800 10.32 33.88 19.71 19.20 25.48 5.01

57600 13.85 60.63 28.80 30.32 38.96 7.94

115200 14.69 96.00 35.66 42.67 42.74 12.45

230400 15.18 121.26 41.03 56.20 46.08 16.17

460800 15.28 146.29 44.70 69.82 53.26 20.03

157

Figure 38: GFLOPS/s for the kernels used to program the BiCGSTAB merged for various matrix dimensions

158

It is clear that all kernels are memory bandwidth bounded because the algorithm itself does

not demand reuse of loaded matrix elements. For that reason, and with the aim of achieving

more performance, we focused on bandwidth optimization and heavily utilized shared

memory and registers to increase the intensity of computation per memory operations.

Despite this huge lag between the performance plotted in Figure 38 to the device peak

performance (1.31 teraflops for double precision), the performance of our implemented

BiCGSTAB-merged is comparable to the one suggested and implemented in [106].

159

3.6 Parallel Implementation of the selected Linear Solver for

Matrices with Single (RHS)

3.6.1 Introduction and Motivation

This section describes our attempt for implementing a parallel Krylov based subspace

solver designed to solve a linear system with multiple right hand sides (MRHS). Based on

previously mentioned considerations, we modify the past implementation of BiCGSTAB

to suit the problem at hand. Solving a linear system with multiple right hand sides is

required by our simulator when doing history matching. All vectors in the right hand side

matrix are independent; the thing that prompts and motivates experimenting three

important ideas.

One would be tempted to utilize direct methods and find the inverse of the coefficient

matrix (A) as the decomposition will be done once and repeated for all MRHS. The famous

approach would be sparse LU factorization with pivoting that requires O(n�) complexity.

However, as our initial matrix is Hepta-sparse and as the dimension of the matrix is very

huge, we would not be able to afford the high storage demand required by this approach.

After all, the inverse of a sparse matrix is a full matrix.

We were also tempted to insert an outer loop over any version of our implemented parallel

BiCGSTAB and repeat the whole solver thing until we finish all vectors in MRHS. This is

indeed an easy and naïve solution and takes advantage of the previously implemented

parallel solver and produces right results. Nevertheless, this approach does not take

160

advantage of various optimization opportunities that has been raised because of this data

independent MRHS.

The third solution that we will adapt, utilizes a cuSPARSE library call designed specifically

to solve MRHS systems along with dynamic parallelism in order to implement a fast

BiCGSTAB dedicated to solving MRHS problems. The next pages explain the idea more

and show performance results. For details on various functions provided by cuSPARSE

and various examples for different basic linear algebra operations at different levels please

see [88]. The functions utilized from the library package are provided as a black box.

Nevertheless, we can anticipate and guess many optimizations utilized. Those include:

eliminating some common operations or results which are required for solving with each

RHS and maximizing data reuse via the use of shared memory and registers.

Recent releases of CUDA supports a process through which a kernel may invoke another

kernel. The new functionality jargoned by Dynamic Parallelism34 not only synchronizes

kernel execution, but also enables wide range of applications, including recursive calls, to

be implemented. A parent kernel that is executed simultaneously with other parent kernels

on various SM’s, could invoke other child kernels that also demands its share on those

SM’s, may also evolve to become parents and invoke other child kernels and so on. This

indeed creates an extra overhead over the programmer’s scheduler and requires him to

keenly utilize available resources to tune the application for better performance.

Nonetheless, Dynamic Parallelism creates more parallelization opportunities as GPU

34 Adapted from
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief_Dynamic_Parallelis
m_in_CUDA.pdf

161

hardware is more involved in the optimization process. The fact that a parent kernel halts

waiting for his child to complete before it resumes execution enables both parties to

implicitly synchronize their actions and exchange Data without CPU participation [115].

3.6.2 Implementation Strategy

The complete BiCGSTAB code was written using cuBLAS, cuSPARSE function calls as

well as Thrust. The tasks and operations in the algorithm were mapped to suitable

functions. The synchronization between various algorithm operations was done depending

on either the implicit barrier provided by those function calls, the implicit synchronization

point created between a parent and a child processes as described earlier, or an explicit call

to cudaDeviceSynchronize() API call after kernel invocation. Convergence check is done

at the host side at the end of each iteration by reading convergence flags passed from the

device side. Same optimizations as the one presented in (section 3.4.2, P138) have been

utilized. Four kernels were developed (compute_X, compute_S, compute_alpha,

compute_P); they all have the same logic. Without loss of generality, details and

explanation is given for one of them Figure 39, compute_alpha Kernel.

The kernel parameters are vectors stored in global memory and passed by reference. After

setting up a global thread ID, the kernel initializes handles for cuBLAS routines. In their

turn, those routines call implicitly other kernels in order to finish up the computation. An

offset is assigned to pick up the right data portion that is passed as a parameter to each

cuBLAS function. Since there is no need for data reuse, only registers were utilized. In the

end, the cuBLAS destroy event is called. Performing the computation in this manner will

162

enable each thread (represented by its global ID) to operate on one complete vector of the

MRHS. Whenever necessary, tiling could be implemented to handle larger vector

dimensions. Kernels constituting this program are shown in the appendix.

163

Figure 39: The Kernel Function for compute_alpha

164

3.6.3 Performance Evaluation

The testing was performed on samples with different sizes, extracted from our reservoir

simulator, representing a 3-D structured grid with (2 x 2) block entries and distributed in a

Hepta-diagonal fashion. As explained before, the coefficients are a combination of various

reservoir parameters (permeability, compressibility …), oil pressure values �� and water

saturation levels ��. When simulation time proceeds, elements composing the coefficient

matrix changes as both �� ��� �� get updated. Tests were performed on a node in an HPC

cluster offered by the Information Technology Center at KFUPM featuring a Xeon E5-

2680 10-Core, 2.8 GHz (Dual-processor) and Tesla k20x GPU that features a 6 GB

memory [103]. The tests were repeated for different MRHS dimensions ranging from 32

vectors and up to 2048. Device Allocation Fail flag is raised whenever CudaMalloc

function fails to execute because of exceeding the size of global memory inside the GPU.

Figure 40 shows the data along with some statistics while Figure 41, plots the results of the

average execution time of the implemented parallel BiCGSTAB_MRHS for different

matrix dimensions and various MRHS widths.

165

BiCGSTAB for Multiple Right Hand Side (MRHS) MRHS = 32 Conf. Coeff: 1.96

A
ve

ra
ge

ST
D

M
ar

gi
n

 E
rr

o
r

U
p

p
e

r
B

o
u

n
d

Lo
w

e
r

B
o

u
n

d

M
ax

M
in

R
an

ge

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

282.5 282.8 282.9 283.4 282.9 283.9 283.9 282.5 282.9 283.0 283.07 0.51 0.31 283.38 282.76 283.90 282.50 1.40

507.1 509.2 508.0 508.1 508.1 508.1 507.4 507.5 507.8 511.2 508.25 1.18 0.73 508.98 507.52 511.20 507.10 4.10

983.9 983.8 983.5 969.1 970.4 971.4 971.4 971.5 971.4 971.6 974.80 6.21 3.85 978.65 970.95 983.90 969.10 14.80

1518.2 1554.6 1524.1 1515.7 1514.5 1518.8 1527.4 1518.4 1528.2 1527.4 1524.73 11.66 7.23 1531.96 1517.50 1554.60 1514.50 40.10

2426.2 2430.3 2431.2 2428.1 2427.2 2432.1 2434.2 2407.8 2425.2 2420.7 2426.30 7.56 4.69 2430.99 2421.61 2434.20 2407.80 26.40

4719.2 4701.3 4728.3 4706.9 4718.6 4735.9 4748.1 4745.6 4760.9 4732.8 4729.76 18.78 11.64 4741.40 4718.12 4760.90 4701.30 59.60

BiCGSTAB for Multiple Right Hand Side (MRHS) MRHS = 64 Conf. Coeff: 1.96

451.1 449.8 449.8 450.6 452.0 452.9 458.2 453.3 453.4 452.4 452.35 2.46 1.52 453.87 450.83 458.20 449.80 8.40

795.9 794.7 794.0 794.8 793.6 800.4 798.1 795.6 794.0 793.3 795.44 2.24 1.39 796.83 794.05 800.40 793.30 7.10

1592.5 1592.0 1594.0 1593.5 1610.4 1593.7 1596.1 1595.7 1592.9 1593.7 1595.45 5.41 3.35 1598.80 1592.10 1610.40 1592.00 18.40

2504.9 2504.7 2510.9 2547.0 2520.2 2509.6 2512.1 2510.4 2547.3 2513.1 2518.02 15.95 9.89 2527.91 2508.13 2547.30 2504.70 42.60

4079.6 4086.2 4094.8 4084.8 4087.9 4067.3 4087.1 4078.5 4067.7 4100.3 4083.42 10.56 6.54 4089.96 4076.88 4100.30 4067.30 33.00

7996.9 7978.2 7969.5 7964.7 7970.2 7971.8 7988.9 7980.0 7993.8 7963.7 7977.77 11.94 7.40 7985.17 7970.37 7996.90 7963.70 33.20

BiCGSTAB for Multiple Right Hand Side (MRHS) MRHS = 128 Conf. Coeff: 1.96

800.6 800.0 798.8 800.6 801.7 804.2 802.0 796.4 797.3 798.7 800.03 2.32 1.44 801.47 798.59 804.20 796.40 7.80

1401.3 1405.0 1400.2 1402.5 1404.2 1400.6 1395.9 1403.1 1409.6 1403.5 1402.59 3.57 2.21 1404.80 1400.38 1409.60 1395.90 13.70

2846.1 2851.0 2850.1 2854.8 2842.9 2885.3 2844.4 2878.5 2842.1 2844.2 2853.94 15.35 9.51 2863.45 2844.43 2885.30 2842.10 43.20

4431.3 4437.0 4433.0 4428.3 4435.4 4449.9 4418.7 4423.4 4429.6 4423.4 4431.00 8.77 5.44 4436.44 4425.56 4449.90 4418.70 31.20

7334.2 7344.2 7338.4 7330.0 7336.7 7345.0 7382.9 7404.2 7406.2 7341.4 7356.32 29.58 18.33 7374.65 7337.99 7406.20 7330.00 76.20

14477.6 14492.6 14467.2 14471.9 14455.0 14475.0 14468.0 14483.0 14488.7 14485.0 14476.40 11.39 7.06 14483.46 14469.34 14492.60 14455.00 37.60

10800

21600

43200

86400

2700

5400

43200

86400

2700

5400

10800

21600

86400

2700

5400

10800

21600

43200

C
o

e
ff

. M
at

.
Le

ad
in

g
D

im
.

Parallel Execution Time(msec)

166

Figure 40: Data and some statistics for a version of BiCGSTAB that solves a system with MRHS. Whenever GPU memory cannot be
allocated on the device, device allocation fail flag is raised

BiCGSTAB for Multiple Right Hand Side (MRHS) MRHS = 256 Conf. Coeff: 1.96

A
ve

ra
ge

ST
D

M
ar

gi
n

 E
rr

o
r

U
p

p
e

r
B

o
u

n
d

Lo
w

e
r

B
o

u
n

d

M
ax

M
in

R
an

ge

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

1473.8 1474.5 1479.8 1485.7 1475.7 1472.6 1588.6 1547.2 1463.4 1515.6 1497.69 40.69 25.22 1522.91 1472.47 1588.60 1463.40 125.20

2540.8 2540.8 2542.0 2542.7 2537.7 2545.0 2543.0 2542.4 2535.5 2545.7 2541.56 3.09 1.92 2543.48 2539.64 2545.70 2535.50 10.20

5202.0 5202.6 5202.7 5254.0 5210.5 5199.0 5205.8 5243.4 5198.9 5200.8 5211.97 19.81 12.28 5224.25 5199.69 5254.00 5198.90 55.10

8175.4 8187.9 8198.6 8262.7 8183.2 8188.1 8189.8 8183.3 8180.2 8185.2 8193.44 25.10 15.56 8209.00 8177.88 8262.70 8175.40 87.30

13825.4 13783.2 13773.5 13750.9 13738.0 13753.8 13749.2 13774.0 13766.4 13763.6 13767.80 24.41 15.13 13782.93 13752.67 13825.40 13738.00 87.40

BiCGSTAB for Multiple Right Hand Side (MRHS) MRHS = 512 Conf. Coeff: 1.96

2798.6 2853.2 2824.8 2806.1 2803.3 2810.9 2811.7 2805.9 2820.6 2807.1 2814.22 15.77 9.78 2824.00 2804.44 2853.20 2798.60 54.60

4820.1 4851.5 4850.4 4852.1 4828.7 4828.4 4845.3 4824.2 4825.5 4814.2 4834.04 14.31 8.87 4842.91 4825.17 4852.10 4814.20 37.90

9916.7 9935.1 9930.8 9934.9 9943.0 9922.6 9960.0 9959.4 9910.7 9934.5 9934.77 16.26 10.08 9944.85 9924.69 9960.00 9910.70 49.30

15660.1 15655.4 15688.7 15655.9 15618.4 15631.4 15650.8 15633.7 15658.5 16012.9 15686.58 116.27 72.06 15758.64 15614.52 16012.90 15618.40 394.50

BiCGSTAB for Multiple Right Hand Side (MRHS) MRHS = 1024 Conf. Coeff: 1.96

5530.3 5483.6 5478.6 5482.3 5500.7 5492.1 5489.3 5502.4 5476.7 5489.5 5492.55 15.77 9.78 5502.33 5482.77 5530.30 5476.70 53.60

9450.7 9438.5 9458.6 9437.0 9441.8 9449.1 9439.4 9450.7 9452.3 9432.9 9445.10 8.26 5.12 9450.22 9439.98 9458.60 9432.90 25.70

19478.9 19507.1 19477.3 19475.3 19491.1 19415.3 19449.3 19470.5 19464.2 19500.9 19472.99 26.46 16.40 19489.39 19456.59 19507.10 19415.30 91.80

BiCGSTAB for Multiple Right Hand Side (MRHS) MRHS = 2048 Conf. Coeff: 1.96

10802.4 10704.4 10740.6 10779.8 10839.1 10763.2 10733.9 10753.1 10779.9 10744.9 10764.13 38.16 23.65 10787.78 10740.48 10839.10 10704.40 134.70

18610.4 18482.0 18471.2 18545.3 18583.0 18621.7 18494.5 18498.4 18681.8 18559.0 18554.73 69.69 43.19 18597.92 18511.54 18681.80 18471.20 210.60

Device Allocation Fail

5400

10800

Device Allocation Fail

Device Allocation Fail

2700

2700

5400

10800

21600

2700

5400

10800

21600

43200

86400 Device Allocation Fail

2700

5400

10800

21600

43200

C
o

e
ff

. M
at

.
Le

ad
in

g
D

im
.

Parallel Execution Time(msec)

167

Figure 41: A double log plot for the average execution time of MRHS BiCGStab solver for various matrix dimensions and different MRHS widths.

168

The developed implementation of our BiCGStab_MRHS is composed of several kernels,

shown in the appendix. The following Table 15, shows the count of their multiply-add

operations as well as the computed GFLOPS/s for sample matrices extracted from the

reservoir, while Figure 42, plots the computed GFLOPS/s for various dimensions. Without

loss of generality, consider the kernel shown in Figure 39 that computes alpha. Besides

the obvious count for multiplication and addition operations, the kernel computes a

reduction task that has been shown to have an order of �����(�)� operations!

Table 15: Performance FLOPS for the kernels constituting the BiCGSTAB merged implementation

 compute_p compute_alpha compute_S compute_X

N

× ���

Op.

Cont

× ���

Time

(s)

GFLOP

/s

Op.

Cont

× ���

Time

(sec)

GFLOP

/s

Op.

Cont

× ���

Time

(sec)

GFLOP/

sec

Op.

Cont

× ���

Time

(sec)

GFLOP

/s

2,7 40,5 2.85 0.04 32,4 1.95 0.04 37,8 3.79 0.03 72,9 3.91 0.05

5,4 86,4 3.42 0.14 70,2 2.35 0.16 81,0 4.44 0.10 156,6 4.76 0.18

10,8 183,6 4.94 0.40 151,2 3.61 0.45 172,8 5.72 0.33 334,8 6.39 0.57

21,6 388,8 6.62 1.27 324 5.67 1.23 367,2 9.32 0.85 712,8 9.16 1.68

43,2 820,8 4.97 7.14 691,2 2.57 11.62 777,6 8.13 4.13 151,2 6.47 10.1

86,4 172,8 6.86 21.77 146,8 2.93 43.30 164,1 10.79 13.15 319,6 9.38 29.4

169

Figure 42: GFLOPS/s for the kernels used to program the BiCGSTAB merged for various matrix dimensions

170

Similar to the discussion in the previous section and as there is no reuse of loaded matrix

elements, it is clear that the presented kernels feature computations that are memory and

bandwidth bounded. The peak FLOPS of the device (1.31 teraflops for double precision)

is much less than the results plotted in Figure 42. This is mainly because the measured

execution time of each kernel is high. After all, GFLOPS/s is calculated as:

GFLOPS

s
=

number of multiply or add operations∗ problem size

Execution time∗ 10�

The measured execution time shown in Table 15 was high because of the overhead

associated with launching a kernel inside a kernel and managing the described earlier

parent-child relation.

3.6.4 Concluding Remarks for this Section

Creating more parallelization opportunities by utilizing dynamic parallelism has been

examined in light of implementing a parallel BiCGSTAB with multiple right hand sides

MRHS. Such solvers play a key role in history matching applications and inverse problems

in general. The utilized method is promising and can be further enhanced. Moreover, the

same approach can be applied in the near future to other solvers like QMR and GMRES to

compare performance.

171

4 CHAPTER 4

PARALLEL MODELING AND IMPLEMENTATION OF

FORWARD RESERVOIR SIMULATION

4.1 The Parallel Model

The goal of parallel programing is to provide tools and techniques for either solving big

problems faster or to run larger instances of the given problem for the same time interval

that was used to execute their serial counterpart. Exposing application concurrency refers

to the art of breaking down the main problem into independent logical tasks35 that could be

later executed in parallel after mapping them to corresponding physical processing

elements. It is then no wonder that restructuring the problem to exploit any available

concurrency is indeed first mandatory step before implementing any serial algorithm using

a suitable parallel programming environment. The process for finding concurrency starts

by a decomposition step performed on program data and the associated tasks. It is followed

by an analysis step where the decomposed parts are grouped, ordered, or share their own

data.

35 A task is a sequence of instructions that operate together as a group.

172

Just as various complex algorithms and software modeling techniques have emerged as a

necessity for developing large sequential applications, large scale massively parallel

programs are in more demand for either making use of such techniques or even developing

new aiding tools. This could be attributed to the observed fact that the life cycle of a parallel

program is very long, error prone, complex and requires special attention to the underlying

hardware resources [116]. Although exposing program concurrency may be achieved by

developing and analyzing the dependency graph that in turns may be constructed in many

ways [117], those methods are suited to express concurrency of computationally expensive

algorithms or small scale systems.

As our reservoir simulator is more complicated, we tend to utilize more elegant methods

from the software engineering general-purpose UML modeling [118, 119] which

essentially provides standard graphs to visualize the design of large scale systems and their

associated relations. Throughout the development process, we have constructed several

related and complementary diagrams that describe the whole system from various design

viewpoints to eventually aid in understanding and analyzing the parallel program.

While the Activity Diagram represents the behavioral part of the system, Deployment

Diagram, also called Topology or Collaboration Diagram, shows the structural aspect and

demonstrates how software and hardware work together [120]. The Deployment Diagram

is usually the first recommended step in the modeling of traditional large scale parallel

applications [116, 121]. The Activity Diagram shows the execution flow of the processes

and what actions are performed to achieve an ultimate goal. In the context of parallel

application modeling, this diagram provides means of representing communication,

173

synchronization and computational operations[116, 119]. Sequence Diagram as well as

Communication or Collaboration Diagram, are also utilized to add another perspective to

the behavioral description of the system. While the Sequence Diagram depicts dynamic

system elements as they interact overtime, Collaboration Diagram also shows how system

components are spatially related [122].

A quick glance at our sequential implementation of the reservoir simulator reveals and in

a broader sense a number of write after write [7, 102] data hazards for each flow

calculation. The issue has been resolved by giving off some space in order to create

independent tasks. Instead of having one variable location being updated sequentially,

multiple copies of the same variable have been allocated with proper renaming. Moreover,

by refereeing back to the computational model of the developed forward simulator, Figure

51 and Figure 52 in the appendix, one can establish the associated corresponding detailed

Activity Diagram, Figure 43. Without loss of generality, the concurrent operations of flow

calculations from north to south are shown in Figure 44.

174

Figure 43: The Activity
Diagram for the reservoir

simulator, with its
computational scheme

175

Figure 44: The Activity Diagram for a sample North-South flow calculation inside the Newton Iteration

176

As result, the following can be concluded about the matrix assembly stage36:

 The system operates on large data structures. Basically large arrays that store

(�� &�� ,��� &���) values.

 Unlike the Newton and time loops, and if managed properly, the grid iterations are

independent and do not carry dependency.

 The data portions of the arrays are read independently, for every flow direction.

 The update of the variables inside the array is done through multiple consecutive

function calls.

The previous behavior and the established notes suggest that we start the parallelization

process by data decomposition step over the large arrays and incorporate task

decomposition whenever needed.

The process of data decomposition is about mapping a global index space into a task local

index space [9]. It is associated with a granularity level37 that determines the amount of

data each chunk holds. The more the granularity gets smaller, the more independent tasks

that are created and the more communication overhead to manage the dependencies among

the resulting chunks is required. It has been suggested that a good data decomposition will

poses the following characteristics [9]:

 It has to yield dependencies that scale at a lower dimension than the computational

effort associated with each chunk; i.e. making chunks large enough so that the

36 Before calling the linear solver
37 A coarse-grained decomposition results in smaller number of large chunks which decrease
communication overhead. A fine-grained decomposition, leads larger number of smaller chunks which
facilitates load balancing and scheduling.

177

computational effort required to update data, offsets any resulted dependency

overhead. Moreover, larger chunks will offer more flexibility when scheduling

operations on the processors.

 Preserve load balancing among the execution elements. If not, then the speed at

which the computation finishes will be haunted by the speed of the lowest process;

i.e. the one with more work. This will be soon reflected on the overall performance

that suffers as the problem being parallelized is scaled38. After all, better scaling is

achieved through the minimization data movement and reducing the serial

bottlenecks39 to the limit [6].

The analyzed concurrency pattern presents an additional force that influences the way tasks

are mapped to processing elements. The simulator consists of multiple independent tasks40

or weakly related tasks that share a common data structure as well as a sequence of tasks

with a static and regular flow ordering pattern. When applicable the so called not true

dependency was removed by suitable code transformations41. Moreover, a replication of

the data structure was done when necessary. Whenever applicable, the whole program has

been restructured to create more work with more potential concurrency. Also, optimized

routines in Thrust library like reduction and their special data structure has been employed

and utilized.

38 This is achieved by either increasing resources or increasing problem dimensions.
39 Such as exclusive-access mechanism such as locks, semaphores, or synchronization barriers
40 In such a case, the focus will be on maximizing the efficiency of scheduling by ensuring load balancing
41 Some iterative expressions can be transformed into closed from expressions to remove any loop carried
dependency.

178

Throughout the program execution, each function call can be thought of as a task42 which

in turn may be composed of other tasks. Moreover, as the iterations in the most inner loop

that spans all grid points are independent, each iteration, or even group of iterations, could

be thought of as a separate task43 that in turns operate on its assigned data portion. Again,

the general rule of thumb lies in ensuring the creation of enough independent tasks that

keep the processors busy. In CUDA terms, a global function will launch a number of thread

blocks that handles specific portion of the input data. Threads in the associated blocks will

then bring to shared or local memory necessary related data, calling any necessary device

functions and operate on them.

The previous tasks could also be grouped in a way that makes it easier for managing

dependency. The temporal dependency in the simulator loops puts further restrictions on

data flow44 and directly influences the way different tasks could be grouped. As mentioned

earlier, the shared data arrays in (�� & ��), are solely read during matrix assembly stage.

Before passing them to the next iteration they are modified and written back after solving

the assembled ill conditioned unsymmetrical sparse linear system. The decomposed tasks

utilize a shared data structure and their interaction is also synchronous as they occur at

regular time intervals. Therefore, proper synchronization should also be introduced to

avoid any race conditions.

42 In this case, this task decomposition is referred to as functional decomposition.
43 This style of task-based decomposition leads to what is sometime called loop-splitting algorithms.
44 This sequential flow could be exploited by pipelining.

179

Table 16, lists some utilized optimizations in the developed FRS code. More detailed

information with examples could be found in [123, 124].

Table 16: List of utilized optimizations in the developed parallel FRS code

Target

Optimizations

Details

Shared Memory

Utilization

Intensive use of device shared memory and making use of its broadcast

property to serve data among threads at a fast pace.

Titling To handle large vectors, each thread at first load data into shared memory

and performs the corresponding desired operation. It then stores the result

back to global memory before another kernel take data accumulated in this

new vector in global memory and continue operating on it.

Memory

Coalescing

A warp can access a number of successive memory locations in a single

transaction. Therefore, maximizing BW utilization.

Occupancy and

Latency Hiding

Launching enough threads to keep resources busy.

Data Transfer Minimize copying, and makes use of asynchronous data transfer between

host and device by utilizing pinned memory and streams. Kepler GK110

introduces HyperQ mechanism that supports 32 hardware managed

connections for communication between host and device. As a result, device

180

utilization has been increased as multiple processors on the CPU could

initiate work on a single GPU at the same time.

Overlap

Communication

and computation

Host and kernel execution overlap: when possible, the original code was

restructured in a way that a call to device kernel is followed by a many calls

to host functions. By default, kernel launch is asynchronous or non-blocking.

So while the GPU is busy, the host computes part of the algorithm. If used

properly, this mix, combined with streaming has great impact on

performance.

Computation

Intensity

Loop unrolling was utilized to further increase computation intensity.

4.2 Experiments and Comparisons

We implemented the previous described model and compare the obtained execution time

with a serial version that makes use of Eigen library [85]. Correctness of results has been

verified by comparing the output pressure values from the two programs for the given

well distribution, see the Appendix for more details. Table 17, shows the execution time

and the obtained speedup.

181

Table 17: The Execution time (ET) for serial and parallel FRS

Next, Table 18 and Figure 43 demonstrate how the parallel execution time of the entire

FRS varies when doubling reservoir dimension. The objective is two folded: First, to

quantify the importance of the above obtained speedup shown in Table 17, and see what

reservoir dimension is simulated in the same time used to produce results in the serial

version. Second: to get an idea on how the developed parallel FRS scales when increasing

problem size so that further optimizations could be implemented in subsequent work. For

the sake of experimentations, only 25 wells were used.

X Y Z

240 240 2

230400

18693.25

570.07

33

Reservoir Dimension

Coefficient Matrix

Leading Dimension

Average Serial

Execution Time (sec)

Average Parallel

Execution Time (sec)

Speed Up

182

Table 18: The parallel execution time of CUDA based FRS for various grid dimensions

In accordance with common observation on GPUs, data shows that the GPU simulation

becomes more efficient with increasing model size. They reflect the fact that GPUs need a

large amount of independent work to operate at maximum efficiency. The serial

implementation of FRS took 311.55 minutes to solve a problem with 230,400 grids. On the

other hand, the interpolated data from Figure 45, speculates that a problem with 18,873402

grids could be solved in parallel in 311.55 minutes. In other words the CUDA parallel

implementation of FRS enables solving an 82 times larger grid dimension, given the same

time to produce results from the counterpart serial implementation.

Parallel Oil Reservoir Simulation Conf. Coeff: 1.96

A
ve

ra
ge

ST
D

M
ar

gi
n

 E
rr

o
r

U
p

p
e

r
B

o
u

n
d

Lo
w

e
r

B
o

u
n

d

M
ax

M
in

R
an

ge

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

75.0 74.8 74.6 74.5 74.7 74.7 74.8 74.7 74.7 74.7 74.72 0.12 0.07 74.80 74.65 74.96 74.50 0.46

170.6 170.5 170.6 170.9 170.6 170.9 170.6 170.2 170.6 170.6 170.61 0.19 0.12 170.72 170.49 170.89 170.23 0.66

259.4 258.6 258.9 258.9 258.7 259.0 258.7 258.7 259.0 259.0 258.89 0.24 0.15 259.04 258.74 259.41 258.57 0.84

414.8 414.5 415.0 414.7 414.6 414.2 414.6 415.1 414.9 414.2 414.66 0.32 0.20 414.85 414.46 415.10 414.16 0.94

570.3 570.2 569.5 570.7 570.0 569.6 570.9 570.1 569.9 569.6 570.07 0.47 0.29 570.35 569.78 570.92 569.50 1.42

885.8 884.4 884.0 884.4 885.0 885.5 885.2 884.0 885.5 885.3 884.91 0.67 0.42 885.32 884.49 885.82 883.97 1.85

1162.3 1165.9 1164.8 1165.9 1164.3 1165.5 1165.4 1164.2 1164.0 1165.2 1164.75 1.09 0.68 1165.43 1164.07 1165.93 1162.33 3.60

1879.6 1882.8 1881.5 1881.6 1882.5 1877.9 1881.9 1882.6 1881.0 1880.1 1881.14 1.53 0.95 1882.09 1880.19 1882.80 1877.94 4.86

460800

921600

1843200

10800

28800

57600

115200

230400

C
o

e
ff

. M
at

.

Le
ad

in
g

D
im

.

Parallel Execution Time(sec)

183

Figure 45: A double-log plot for the parallel execution time of our developed FRS for various geometries

184

4.3 The Parallel FRS Graphical User Interface (GUI)

With the goal of deploying a real time version of the parallel simulator, a client-server

application that is suitable for such heterogeneous configuration has been developed. The

following technologies have been utilized:

Client Side

 HTML5, CSS, Java Script,

 (Shiny): A web application framework for R45.

Middle Layer (R + scripting to communicate with the Server)

Server Side (Simulation Program (C++ and CUDA)).

The GUI enables basic control like setting reservoir dimensions as well as loading some

configuration files. Following are some snapshots.

45 http://shiny.rstudio.com/

185

Figure 46: GUI Snapshot showing the resulting pressure at Injectors

186

Figure 47: GUI Snapshot showing the resulting pressure at Producers

187

Figure 48: GUI Snapshot showing water cut values

188

Figure 49: GUI Snapshot showing how data is loaded into the system

189

4.4 Concluding Remarks and Future Work

This work has studied and implemented a CUDA based parallel implementation for a

flexible, two phase, 3D Forward Reservoir Simulation (FRS), and reviewed all related

issues. Results show that CUDA parallel implementation of FRS enables solving an 81

times larger problem than the serial counterpart. Moreover, if accompanied by proper

preconditioning, BiCGSTAB was shown to be a stable solver that could be incorporated in

such simulations instead of the costly GMRES. This work is a founding stone for many

interesting work to come. Future work includes imposing further optimizations on the

CUDA program, MIC implementation, utilizing Multigrid preconditioners, OpenACC

comparison, trying different solvers like QMR and others.

190

This page was intentially been left blank

191

5 Appendix A

Work Completed Under Directed Research

A.1 Computational Model for Reservoir Simulation

The goal of Forward Reservoir Simulation (FRS) is to model fluid flow and mass transfer

in porous media to eventually draw conclusions about the behavior of certain flow variables

and well responses. Starting with initial values for pressure and saturation together with

other reservoir parameters, (FRS) eventually produces new enhanced values of those state

variables (P� and S�) at different time steps given the initial reservoir properties Figure 50

Figure 50: General Scheme for Forward Reservoir Simulation

192

Figure 51, presents a general description of our developed FRS model that is utilized later

to introduce the computation model. The Forward Model consists of three main iterations

Figure 52, namely L1, L2 and L3 and optionally a fourth one L4.

 The outer most (Loop L1): is the temporal loop which repeats the simulation for

different time steps that are usually measured in days.

 The middle iteration (Loop L2): is Newton iteration that achieves the linearization.

During this iteration the resulted sparse linear system of the form Ax = b is solved.

 The most inner one (Loop L3): is the spatial loop that visits all system grid cubes

and form the corresponding non-linear system to be linearized, solved and refined

during the middle iteration (L2)

 Optional (Loop L4): this loop is available if iterative methods are used to solve the

linear system. Generally speaking, iterative methods are favored over direct

methods for large sparse linear systems, because of their computational and storage

efficiency. More details were presented in the survey in the preceding section.

In previous iterations, L2 accounts for around 67% of the computational complexity in the

whole forward modeling process. After the discretization step, the system of non-linear

algebraic equations for each phase is then written in terms of its corresponding residual

equation R� & R�. The famous Newton Iteration achieves system linearization by

repeatedly refining a nearby obtained approximation after solving a linear system with the

Jacobian as the coefficient matrix. The Jacobian is obtained for each phase by deriving the

193

residual equation with respect to both P� & S� at each grid point and all its neighbors. It is

worth mentioning that the condition number for the assembled Jacobian matrix ranges from

around 1.279E+05 in the beginning of the simulation time and reaches 4.708E+06 at the

end.

194

Figure 51: General Description for the Forward Reservoir Simulation Model

195

Figure 52: General Computational Scheme for the Forward Oil-Black model: When assembling the linear system. All grid points are
visited. Newton Iteration repeatedly solves the system of linear equations formed in the grid iteration

196

A.2 Validating Reservoir Results

Validating the correctness of parallel program output was done in two stages. First, an

already verified MATLAB code developed by [19, 20] that utilized a direct solver was

compared against the implemented serial C++ program for small grid dimensions (20

x30x2). No flow boundary condition was initially assumed, six injectors with specified

water rate and seven producers with specified total rate were utilized. The distribution of

the wells is shown in Table 19, while Figure 53, shows the permeability map with the

distribution of wells shown on the map.

Table 19: Well distribution for both the producer and the injector over grid space of (20 x 30 x 2)

X-Coor Y-Coor Z-Coor Stb/day P limit Psi

1 1 1 -550 7000

10 1 1 -850 7000

5 5 1 550 2000

1 10 1 350 2000

10 10 1 600 2000

1 20 1 -550 7000

10 20 1 -850 7000

5 15 1 500 2000

15 5 1 600 2000

20 1 1 -550 7000

20 10 1 650 2000

15 15 1 600 2000

20 20 1 -550 7000

197

Figure 53: Permeability map for the utilized wells shown in Table 19

198

Figure 54 and Figure 55 demonstrate the two versions for the running simulator when the

effect of capillary pressure is included and plot P�� for the injectors and producers against

a similar configuration where capillary was not included. Six injectors with specified water

rate and seven producers with specified total rate were utilized. Next Figure 56 and Figure

57 show the running simulator when the constant pressure boundary condition is assumed

from certain directions (m-HJ, m-J) with a value of 5000, no flow boundary condition is

assumed for all other directions. Again six injectors with specified water rate and seven

producers with specified total rate were utilized.

In the second verification phase we consider larger grid dimensions (240 x 240 x 2) and

test the serial C++ code against our developed parallel version. As mentioned before, the

serial version uses Egien library to provide implementation of the BiCGSTAB solver and

the ILU preconditioner while our parallel program utilizes a program we wrote for

BiCGSTAB code based on various related cuSPARSE and cuBLAS library calls.

199

Figure 54: Pwf at Injectors, Pc is included, No Flow BC for 20*30*2, specified flow rate at injector

200

Figure 55: Pwf at Producers, Pc is included, No Flow BC for 20*30*2, specified total rate at producer

201

Figure 56: Pwf at Injectors. Constant Flow BC (5000psi) at m-J and m-HJ, No Flow BC for the rest. Water-oil reservoir of
dimensions (20*30*2) and specified flow rate at 6 injectors

202

Figure 57: Pwf at Producers. Constant Flow BC (5000psi) at m-J and m-HJ, No Flow BC for the rest. Water-oil
reservoir of dimensions (20*30*2) and specified total rate at 7 producers

203

6 Appendix B

CUDA Kernels Utilized in This Work

B.1 BiCGSTAB Merged Implementation

__global__ void reduced_Omega(double *vector_Neum, double
*vector_Deno, double *alpha_phat, double *x, double
*s_hat, double *t, double *r, double *s,int data_size){

 __shared__ double Inter_Blk_Neum[blocksPerGrid];
 __shared__ double Inter_Blk_Deno[blocksPerGrid];

 __shared__ double shared_Omega;

 unsigned int Index = threadIdx.x;
 int tid = threadIdx.x + blockIdx.x * blockDim.x; //
global thread ID

 if(Index < blocksPerGrid){

 Inter_Blk_Neum[Index]= vector_Neum[Index];
 Inter_Blk_Deno[Index]= vector_Deno[Index];

 __syncthreads();

 UnrolledBlockReduce(Index, Inter_Blk_Neum,
Inter_Blk_Deno,blocksPerGrid);

 }

 __syncthreads(); // make thread 0 waits all others

 if(Index == 0){

 shared_Omega =
Inter_Blk_Neum[0]/Inter_Blk_Deno[0]; //broadcast from
shared memory

204

 global_Omega = shared_Omega;
 }

 __syncthreads(); //make all threads, wait for thread
zero to come

 double omega = shared_Omega;

 while (tid < data_size){

 x[tid] = x[tid] + alpha_phat[tid] +
omega*s_hat[tid];
 r[tid]= s[tid]- omega*t[tid];

 tid += blockDim.x * gridDim.x;
 }
}

205

_global__ void per_Block_Omega(double *t,double *s, double
*vector_Neum, double *vector_Deno,double *alpha_phat,
double *r, double *s_hat, double *x ,int data_size){

 __shared__ double
Intra_Blk_Omega_Neu[threadsPerBlock];
 __shared__ double
Intra_Blk_Omega_Deno[threadsPerBlock];

 double current_t=0;

 int tid = threadIdx.x + blockIdx.x * blockDim.x; //
global thread ID
 unsigned int Index = threadIdx.x;

 Intra_Blk_Omega_Neu[Index] = 0;
Intra_Blk_Omega_Deno[Index] = 0;
 /* omega = (t'*s) / (t'*t) */

 while (tid < data_size){

 current_t = t[tid];

 Intra_Blk_Omega_Neu[Index] += current_t * s[tid];
 Intra_Blk_Omega_Deno[Index]+= current_t *
current_t;

 tid += blockDim.x * gridDim.x;
 }

 __syncthreads();

 if(Index < blocksPerGrid){
 UnrolledBlockReduce(Index, Intra_Blk_Omega_Neu,
Intra_Blk_Omega_Deno,threadsPerBlock);
 }
 __syncthreads();
//Write the resulted per block reduced rho to global
memory
 if (0 == Index) {

 vector_Neum[blockIdx.x] = Intra_Blk_Omega_Neu[0];
 vector_Deno[blockIdx.x] = Intra_Blk_Omega_Deno[0];
 }
}

206

__global__ void per_BLK_alpha(double *r_tld, double *v,
double *vector_rtld_v,int data_size) {

 __shared__ double Intra_Blk_rtld_v[threadsPerBlock];

 int tid = threadIdx.x + blockIdx.x * blockDim.x; //
global thread ID
 unsigned int Index = threadIdx.x;

 double current_rtld_v =0; // r_tld[i]*v[i]

 while (tid < data_size){

 current_rtld_v += r_tld[tid] * v[tid];
 tid += blockDim.x * gridDim.x;
 }

 if(Index < threadsPerBlock){
 Intra_Blk_rtld_v[Index] = current_rtld_v;
 __syncthreads();

 UnrolledBlockReduce(Index,
Intra_Blk_rtld_v,threadsPerBlock);
 }
 __syncthreads();

 //Thread 0 from each block will write the resulted per
block reduced rho to global memory
 if (Index == 0) {
 vector_rtld_v[blockIdx.x] = Intra_Blk_rtld_v[0];
 }
}

207

__global__ void compute_S(double *r,double *v, double *s,
double *p_hat, double *alpha_phat, double *vector_S
,double *global_Alpha, int data_size) {

 int tid = threadIdx.x + blockIdx.x * blockDim.x; //
global thread ID
 unsigned int Index = threadIdx.x;
 __shared__ double alpha_sh;

 if(Index == 0) alpha_sh = *global_Alpha;

 __shared__ double Intra_Blk_S[threadsPerBlock]; // for
reduced S value
 double s_quare = 0, s_value =0;

 __syncthreads();

 double local_Alpha = alpha_sh;

 while (tid < data_size){
 s_value = r[tid] - local_Alpha*v[tid] ; //
s[tid] = r[tid] - global_Alpha * v[tid];
 s_quare += s_value *s_value;
 s[tid] = s_value;
 alpha_phat[tid] = local_Alpha*p_hat[tid];

 tid += blockDim.x * gridDim.x;
 }
 __syncthreads();

 if(Index < threadsPerBlock){
 Intra_Blk_S[Index] = s_quare;
 __syncthreads();

 UnrolledBlockReduce(Index,
Intra_Blk_S,threadsPerBlock);
 }

 __syncthreads();

 //Thread 0 from each block will write the resulted per
block reduced rho to global memory
 if (Index == 0) {
 vector_S[blockIdx.x] = Intra_Blk_S[0];
 }
}

208

__global__ void per_BLK_Rho_Beta(double *r_tld, double *r,
double *vector_Beta, double *vector_rho, double
*global_Alpha, double *global_rho1 ,int data_size) {

==
// INPUT:
 // r_tld, r: to perform dot product
 // cons_vec[4]: (rho_1, alpha, omega,
data_size)
 // --------------------------------------

 //
 // OUTPUT:
 // vector_Beta, vector_rho: contains per
block reduced values of beta and rho
 //
==

 unsigned int Index = threadIdx.x;
 __shared__ double shared_Constants[3];

 if(Index == 0){
 shared_Constants[0]= *global_rho1;
 }
 if(Index == 32){
 shared_Constants[1]= *global_Alpha;
 }
 if(Index == 64){
 shared_Constants[2]= global_Omega;
 }
 __syncthreads();

//Allocating shared memory for intra (within) block
reduction: Intra_Blk
 __shared__ double Intra_Blk_rho[threadsPerBlock];
 __shared__ double Intra_Blk_Beta[threadsPerBlock];

 double rho_1 = shared_Constants[0]; double alpha =
shared_Constants[1]; double omega = shared_Constants[2];
 double current_rho=0;

 int tid = threadIdx.x + blockIdx.x * blockDim.x; //
global thread ID
 Intra_Blk_rho[Index] = 0; Intra_Blk_Beta[Index] = 0;

209

 while (tid < data_size){

 current_rho = r_tld[tid] * r[tid]; // partial rho:
rho_0, rho_1, rho_2

 Intra_Blk_rho[Index] += current_rho;
 Intra_Blk_Beta[Index] += (current_rho/ rho_1) *
(alpha / omega);

 tid += blockDim.x * gridDim.x;
 }
 __syncthreads();

 if(Index < threadsPerBlock){
 UnrolledBlockReduce(Index,
Intra_Blk_Beta,Intra_Blk_rho,threadsPerBlock);
 }

 __syncthreads();

 //Thread 0 from each block will write the resulted per
block reduced rho to global memory
 if (Index == 0) {

 vector_Beta[blockIdx.x] = Intra_Blk_Beta[0];
 vector_rho[blockIdx.x] = Intra_Blk_rho[0];
 }
}

210

__global__ void compute_P(double *p, double *r, double
*r_tld, double *v, double *vector_Beta, double
*vector_rho,int data_size){

 int tid = threadIdx.x + blockIdx.x * blockDim.x; //
global thread ID
 unsigned int Index = threadIdx.x;

 __shared__ double omega;
 if(Index ==0){
 // let th0 of every block brings omega and share it
with threads in a block
 omega =global_Omega;
 }

 // step_1: Bring vector beta to shared memory
 __shared__ double Inter_Blk_Beta[blocksPerGrid];
 __shared__ double Inter_Blk_Rho[blocksPerGrid];

 if(Index < blocksPerGrid){
 // very optimal if blocks is 32 as it will give
only one memory transaction
 Inter_Blk_Beta[Index]= vector_Beta[Index];
 Inter_Blk_Rho[Index]= vector_rho[Index];
 }
 __syncthreads();

 // operate on shared memory
 __shared__ double p_Sh[threadsPerBlock];
 __shared__ double v_Sh[threadsPerBlock];

 double current_Beta, current_Beta1, current_Beta2,
current_Beta3, current_Beta4, current_Beta5,
current_Beta6, current_Beta7;
 double p_next, p_next1, p_next2, p_next3, p_next4,
p_next5, p_next6, p_next7 ;

 //#pragma unroll
 while (tid < data_size){

 p_next = 0; p_next1 = 0; p_next2 = 0; p_next3 = 0;
p_next4 = 0; p_next5 = 0; p_next6 = 0; p_next7 = 0;

 p_Sh[Index] = p[tid];
 v_Sh[Index] = v[tid];

211

 //for(int i=0; i<blocksPerGrid;i++){
 for(int i=0; i<blocksPerGrid;i+=8){

 current_Beta = Inter_Blk_Beta[i];
 current_Beta1 = Inter_Blk_Beta[i+1];
 current_Beta2 = Inter_Blk_Beta[i+2];
 current_Beta3 = Inter_Blk_Beta[i+3];
 current_Beta4 = Inter_Blk_Beta[i+4];
 current_Beta5 = Inter_Blk_Beta[i+5];
 current_Beta6 = Inter_Blk_Beta[i+6];
 current_Beta7 = Inter_Blk_Beta[i+7];

 p_next += current_Beta * (p_Sh[Index]- omega
* v_Sh[Index]);
 p_next1 += current_Beta1 * (p_Sh[Index]-
omega * v_Sh[Index]);
 p_next2 += current_Beta2 * (p_Sh[Index]-
omega * v_Sh[Index]);
 p_next3 += current_Beta3 * (p_Sh[Index]-
omega * v_Sh[Index]);
 p_next4 += current_Beta4 * (p_Sh[Index]-
omega * v_Sh[Index]);
 p_next5 += current_Beta5 * (p_Sh[Index]-
omega * v_Sh[Index]);
 p_next6 += current_Beta6 * (p_Sh[Index]-
omega * v_Sh[Index]);
 p_next7 += current_Beta7 * (p_Sh[Index]-
omega * v_Sh[Index]);
 }

 p[tid] = r[tid] + p_next + p_next1 + p_next2 +
p_next3 + p_next4 + p_next5+ p_next6 + p_next7 ;

 tid += blockDim.x * gridDim.x;
 }
}

212

B.2 BiCGSTAB for MRHS System

213

214

215

216

References

[1] A. Thompson and G. R. Bowen, "Parallelisation of an oil reservoir simulation," in
High-Performance Computing and Networking. vol. 1067, H. Liddell, A.
Colbrook, B. Hertzberger, and P. Sloot, Eds., ed: Springer Berlin Heidelberg,
1996, pp. 20-28.

[2] P. Pacheco, An introduction to parallel programming: Elsevier, 2011.
[3] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, "The SPLASH-2

programs: Characterization and methodological considerations," in ACM
SIGARCH Computer Architecture News, 1995, pp. 24-36.

[4] S. U. Khan, L. Wang, and A. Y. Zomaya, Scalable Computing and
Communications: Theory and Practice, 2013.

[5] R. W. Shonkwiler and L. Lefton, An Introduction to Parallel and Vector Scientific
Computation vol. 41: Cambridge University Press, 2006.

[6] M. McCool, J. Reinders, and A. Robison, Structured parallel programming:
patterns for efficient computation: Elsevier, 2012.

[7] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach: Elsevier, 2012.

[8] S. P. Midkiff, "Automatic parallelization: an overview of fundamental compiler
techniques," Synthesis Lectures on Computer Architecture, vol. 7, pp. 1-169,
2012.

[9] T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for parallel
programming: Pearson Education, 2004.

[10] L. Dagum and R. Menon, "OpenMP: an industry standard API for shared-memory
programming," Computational Science & Engineering, IEEE, vol. 5, pp. 46-55,
1998.

[11] M. Snir, MPI--the Complete Reference: The MPI core vol. 1: MIT press, 1998.
[12] C. Campbell and A. Miller, A Parallel Programming with Microsoft Visual C++:

Design Patterns for Decomposition and Coordination on Multicore Architectures:
Microsoft Press, 2011.

[13] R. Rahman, Intel® Xeon Phi™ Coprocessor Architecture and Tools: The Guide
for Application Developers: Apress, 2013.

[14] I. X. P. C. I. Set, "Architecture Reference Manual," Intel Corp., September, 2012.
[15] (2012). NVIDIA's Next Generation CUDA Compute Architecture: Kepler GK110.

Available: http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-
ArchitectureWhitepaper.pdf

[16] J. Abou-Kassem, S. M. F. Ali, and M. R. Islam, Petroleum reservoir simulation a
basic approach. Houston, TX: Gulf Pub. Co., 2006.

[17] Z. E. HEINEMANN. (2005). FLUID FLOW IN POROUS MEDIA. Available:
http://edces.netne.net/files/HEINEM~1.PDF

217

[18] I. V. Minin and O. V. Minin, Computational Fluid Dynamics Technologies and
Applications. [S.l.]: INTECH, 2011.

[19] A. A. Awotunde, "Relating time series in data to spatial variation in the reservoir
using wavelets," Ph.D. Thesis, Department of Energy Resource Engineering,
Stanford University, 2010.

[20] A. A. Awotunde and R. N. Horne, "An improved adjoint-sensitivity computations
for multiphase flow using wavelets," SPE J, vol. 17, pp. 402-417, 2012.

[21] С. Mattax and R. Dalton, "Reservoir Simulation: Society of Petroleum Engineers,
Henry L," Doherty Series, Monograph, vol. 13, p. 172, 1990.

[22] D. S. Oliver, A. C. Reynolds, and N. Liu, Inverse theory for petroleum reservoir
characterization and history matching. Cambridge: Cambridge University Press,
2008.

[23] N. Sun, N.-Z. Sun, M. Elimelech, and J. N. Ryan, "Sensitivity analysis and
parameter identifiability for colloid transport in geochemically heterogeneous
porous media," WATER RESOURCES RESEARCH, vol. 37, pp. 209-222, 2001.

[24] L. Chu, A. C. Reynolds, and D. S. Oliver, "Computation of Sensitivity
Coefficients for Conditioning the Permeability Field to Well-Test Pressure Data,"
In situ., vol. 19, p. 179, 1995.

[25] W. Yeh, "Variational sensitivity analysis, data requirement and parameter
identification in a leaky aquifer system," Water Resour. Res. Water Resources
Research, vol. 26, pp. 1927-1938, 2000.

[26] S. L. L. Petzold, "Adjoint sensitivity analysis for time-dependent partial
differential equations with adaptive mesh refinement," Journal of Computational
Physics, vol. 198, pp. 310-325, 2004.

[27] I. Daubechies, Ten lectures on wavelets vol. 61: SIAM, 1992.
[28] D. Peaceman, Fundamentals of numerical reservoir simulation. Amsterdam; New

York: Elsevier Scientific Pub. Co., 1977.
[29] A. Khalid and S. Antonín, Petroleum reservoir simulation. London: Applied

Science Publishers, 1979.
[30] C. Zhangxin, H. Guanren, and M. Yuanle, Computational methods for multiphase

flows in porous media. Norwich, NY: Knovel, 2006.
[31] J. Blazek, Computational fluid dynamics principles and applications. Amsterdam;

San Diego: Elsevier, 2005.
[32] R. Lewis, N. Wynne, and K. N. Seetharamu, Fundamentals of the finite element

method for heat and fluid flow. Hoboken, NJ: Wiley-Interscience, 2005.
[33] H. Lomax, T. H. Pulliam, and D. W. Zingg, Fundamentals of computational fluid

dynamics. Berlin; New York: Springer, 2001.
[34] T. Jiyuan, Y. G. Heng, and L. Chaoqun, Computational fluid dynamics a practical

approach. Boston: Butterworth-Heinemann, 2008.
[35] Y. Saad and H. A. van der Vorst, "Iterative solution of linear systems in the 20th

century," Journal of Computational and Applied Mathematics, vol. 123, pp. 1-33,
11/1/ 2000.

[36] R. Mehmood and J. Crowcroft, "Parallel iterative solution method for large sparse
linear equation systems," University of Cambridge, Computer Laboratory 650,
2005.

218

[37] H. A. Van der Vorst, Iterative Krylov methods for large linear systems vol. 13:
Cambridge University Press, 2003.

[38] M. H. Gutknecht, "A brief introduction to Krylov space methods for solving
linear systems," in Frontiers of Computational Science, ed: Springer, 2007, pp.
53-62.

[39] H. M. Markowitz, "The elimination form of the inverse and its application to
linear programming," Management Science, vol. 3, pp. 255-269, 1957.

[40] J. Scott, "Sparse direct methods: An introduction," in Electronic Structure and
Physical Properies of Solids, ed: Springer, 2000, pp. 401-415.

[41] V. Strassen, "Gaussian elimination is not optimal," Numerische Mathematik, vol.
13, pp. 354-356, 1969.

[42] J. Dongarra, V. Eijkhout, and P. Luszczek, "Recursive approach in sparse matrix
LU factorization," Scientific Programming, vol. 9, pp. 51-60, 2001.

[43] A. Kamthane, Programming in C, 2/e: Pearson Education India, 2011.
[44] D. S. Watkins, Fundamentals of matrix computations vol. 64: John Wiley & Sons,

2004.
[45] R. Barrett, Templates for the solution of linear systems : building blocks for

iterative methods. Philadelphia: SIAM, 1994.
[46] G. H. Golub and C. F. Van Loan, Matrix computations vol. 3: JHU Press, 2012.
[47] Y. Saad and M. H. Schultz, "GMRES: A generalized minimal residual algorithm

for solving nonsymmetric linear systems," SIAM Journal on scientific and
statistical computing, vol. 7, pp. 856-869, 1986.

[48] R. Fletcher, "Conjugate gradient methods for indefinite systems," in Numerical
Analysis, ed: Springer, 1976, pp. 73-89.

[49] R. W. Freund and N. M. Nachtigal, "QMR: a quasi-minimal residual method for
non-Hermitian linear systems," Numerische Mathematik, vol. 60, pp. 315-339,
1991.

[50] H. A. Van der Vorst, "Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems," SIAM Journal on
scientific and Statistical Computing, vol. 13, pp. 631-644, 1992.

[51] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse matrices:
Clarendon Press Oxford, 1986.

[52] T. A. Davis, Direct methods for sparse linear systems: Siam, 2006.
[53] A. Gupta, "Recent advances in direct methods for solving unsymmetric sparse

systems of linear equations," ACM Transactions on Mathematical Software
(TOMS), vol. 28, pp. 301-324, 2002.

[54] M. Benzi, "Preconditioning techniques for large linear systems: a survey,"
Journal of Computational Physics, vol. 182, pp. 418-477, 2002.

[55] Y. Saad, Iterative methods for sparse linear systems. Philadelphia: SIAM, 2003.
[56] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, Parallel iterative algorithms:

from sequential to grid computing: CRC Press, 2007.
[57] V. Eijkhout, LAPACK working note 50 : distributed sparse data structures for

linear algebra operations. Knoxville, Tenn.: University of Tennessee, Computer
Science Dept., 1992.

219

[58] Y. Saad, "Krylov subspace methods on supercomputers," SIAM Journal on
Scientific and Statistical Computing, vol. 10, pp. 1200-1232, 1989.

[59] G. V. Paolini and G. R. Di Brozolo, "Data structures to vectorize CG algorithms
for general sparsity patterns," BIT Numerical Mathematics, vol. 29, pp. 703-718,
1989.

[60] E. Montagne, "An optimal storage format for sparse matrices," Information
Processing Letters Information Processing Letters, vol. 90, pp. 87-92, 2004.

[61] A. Ekambaram and E. Montagne, "An alternative compressed storage format for
sparse matrices," in Computer and Information Sciences-ISCIS 2003, ed:
Springer, 2003, pp. 196-203.

[62] L. Yuan, Y. Zhang, X. Sun, and T. Wang, "Optimizing Sparse Matrix Vector
Multiplication Using Diagonal Storage Matrix Format," in High Performance
Computing and Communications (HPCC), 2010 12th IEEE International
Conference on, 2010, pp. 585-590.

[63] A. Buttari, V. Eijkhout, J. Langou, and S. Filippone, "Performance optimization
and modeling of blocked sparse kernels," International Journal of High
Performance Computing Applications, vol. 21, pp. 467-484, 2007.

[64] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
"Performance evaluation of the sparse matrix-vector multiplication on modern
architectures," The Journal of Supercomputing, vol. 50, pp. 36-77, 2009.

[65] R. W. Vuduc and H.-J. Moon, "Fast sparse matrix-vector multiplication by
exploiting variable block structure," in High Performance Computing and
Communications, ed: Springer, 2005, pp. 807-816.

[66] V. Karakasis, G. Goumas, and N. Koziris, "A comparative study of blocking
storage methods for sparse matrices on multicore architectures," in Computational
Science and Engineering, 2009. CSE'09. International Conference on, 2009, pp.
247-256.

[67] P. Stathis, S. Vassiliadis, and S. Cotofana, "A hierarchical sparse matrix storage
format for vector processors," in Parallel and Distributed Processing Symposium,
2003. Proceedings. International, 2003, p. 8 pp.

[68] D. Langr, I. Simecek, P. Tvrdík, T. Dytrych, and J. P. Draayer, "Adaptive-
blocking hierarchical storage format for sparse matrices," in Computer Science
and Information Systems (FedCSIS), 2012 Federated Conference on, 2012, pp.
545-551.

[69] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and B. Lee,
"Performance optimizations and bounds for sparse matrix-vector multiply," in
Supercomputing, ACM/IEEE 2002 Conference, 2002, pp. 26-26.

[70] R. Geus and S. Röllin, "Towards a fast parallel sparse matrix-vector
multiplication," in PARCO, 1999, pp. 308-315.

[71] E.-J. Im and K. A. Yelick, Optimizing the performance of sparse matrix-vector
multiplication: University of California, Berkeley, 2000.

[72] J. Godwin, J. Holewinski, and P. Sadayappan, "High-performance sparse matrix-
vector multiplication on GPUs for structured grid computations," in Proceedings
of the 5th Annual Workshop on General Purpose Processing with Graphics
Processing Units, 2012, pp. 47-56.

220

[73] P. Guo, L. Wang, and P. Chen, "A Performance Modeling and
OptimizationAnalysis Tool for Sparse Matrix-VectorMultiplication on GPUs,"
Parallel and Distributed Systems, IEEE Transactions on, vol. 25, pp. 1112-1123,
2014.

[74] P. Kumbhar, "Performance of PETSc GPU Implementation with Sparse Matrix
Storage Schemes," 2011.

[75] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, et al.,
"PETSc Users Manual Revision 3.4," ed, 2013.

[76] S. Jain, "Memory efficiency implications on sparse matrix operations," THE
UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE, 2014.

[77] N. Bell and M. Garland, "Efficient sparse matrix-vector multiplication on
CUDA," Nvidia Technical Report NVR-2008-004, Nvidia Corporation2008.

[78] N. Bell and M. Garland, "Implementing sparse matrix-vector multiplication on
throughput-oriented processors," in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, 2009, p. 18.

[79] R. Shahnaz, A. Usman, and I. R. Chughtai, "Review of storage techniques for
sparse matrices," in 9th International Multitopic Conference, IEEE INMIC 2005,
2005, pp. 1-7.

[80] R. W. Vuduc, "Automatic performance tuning of sparse matrix kernels," Citeseer,
2003.

[81] S. Xu, W. Xue, and H. X. Lin, "Performance modeling and optimization of sparse
matrix-vector multiplication on NVIDIA CUDA platform," The Journal of
Supercomputing, vol. 63, pp. 710-721, 2013.

[82] X. Sun, Y. Zhang, T. Wang, X. Zhang, L. Yuan, and L. Rao, "Optimizing spmv
for diagonal sparse matrices on gpu," in Parallel Processing (ICPP), 2011
International Conference on, 2011, pp. 492-501.

[83] P. Stathis, S. Cotofana, and S. Vassiliadis, "Sparse matrix vector multiplication
evaluation using the bbcs scheme," in in Proc. of 8th Panhellenic Conference on
Informatics, 2001.

[84] Freely Available Software for Linear Algebra. Available:
http://www.netlib.org/utk/people/JackDongarra/la-sw.html

[85] B. Jacob and G. Guennebaud. (2012). Eigen C++ template library for linear
algebra: Matrices, vectors, numerical solvers, and related algorithms (3.2.2 ed.).
Available: http://eigen.tuxfamily.org/index.php?title=Main_Page

[86] G. Guennebaud and B. Jacob, "Eigen," ed, 2012.
[87] M. Intel, "Intel Math Kernel Library," ed, 2007.
[88] C. NVIDIA, "CUSPARSE library," NVIDIA Corporation, Santa Clara,

California, 2011.
[89] M. Naumov, "Incomplete-LU and Cholesky preconditioned iterative methods

using CUSPARSE and CUBLAS," Nvidia white paper, 2011.
[90] B. Yang, X. Chen, X. Y. Liao, M. L. Zheng, and Z. Y. Yuan, "FEM-Based

Modeling and Deformation of Soft Tissue Accelerated by CUSPARSE and
CUBLAS," Advanced Materials Research, vol. 671, pp. 3200-3203, 2013.

[91] K. He, S. X.-D. Tan, E. Tlelo-Cuautle, H. Wang, and H. Tang, "A new
segmentation-based GPU-accelerated sparse matrix-vector multiplication," in

221

Circuits and Systems (MWSCAS), 2014 IEEE 57th International Midwest
Symposium on, 2014, pp. 1013-1016.

[92] L. A. Flores, V. Vidal, P. Mayo, F. Rodenas, and G. Verdú, "CT Image
Reconstruction Based on GPUs," Procedia Computer Science, vol. 18, pp. 1412-
1420, 2013.

[93] N. Bell and M. Garland, "Cusp library, 2012," ed.
[94] C. Nvidia, "Cublas library," NVIDIA Corporation, Santa Clara, California, vol.

15, 2008.
[95] J. Hoberock and N. Bell, "Thrust: A parallel template library," Online at

http://thrust. googlecode. com, vol. 42, p. 43, 2010.
[96] D. Lukarski, "PARALUTION project," ed, 2012.
[97] M. Harris, "Optimizing parallel reduction in CUDA," NVIDIA Developer

Technology, vol. 2, 2007.
[98] R. Li and Y. Saad, "GPU-accelerated preconditioned iterative linear solvers," The

Journal of Supercomputing, vol. 63, pp. 443-466, 2013.
[99] J. Dongarra, "Freely available software for linear algebra on the web," URL:

http://www. netlib. org/utk/people/JackDongarra/la-sw. html (april, 2003), 2000.
[100] Y. Shi, "Reevaluating amdahl’s law and gustafson’s law," Computer Sciences

Department, Temple University (MS: 38-24), 1996.
[101] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast iterative

solvers: with applications in incompressible fluid dynamics: Oxford University
Press, 2014.

[102] D. E. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture: a
hardware/software approach: Gulf Professional Publishing, 1999.

[103] I. T. Center. HPC. Available: http://hpc.kfupm.edu.sa/NewHPC/Resources.html
[104] R. Bridson and W.-P. Tang, "Ordering, anisotropy, and factored sparse

approximate inverses," SIAM Journal on Scientific Computing, vol. 21, pp. 867-
882, 1999.

[105] M. Benzi and M. Tuma, "A comparative study of sparse approximate inverse
preconditioners," Applied Numerical Mathematics, vol. 30, pp. 305-340, 1999.

[106] H. Anzt, S. Tomov, P. Luszczek, I. Yamazaki, J. Dongarra, and W. Sawyer,
"Accelerating Krylov Subspace Solvers on Graphics Processing Units."

[107] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W.
Hwu, "Optimization principles and application performance evaluation of a
multithreaded GPU using CUDA," in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, 2008, pp. 73-82.

[108] V. Volkov, "Better performance at lower occupancy," in Proceedings of the GPU
Technology Conference, GTC, 2010, p. 16.

[109] M. Tillmann, T. Karcher, C. Dachsbacher, and W. F. Tichy, "Application-
independent Autotuning for GPUs," in PARCO, 2013, pp. 626-635.

[110] Y. Li, J. Dongarra, and S. Tomov, "A note on auto-tuning GEMM for GPUs," in
Computational Science–ICCS 2009, ed: Springer, 2009, pp. 884-892.

[111] A. Nukada and S. Matsuoka, "Auto-tuning 3-D FFT library for CUDA GPUs," in
Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, 2009, p. 30.

222

[112] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos, "Auto-
tuning a high-level language targeted to GPU codes," in Innovative Parallel
Computing (InPar), 2012, 2012, pp. 1-10.

[113] P. Guo and L. Wang, "Auto-tuning cuda parameters for sparse matrix-vector
multiplication on gpus," in Computational and Information Sciences (ICCIS),
2010 International Conference on, 2010, pp. 1154-1157.

[114] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, "From
CUDA to OpenCL: Towards a performance-portable solution for multi-platform
GPU programming," Parallel Computing, vol. 38, pp. 391-407, 2012.

[115] S. Jones, "Introduction to dynamic parallelism," in GPU Technology Conference
Presentation S, 2012.

[116] Y. Perez-Riverol and R. V. Alvarez, "A UML-based Approach to Design Parallel
and Distributed Applications," arXiv preprint arXiv:1311.7011, 2013.

[117] F. Gebali, Algorithms and parallel computing vol. 84: John Wiley & Sons, 2011.
[118] S. Pllana and T. Fahringer, "Modeling Parallel Applications with UML," in 15th

International Conference on Parallel and Distributed Computing Systems (PDCS
2002), 2002, pp. 19-21.

[119] H. Gomaa, "Designing concurrent, distributed, and real-time applications with
UML," in Proceedings of the 23rd International Conference on Software
Engineering, 2001, pp. 737-738.

[120] J. B. Warmer and A. G. Kleppe, "The Object Constraint Language: Precise
Modeling With Uml (Addison-Wesley Object Technology Series)," 1998.

[121] S. Pllana and T. Fahringer, "UML based modeling of performance oriented
parallel and distributed applications," in Simulation Conference, 2002.
Proceedings of the Winter, 2002, pp. 497-505.

[122] S. S. Alhir, Learning Uml: " O'Reilly Media, Inc.", 2003.
[123] C. NVIDIA, "Cuda c best practices guide," ed, 2014.
[124] N. I.-L. A. Gray and A. Sjöström, "Best Practice mini-guide accelerated clusters.

Using General Purpose GPUs," ed, 2014.

223

Vitae

Name :Ayham Horiah Zaza

Nationality :Syrian

Date of Birth :11/10/1983

 Email :dr.ayham@zoho.com

Address :KFUPM, Main Campus. Dhahran, Saudi Arabia

Academic Background :I hold a B.Sc. in Computer Engineering, a Master Degree M.Sc. in

Medical Physics and a PhD in Computer Science and Engineering all done at

KFUPM .I have developed several software systems to automate some radiotherapy

QA routines at hospitals. I have also attempted developing an intelligent software

for an automated early cervical cancer detection. Besides my interest in Intelligent

Computing and Medical Image Processing (Image Registration), I have developed

a data parallel simulator for multi-phase fluid flow in oil reservoir. Since July 2013,

I have become a Keystone fellow after participating in a creative program for idea

translation and business development. I am always enthusiastic at taking part in any

multidisciplinary work where I can discover my own innovation and creativity to

meet the future needs. http://www.ccse.kfupm.edu.sa/~ayham/about.html

1

	Cover_Page
	Singiture
	Final_PhD_Draft_Ayham_Final

