3,027 research outputs found

    Spatial-Temporal Data Mining for Ocean Science: Data, Methodologies, and Opportunities

    Full text link
    With the increasing amount of spatial-temporal~(ST) ocean data, numerous spatial-temporal data mining (STDM) studies have been conducted to address various oceanic issues, e.g., climate forecasting and disaster warning. Compared with typical ST data (e.g., traffic data), ST ocean data is more complicated with some unique characteristics, e.g., diverse regionality and high sparsity. These characteristics make it difficult to design and train STDM models. Unfortunately, an overview of these studies is still missing, hindering computer scientists to identify the research issues in ocean while discouraging researchers in ocean science from applying advanced STDM techniques. To remedy this situation, we provide a comprehensive survey to summarize existing STDM studies in ocean. Concretely, we first summarize the widely-used ST ocean datasets and identify their unique characteristics. Then, typical ST ocean data quality enhancement techniques are discussed. Next, we classify existing STDM studies for ocean into four types of tasks, i.e., prediction, event detection, pattern mining, and anomaly detection, and elaborate the techniques for these tasks. Finally, promising research opportunities are highlighted. This survey will help scientists from the fields of both computer science and ocean science have a better understanding of the fundamental concepts, key techniques, and open challenges of STDM in ocean

    A novel fusion framework embedded with zero-shot super-resolution and multivariate autoregression for precipitable water vapor across the continental Europe

    Get PDF
    Precipitable water vapor (PWV), as the most abundant greenhouse gas, significantly impacts the evapotranspiration process and thus the global climate. However, the applicability of mainstream satellite PWV products is limited by the tradeoff between spatial and temporal resolutions, as well as some external factors such as cloud contamination. In this study, we proposed a novel PWV spatio-temporal fusion framework based on the zero-shot super-resolution and the multivariate autoregression models (ZSSR-ARF) to improve the accuracy and continuity of PWV. The framework is implemented in a way that the satellite-derived observations (MOD05) are fused with the reanalysis data (ERA5) to generate accurate and seamless PWV of high spatio-temporal resolution (0.01°, daily) across the European continent from 2001 to 2021. Firstly, the ZSSR approach is used to enhance the spatial resolution of ERA5 PWV based on the internal recurrence of image information. Secondly, the optimal ERA5-MOD05 image pairs are selected based on the image similarity as inputs to improve the fusion accuracy. Thirdly, the framework develops a multivariate autoregressive fusion approach to allocate weights adaptively for the high-resolution image prediction, which primely addresses the non-stationarity and autocorrelation of PWV. The results reveal that the accuracies of fused PWV are consistent with those of the GPS retrievals (r = 0.82–0.95 and RMSE = 2.21–4.01 mm), showing an enhancement in the accuracy and continuity compared to the original MODIS PWV. The ZSSR-ARF fusion framework outperforms the other methods with R2^2 improved by over 24% and RMSE reduced by over 0.61 mm. Furthermore, the fused PWV exhibits similar temporal consistency (mean difference of 0.40 mm and DSTD of 3.22 mm) to the reliable ERA5 products, and substantial increasing trends (mean of 0.057 mm/year and over 0.1 mm/year near the southern and western coasts) are observed over the European continent. As the accuracy and continuity of PWV are improved, the outcome of this paper has potential for climatic analyses during the land-atmosphere cycle process

    Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review

    Get PDF
    The coastal zone offers among the world’s most productive and valuable ecosystems and is experiencing increasing pressure from anthropogenic impacts: human settlements, agriculture, aquaculture, trade, industrial activities, oil and gas exploitation and tourism. Earth observation has great capability to deliver valuable data at the local, regional and global scales and can support the assessment and monitoring of land‐ and water‐related applications in coastal zones. Compared to optical satellites, cloud‐cover does not limit the timeliness of data acquisition with spaceborne Synthetic Aperture Radar (SAR) sensors, which have all‐weather, day and night capabilities. Hence, active radar systems demonstrate great potential for continuous mapping and monitoring of coastal regions, particularly in cloud‐prone tropical and sub‐tropical climates. The canopy penetration capability with long radar wavelength enables L‐band SAR data to be used for coastal terrestrial environments and has been widely applied and investigated for the following geoscientific topics: mapping and monitoring of flooded vegetation and inundated areas; the retrieval of aboveground biomass; and the estimation of soil moisture. Human activities, global population growth, urban sprawl and climate change‐induced impacts are leading to increased pressure on coastal ecosystems causing land degradation, deforestation and land use change. This review presents a comprehensive overview of existing research articles that apply spaceborne L‐band SAR data for geoscientific analyses that are relevant for coastal land applications

    Disaster Analysis using Satellite Image Data with Knowledge Transfer and Semi-Supervised Learning Techniques

    Get PDF
    With the increase in frequency of disasters and crisis situations like floods, earthquake and hurricanes, the requirement to handle the situation efficiently through disaster response and humanitarian relief has increased. Disasters are mostly unpredictable in nature with respect to their impact on people and property. Moreover, the dynamic and varied nature of disasters makes it difficult to predict their impact accurately for advanced preparation of responses [104]. It is also notable that the economical loss due to natural disasters has increased in recent years, and it, along with the pure humanitarian need, is one of the reasons to research innovative approaches to the mitigation and management of disaster operations efficiently [1]

    An Approach to Developing a Spatio-Temporal Composite Measure of Climate Change-Related Human Health Impacts in Urban Environments

    Get PDF
    Introduction: Rapid population growth along with an increase in the frequency and intensity of climate change-related impacts in costal urban environments emphasize the need for the development of new tools to help disaster planners and policy makers select and prioritize mitigation and adaptation measures. Using the concept of the resilience of a community, which is a measure of how rapidly the community can recover to its previous level of functionality following a disruptive event is still a relatively new concept for many engineers, planners and policy makers, but is becoming recognized as an increasingly important and some would argue, essential component for the development and subsequent assessment of adaptation plans being considered for communities at risk of climate change-related events. The holistic approach which is the cornerstone of resilience is designed to integrate physical, economic, health, social and organizational impacts of climate change in urban environments. This research presents a methodology for the development of a quantitative spatial and temporal composite measure for assessing climate change-related health impacts in urban environments. Methods: The proposed method is capable of considering spatial and temporal data from multiple inputs, relating to both physical and social parameters. This approach uses inputs such as the total population density and densities of various demographics, burden of diseases conditions, flood inundation mapping, and land use change for both historical and current conditions. The research has demonstrated that the methodology presented generates sufficiently accurate information to be useful for planning adaptive strategies. To assemble all inputs into a single measure of health impacts, a weighting system was assigned to apply various priorities to the spatio-temporal data sources. Weights may be varied to assess how they impact the final results. Finally, using spatio-temporal extrapolation methods the future behavior of the same key spatial variables can be projected. Although this method was developed for application to any coastal mega-city, this thesis demonstrates the results obtained for Metro Vancouver, British Columbia, Canada. The data was collected for the years 1981, 1986, 1991, 1996, 2001, 2006 and 2011, as information was readily available for these years. Fine resolution spatial data for these years was used in order to give a dynamic simulation of possible health impacts for future projections. Linear and auto-regressive spatio-temporal extrapolations were used for projecting a 2050’s Metro Vancouver health impact map (HIM). Conclusion: Results of this work show that the approach provides a more fully integrated view of the resilience of the city which incorporates aspects of population health. The approach would be useful in the development of more targeted adaptation and risk reduction strategies at a local level. In addition, this methodology can be used to generate inputs for further resilience simulations. The overall value of this approach is that it allows for a more integrated assessment of the city vulnerability and could lead to more effective adaptive strategies

    Sustainable marine ecosystems: deep learning for water quality assessment and forecasting

    Get PDF
    An appropriate management of the available resources within oceans and coastal regions is vital to guarantee their sustainable development and preservation, where water quality is a key element. Leveraging on a combination of cross-disciplinary technologies including Remote Sensing (RS), Internet of Things (IoT), Big Data, cloud computing, and Artificial Intelligence (AI) is essential to attain this aim. In this paper, we review methodologies and technologies for water quality assessment that contribute to a sustainable management of marine environments. Specifically, we focus on Deep Leaning (DL) strategies for water quality estimation and forecasting. The analyzed literature is classified depending on the type of task, scenario and architecture. Moreover, several applications including coastal management and aquaculture are surveyed. Finally, we discuss open issues still to be addressed and potential research lines where transfer learning, knowledge fusion, reinforcement learning, edge computing and decision-making policies are expected to be the main involved agents.Postprint (published version

    A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans

    Get PDF
    The need for more effective environmental monitoring of the open and coastal ocean has recently led to notable advances in satellite ocean color technology and algorithm research. Satellite ocean color sensors' data are widely used for the detection, mapping and monitoring of phytoplankton blooms because earth observation provides a synoptic view of the ocean, both spatially and temporally. Algal blooms are indicators of marine ecosystem health; thus, their monitoring is a key component of effective management of coastal and oceanic resources. Since the late 1970s, a wide variety of operational ocean color satellite sensors and algorithms have been developed. The comprehensive review presented in this article captures the details of the progress and discusses the advantages and limitations of the algorithms used with the multi-spectral ocean color sensors CZCS, SeaWiFS, MODIS and MERIS. Present challenges include overcoming the severe limitation of these algorithms in coastal waters and refining detection limits in various oceanic and coastal environments. To understand the spatio-temporal patterns of algal blooms and their triggering factors, it is essential to consider the possible effects of environmental parameters, such as water temperature, turbidity, solar radiation and bathymetry. Hence, this review will also discuss the use of statistical techniques and additional datasets derived from ecosystem models or other satellite sensors to characterize further the factors triggering or limiting the development of algal blooms in coastal and open ocean waters

    Google Earth Engine cloud computing platform for remote sensing big data applications: a comprehensive review

    Get PDF
    Remote sensing (RS) systems have been collecting massive volumes of datasets for decades, managing and analyzing of which are not practical using common software packages and desktop computing resources. In this regard, Google has developed a cloud computing platform, called Google Earth Engine (GEE), to effectively address the challenges of big data analysis. In particular, this platformfacilitates processing big geo data over large areas and monitoring the environment for long periods of time. Although this platformwas launched in 2010 and has proved its high potential for different applications, it has not been fully investigated and utilized for RS applications until recent years. Therefore, this study aims to comprehensively explore different aspects of the GEE platform, including its datasets, functions, advantages/limitations, and various applications. For this purpose, 450 journal articles published in 150 journals between January 2010 andMay 2020 were studied. It was observed that Landsat and Sentinel datasets were extensively utilized by GEE users. Moreover, supervised machine learning algorithms, such as Random Forest, were more widely applied to image classification tasks. GEE has also been employed in a broad range of applications, such as Land Cover/land Use classification, hydrology, urban planning, natural disaster, climate analyses, and image processing. It was generally observed that the number of GEE publications have significantly increased during the past few years, and it is expected that GEE will be utilized by more users from different fields to resolve their big data processing challenges.Peer ReviewedPostprint (published version

    Applications of Unmanned Aerial Systems (UASs) in Hydrology: A Review

    Get PDF
    In less than two decades, UASs (unmanned aerial systems) have revolutionized the field of hydrology, bridging the gap between traditional satellite observations and ground-based measurements and allowing the limitations of manned aircraft to be overcome. With unparalleled spatial and temporal resolutions and product-tailoring possibilities, UAS are contributing to the acquisition of large volumes of data on water bodies, submerged parameters and their interactions in different hydrological contexts and in inaccessible or hazardous locations. This paper provides a comprehensive review of 122 works on the applications of UASs in surface water and groundwater research with a purpose-oriented approach. Concretely, the review addresses: (i) the current applications of UAS in surface and groundwater studies, (ii) the type of platforms and sensors mainly used in these tasks, (iii) types of products generated from UAS-borne data, (iv) the associated advantages and limitations, and (v) knowledge gaps and future prospects of UASs application in hydrology. The first aim of this review is to serve as a reference or introductory document for all researchers and water managers who are interested in embracing this novel technology. The second aim is to unify in a single document all the possibilities, potential approaches and results obtained by different authors through the implementation of UASs
    • 

    corecore