144 research outputs found

    APLICACIÓN DE LA METODOLOGÍA QFD EN EL DESARROLLO DE UNA IMPRESORA 3D

    Get PDF
    Este artículo presenta el desarrollo de una impresora 3D bajo el enfoque de la metodología del desarrollo de la función de la calidad - QFD, se hace hincapié en las necesidades y requerimientos de los clientes, en este caso, los estudiantes de la facultad de ingenierías de la Universidad de Pamplona, teniendo como resultados el desarrollo de una ruta crítica en la planificación del proyecto, además de su diseño asistido por computadora – CAD, construcción y la puesta a punto del sistema.  Palabras clave: Desarrollo de la función de la Calidad, Planificación de proyectos, Diseño Mecatrónico, Robot paralelo, Impresión 3D

    Design and Development of Biofeedback Stick Technology (BfT) to Improve the Quality of Life of Walking Stick Users

    Get PDF
    Biomedical engineering has seen a rapid growth in recent times, where the aim to facilitate and equip humans with the latest technology has become widespread globally. From high-tech equipment ranging from CT scanners, MRI equipment, and laser treatments, to the design, creation, and implementation of artificial body parts, the field of biomedical engineering has significantly contributed to mankind. Biomedical engineering has facilitated many of the latest developments surrounding human mobility, with advancement in mobility aids improving human movement for people with compromised mobility either caused by an injury or health condition. A review of the literature indicated that mobility aids, especially walking sticks, and appropriate training for their use, are generally prescribed by allied health professionals (AHP) to walking stick users for rehabilitation and activities of daily living (ADL). However, feedback from AHP is limited to the clinical environment, leaving walking stick users vulnerable to falls and injuries due to incorrect usage. Hence, to mitigate the risk of falls and injuries, and to facilitate a routine appraisal of individual patient’s usage, a simple, portable, robust, and reliable tool was developed which provides the walking stick users with real-time feedback upon incorrect usage during their activities of daily living (ADL). This thesis aimed to design and develop a smart walking stick technology: Biofeedback stick technology (BfT). The design incorporates the approach of patient and public involvement (PPI) in the development of BfT to ensure that BfT was developed as per the requirements of walking stick users and AHP recommendations. The newly developed system was tested quantitatively for; validity, reliability, and reproducibility against gold standard equipment such as the 3D motion capture system, force plates, optical measurement system for orientation, weight bearing, and step count. The system was also tested qualitatively for its usability by conducting semi-informal interviews with AHPs and walking stick users. The results of these studies showed that the newly developed system has good accuracy, reported above 95% with a maximum inaccuracy of 1°. The data reported indicates good reproducibility. The angles, weight, and steps recorded by the system during experiments are within the values published in the literature. From these studies, it was concluded that, BfT has the potential to improve the lives of walking stick users and that, with few additional improvements, appropriate approval from relevant regulatory bodies, and robust clinical testing, the technology has a huge potential to carve its way to a commercial market

    Human-machine-centered design and actuation of lower limb prosthetic systems

    Get PDF
    People with lower limb loss or congenital limb absence require a technical substitute that restores biomechanical function and body integrity. In the last decades, mechatronic prostheses emerged and especially actuated ones increased the biomechanical functionality of their users. Yet, various open issues regarding the energy efficiency of powered systems and the impact of user-experience of the prosthesis on technical design remain. As tackeling the latter aspect urgently requires the consideration of user demands, this thesis proposes a novel human-machine-centered design (HMCD) approach for lower limb prosthetics. Further, it contributes to the design and control of elastic (prosthetic) actuation. The HMCD approach describes a framework that equally considers technical and human factors. Therefore, seven human factors influencing lower limb prosthetic design are determined, analyzed, and modeled using human survey data: Satisfaction, Feeling of Security, Body Schema Integration, Support, Socket, Mobility, and Outer Appearance. Based on the application of quality function deployment (QFD), those factors can be considered as a HMCD focus in systems engineering. As an exemplary application, a powered prosthetic knee concept is elaborated with the HMCD approach. The comparison of the HMCD focus with a purely technical one, which is determined with a control group, reveals distinct differences in the weighting of requirements. Hence, the proposed method should lead to different prosthetic designs that might improve the subjective user-experience. To support this by integrating users throughout the systems engineering process, two concepts for human-in-the-loop experiments are suggested. As an enabling technology of powered lower limb prostheses, variable (series) elastic actuation and especially such with variable torsion stiffness (VTS) is investigated. Inverse dynamics simulations with synthetic and human trajectories as well as experiments show that the consideration of the actuator inertia is crucial: Only by including it in advanced models, the whole range of natural dynamics and antiresonance can be exploited to minimize power consumption. A corresponding control strategy adapts the actuator to achieve energy efficiency over a wide range of operational states using these models. The exemplary design of the powered prosthetic knee with respect to the HMCD prioritization of requirements confirms the fundamental suitability of VTS for integration in prosthetic components. In this, considering actuator inertia enables the determination of an optimal stiffness for serial elastic actuation of the human knee during walking that is not found in previous studies. A first simulation considering the changed dynamics of prosthetic gait indicates the potential to reveal lower design requirements. The designed knee concept combines promising biomechanical functionality and long operating time due to elastic actuation and energy recuperation. Beyond lower limb prosthetics, the proposed HMCD framework can be used in other applications with distinct human-machine interrelations by adjusting the human and technical factors. Likewise, the insights into variable elastic actuation design and control can be transferred to other systems demanding energy-efficient performance of cyclic tasks

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    Systems Engineering: Availability and Reliability

    Get PDF
    Current trends in Industry 4.0 are largely related to issues of reliability and availability. As a result of these trends and the complexity of engineering systems, research and development in this area needs to focus on new solutions in the integration of intelligent machines or systems, with an emphasis on changes in production processes aimed at increasing production efficiency or equipment reliability. The emergence of innovative technologies and new business models based on innovation, cooperation networks, and the enhancement of endogenous resources is assumed to be a strong contribution to the development of competitive economies all around the world. Innovation and engineering, focused on sustainability, reliability, and availability of resources, have a key role in this context. The scope of this Special Issue is closely associated to that of the ICIE’2020 conference. This conference and journal’s Special Issue is to present current innovations and engineering achievements of top world scientists and industrial practitioners in the thematic areas related to reliability and risk assessment, innovations in maintenance strategies, production process scheduling, management and maintenance or systems analysis, simulation, design and modelling

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Proceedings of the 10th international conference on disability, virtual reality and associated technologies (ICDVRAT 2014)

    Get PDF
    The proceedings of the conferenc

    Use of stance control knee-ankle-foot orthoses : a review of the literature

    Get PDF
    The use of stance control orthotic knee joints are becoming increasingly popular as unlike locked knee-ankle-foot orthoses, these joints allow the limb to swing freely in swing phase while providing stance phase stability, thus aiming to promote a more physiological and energy efficient gait. It is of paramount importance that all aspects of this technology is monitored and evaluated as the demand for evidence based practice and cost effective rehabilitation increases. A robust and thorough literature review was conducted to retrieve all articles which evaluated the use of stance control orthotic knee joints. All relevant databases were searched, including The Knowledge Network, ProQuest, Web of Knowledge, RECAL Legacy, PubMed and Engineering Village. Papers were selected for review if they addressed the use and effectiveness of commercially available stance control orthotic knee joints and included participant(s) trialling the SCKAFO. A total of 11 publications were reviewed and the following questions were developed and answered according to the best available evidence: 1. The effect SCKAFO (stance control knee-ankle-foot orthoses) systems have on kinetic and kinematic gait parameters 2. The effect SCKAFO systems have on the temporal and spatial parameters of gait 3. The effect SCKAFO systems have on the cardiopulmonary and metabolic cost of walking. 4. The effect SCKAFO systems have on muscle power/generation 5. Patient’s perceptions/ compliance of SCKAFO systems Although current research is limited and lacks in methodological quality the evidence available does, on a whole, indicate a positive benefit in the use of SCKAFOs. This is with respect to increased knee flexion during swing phase resulting in sufficient ground clearance, decreased compensatory movements to facilitate swing phase clearance and improved temporal and spatial gait parameters. With the right methodological approach, the benefits of using a SCKAFO system can be evidenced and the research more effectively converted into clinical practice

    The effect of prefabricated wrist-hand orthoses on performing activities of daily living

    Get PDF
    Wrist-hand orthoses (WHOs) are commonly prescribed to manage the functional deficit associated with the wrist as a result of rheumatoid changes. The common presentation of the wrist is one of flexion and radial deviation with ulnar deviation of the fingers. This wrist position Results in altered biomechanics compromising hand function during activities of daily living (ADL). A paucity of evidence exists which suggests that improvements in ADL with WHO use are very task specific. Using normal subjects, and thus in the absence of pain as a limiting factor, the impact of ten WHOs on performing five ADLs tasks was investigated. The tasks were selected to represent common grip patterns and tests were performed with and without WHOs by right-handed, females, aged 20-50 years over a ten week period. The time taken to complete each task was recorded and a wrist goniometer, elbow goniometer and a forearm torsiometer were used to measure joint motion. Results show that, although orthoses may restrict the motion required to perform a task, participants do not use the full range of motion which the orthoses permit. The altered wrist position measured may be attributable to a modified method of performing the task or to a necessary change in grip pattern, resulting in an increased time in task performance. The effect of WHO use on ADL is task specific and may initially impede function. This could have an effect on WHO compliance if there appears to be no immediate benefits. This orthotic effect may be related to restriction of wrist motion or an inability to achieve the necessary grip patterns due to the designs of the orthoses

    The effect of prefabricated wrist-hand orthoses on grip strength

    Get PDF
    Prefabricated wrist-hand orthoses (WHOs) are commonly prescribed to manage the functional deficit and compromised grip strength as a result of rheumatoid changes. It is thought that an orthosis which improves wrist extension, reduces synovitis and increases the mechanical advantage of the flexor muscles will improve hand function. Previous studies report an initial reduction in grip strength with WHO use which may increase following prolonged use. Using normal subjects, and thus in the absence of pain as a limiting factor, the impact of ten WHOs on grip strength was measured using a Jamar dynamometer. Tests were performed with and without WHOs by right-handed, female subjects, aged 20-50 years over a ten week period. During each test, a wrist goniometer and a forearm torsiometer were used to measure wrist joint position when maximum grip strength was achieved. The majority of participants achieved maximum grip strength with no orthosis at 30° extension. All the orthoses reduced initial grip strength but surprisingly the restriction of wrist extension did not appear to contribute in a significant way to this. Reduction in grip must therefore also be attributable to WHO design characteristics or the quality of fit. The authors recognize the need for research into the long term effect of WHOs on grip strength. However if grip is initially adversely affected, patients may be unlikely to persevere with treatment thereby negating all therapeutic benefits. In studies investigating patient opinions on WHO use, it was a stable wrist rather than a stronger grip reported to have facilitated task performance. This may explain why orthoses that interfere with maximum grip strength can improve functional task performance. Therefore while it is important to measure grip strength, it is only one factor to be considered when evaluating the efficacy of WHOs
    corecore