5,361 research outputs found

    Compressed Progressive Meshes

    Get PDF
    Most systems that support the visual interaction with 3D models use shape representations based on triangle meshes. The size of these representations imposes limits on applications, where complex 3D models must be accessed remotely. Techniques for simplifying and compressing 3D models reduce the transmission time. Multi-resolution formats provide quick access to a crude model and then refine it progressively. Unfortunately, compared to the best non-progressive compression methods, previously proposed progressive refinement techniques impose a signitifant overhead when the full resolution model must be downloaded. The CPM (Compressed Progressive Meshes) appreach proposed here eliminates this overhead. It uses a new "patching" technique, which refines the topology of the mesh in batches, which each increase the number of vertices by up to 50%. Less than 4 bits per triangle encode where and how the topological refinements should be applied. We estimate the position of new vertices from the positions of their topological neighbors in the less refined mesh using a new estimator that leads to representations of vertex coordinates that are 50% more compact than previously reported progressive geometry compression techniques

    Static 3D Triangle Mesh Compression Overview

    Get PDF
    3D triangle meshes are extremely used to model discrete surfaces, and almost always represented with two tables: one for geometry and another for connectivity. While the raw size of a triangle mesh is of around 200 bits per vertex, by coding cleverly (and separately) those two distinct kinds of information it is possible to achieve compression ratios of 15:1 or more. Different techniques must be used depending on whether single-rate vs. progressive bitstreams are sought; and, in the latter case, on whether or not hierarchically nested meshes are desirable during reconstructio

    Connectivity Compression for Irregular Quadrilateral Meshes

    Get PDF
    Applications that require Internet access to remote 3D datasets are often limited by the storage costs of 3D models. Several compression methods are available to address these limits for objects represented by triangle meshes. Many CAD and VRML models, however, are represented as quadrilateral meshes or mixed triangle/quadrilateral meshes, and these models may also require compression. We present an algorithm for encoding the connectivity of such quadrilateral meshes, and we demonstrate that by preserving and exploiting the original quad structure, our approach achieves encodings 30 - 80% smaller than an approach based on randomly splitting quads into triangles. We present both a code with a proven worst-case cost of 3 bits per vertex (or 2.75 bits per vertex for meshes without valence-two vertices) and entropy-coding results for typical meshes ranging from 0.3 to 0.9 bits per vertex, depending on the regularity of the mesh. Our method may be implemented by a rule for a particular splitting of quads into triangles and by using the compression and decompression algorithms introduced in [Rossignac99] and [Rossignac&Szymczak99]. We also present extensions to the algorithm to compress meshes with holes and handles and meshes containing triangles and other polygons as well as quads

    TetSplat: Real-time Rendering and Volume Clipping of Large Unstructured Tetrahedral Meshes

    Get PDF
    We present a novel approach to interactive visualization and exploration of large unstructured tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics simulations, and typically sample multiple field values on several millions of unstructured grid points. Our method relies on the pre-processing of the tetrahedral mesh to partition it into non-convex boundaries and internal fragments that are subsequently encoded into compressed multi-resolution data representations. These compact hierarchical data structures are then adaptively rendered and probed in real-time on a commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric data-set through constructive solid geometry operations as well as interactive editing of color transfer functions for an arbitrary number of field values. Thus, the presented visualization technique allows end-users for the first time to interactively render and explore very large unstructured tetrahedral meshes on relatively inexpensive hardware

    Scalable wavelet-based coding of irregular meshes with interactive region-of-interest support

    Get PDF
    This paper proposes a novel functionality in wavelet-based irregular mesh coding, which is interactive region-of-interest (ROI) support. The proposed approach enables the user to define the arbitrary ROIs at the decoder side and to prioritize and decode these regions at arbitrarily high-granularity levels. In this context, a novel adaptive wavelet transform for irregular meshes is proposed, which enables: 1) varying the resolution across the surface at arbitrarily fine-granularity levels and 2) dynamic tiling, which adapts the tile sizes to the local sampling densities at each resolution level. The proposed tiling approach enables a rate-distortion-optimal distribution of rate across spatial regions. When limiting the highest resolution ROI to the visible regions, the fine granularity of the proposed adaptive wavelet transform reduces the required amount of graphics memory by up to 50%. Furthermore, the required graphics memory for an arbitrary small ROI becomes negligible compared to rendering without ROI support, independent of any tiling decisions. Random access is provided by a novel dynamic tiling approach, which proves to be particularly beneficial for large models of over 10(6) similar to 10(7) vertices. The experiments show that the dynamic tiling introduces a limited lossless rate penalty compared to an equivalent codec without ROI support. Additionally, rate savings up to 85% are observed while decoding ROIs of tens of thousands of vertices

    A predictive approach for a real-time remote visualization of large meshes

    Get PDF
    Déjà sur HALRemote access to large meshes is the subject of studies since several years. We propose in this paper a contribution to the problem of remote mesh viewing. We work on triangular meshes. After a study of existing methods of remote viewing, we propose a visualization approach based on a client-server architecture, in which almost all operations are performed on the server. Our approach includes three main steps: a first step of partitioning the original mesh, generating several fragments of the original mesh that can be supported by the supposed smaller Transfer Control Protocol (TCP) window size of the network, a second step called pre-simplification of the mesh partitioned, generating simplified models of fragments at different levels of detail, which aims to accelerate the visualization process when a client(that we also call remote user) requests a visualization of a specific area of interest, the final step involves the actual visualization of an area which interest the client, the latter having the possibility to visualize more accurately the area of interest, and less accurately the areas out of context. In this step, the reconstruction of the object taking into account the connectivity of fragments before simplifying a fragment is necessary.Pestiv-3D projec

    ITEM: Inter-Texture Error Measurement for 3D Meshes

    Get PDF
    We introduce a simple and innovative method to compare any two texture maps, regardless of their sizes, aspect ratios, or even masks, as long as they are both meant to be mapped onto the same 3D mesh. Our system is based on a zero-distortion 3D mesh unwrapping technique which compares two new adapted texture atlases with the same mask but different texel colors, and whose every texel covers the same area in 3D. Once these adapted atlases are created, we measure their difference with ITEM-RMSE, a slightly modified version of the standard RMSE defined for images. ITEM-RMSE is more meaningful and reliable than RMSE because it only takes into account the texels inside the mask, since they are the only ones that will actually be used during rendering. Our method is not only very useful to compare the space efficiency of different texture atlas generation algorithms, but also to quantify texture loss in compression schemes for multi-resolution textured 3D meshes
    corecore