1,089 research outputs found

    Sustainable Energy Production in the United States: Life Cycle Assessment of Biofuels and Bioenergy

    Get PDF
    The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers

    Review of environmental, economic and policy aspects of biofuels

    Get PDF
    The world is witnessing a sudden growth in production of biofuels, especially those suited for replacing oil like ethanol and biodiesel. This paper synthesizes what the environmental, economic, and policy literature predicts about the possible effects of these types of biofuels. Another motivation is to identify gaps in understanding and recommend areas for future work. The analysis finds three key conclusions. First, the current generation of biofuels, which is derived from food crops, is intensive in land, water, energy, and chemical inputs. Second, the environmental literature is dominated by a discussion of net carbon offset and net energy gain, while indicators relating to impact on human health, soil quality, biodiversity, water depletion, etc., have received much less attention. Third, there is a fast expanding economic and policy literature that analyzes the various effects of biofuels from both micro and macro perspectives, but there are several gaps. A bewildering array of policies - including energy, transportation, agricultural, trade, and environmental policies - is influencing the evolution of biofuels. But the policies and the level of subsidies do not reflect the marginal impact on welfare or the environment. In summary, all biofuels are not created equal. They exhibit considerable spatial and temporal heterogeneity in production. The impact of biofuels will also be heterogeneous, creating winners and losers. The findings of the paper suggest the importance of the role biomass plays in rural areas of developing countries. Furthermore, the use of biomass for producing fuel for cars can affect access to energy and fodder and not just access to food.Energy Production and Transportation,Environmental Economics&Policies,RenewableEnergy,Transport Economics Policy&Planning,Energy and Environment

    Biofuels and Food Security

    Get PDF
    Biofuels development has received increased attention in recent times as a means to mitigate climate change, alleviate global energy concerns and foster rural development. Its perceived importance in these three areas has seen biofuels feature prominently on the international agenda. Nevertheless, the rapid growth of biofuels production has raised many concerns among experts worldwide, in particular with regard to sustainability issues and the threat posed to food security. The UN Secretary General, in his opening remarks to the High-level Segment of the 16th session of the UN Commission on Sustainable Development, stated that: "We need to ensure that policies promoting biofuels are consistent with maintaining food security and achieving sustainable development goals." Aware of a lack of integrated scientific analysis, OFID has commissioned this study, Biofuels and Food Security, which has been prepared by the renowned International Institute for Applied Systems Analysis (IIASA). This seminal research work assesses the impact on developing countries of wide-scale production and use of biofuels, in terms of both sustainable agriculture and food security. The unique feature of this study is that its quantified findings are derived from a scenario approach based on a peer reviewed modelling framework, which has contributed to the work of many scientific fora such as the Intergovernmental Panel on Climate Change (IPCC), and the United Nations (Climate Change and Agricultural Vulnerability, World Summit on Sustainable Development, Johannesburg). One of the key conclusions of the study is that an accelerated growth of first-generation biofuels production is threatening the availability of adequate food supplies for humans, by diverting land, water and other resources away from food and feed crops. Meanwhile, the "green" contribution of biofuels is seen as deceptive, with mainly second-generation biofuels appearing to offer interesting prospects. Sustainability issues (social, economic and environmental), the impact on land use, as well as many risk aspects are amongst the key issues tackled in the research. With the publication of this study, OFID seeks to uphold its time-honored tradition of promoting debate on issues of special interest to developing countries, including the OFID/OPEC Member States

    On the design of a European bioeconomy that optimally contributes to sustainable development

    Get PDF
    The inevitability for a change in humankind's resource and fossil energy consumption is demonstrated by global crises such as the climate change, disturbances of natural cycles, and the loss of biodiversity. The sun provides sufficient energy to generate electricity and by photosynthesis, solar radiation is converted into energy chemically bound in biomolecules, which provide building blocks for the production of various materials, chemicals, or fuels. The bioeconomy puts biomass at the center of an economy that attempts to cover resource and energy demand by renewable materials to address the global challenges. However, the finiteness of the terrestrial surface limits renewables, requiring a prioritization of use. The Sustainable Development Goals (SDGs) provide a common ground for global peace, prosperity, improved health and education, reduced inequality, and spur economic growth while tackling climate change and biodiversity loss, making it the most comprehensive framework for defining objectives in the design of the bioeconomy. Against this background, this dissertation is particularly dedicated to the design of bioeconomic value chains based on agroforestry residues in the European Union, considering economic, environmental, and social objectives to optimally exploit the potential to contribute to a sustainable development. All objectives are matched to SDGs to unveil congruencies, conflicts and trade-offs between different goals, and to provide aggregated insights and courses of action in the agroforestry residue-based bioeconomy to politics, the scientific community, and corporate decision-makers. The availability of agroforestry residue volumes and their current uses is the first major concern of a bioeconomy aligned with the SDGs to be assessed in this work. Key findings are that the most promising agricultural residue in the EU is wheat straw, followed by maize stover, barley straw, and rapeseed straw, which together account for about 80% of EU’s cereals and oil crops residues. In forestry, waste bark from the two coniferous species, spruce and pine, are most promising with the highest supplies in Scandinavia and central EU. The time-series-based forecast model predicts a total increase of the bioeconomic potential of the prioritized agricultural feedstocks from 113 Mt in 2017 to 127 Mt in 2030. The forecast indicates the largest increase of all investigated crops for corn stover at up to 20% until 2030, while rapeseed straw production is forecasted to decrease in many regions. To take environmental and social aspects into account on a regional level, along with international competitiveness, this dissertation develops a multi-criteria strategic network design model for the planning of bioeconomic value chains. The environmental and social objectives are derived by means of Life Cycle Assessment and Social Life Cycle Assessment, respectively. The developed set of 35 economic, environmental, and social objective functions allows for the consideration of 16 of the 17 SDGs. The model is applied for the planning of a second-generation bioethanol production network based on agricultural residues in the EU. Single-criteria optimization shows that sustainably available agroforestry residues could substitute up to 22% of the petrol demand in the EU in 2018 under optimal production networks for certain objectives (i.a., global warming). For environmental objectives, the decision to substitute petrol or edible crops-based ethanol has the highest impact. The greenhouse gas benefits could amount to up to 59 Mt CO2 eq., conforming to about 1.35% of the EU’s 2018 total emissions. However, global warming optimization leads to opportunity costs for other objectives. While for ecosystem quality, for example, the achieved value reaches 50% of its optimum, other categories like land use and water consumption could even be net deteriorated by optimizing global warming. For objectives such as land use, only 19% of the total agroforestry residues is used to substitute 100% of the edible crops-based ethanol, which would free up 11.7 billion m2 crop land. Social objectives lead to large and labor-intensive production networks distributed all over the EU. Depending on the social objective, the value creation slightly shifts regionally. To optimize local employment, the network relocates to regions with high unemployment rates, such as Spain, Italy, and parts of France. Economically strong metropolitan regions are at a disadvantage in favor of weaker regions of Central and Eastern EU when optimizing economic development. At best, up to 140,000 new jobs could be created in the EU while 12,000 jobs could be lost due to substitution of reference products. In terms of network extend, most socially and environmentally optimal production networks are similar, although the substitution decision has little impact for social objectives. This means that interesting trade-offs between social and environmental objectives can be found with only minor sacrifices. Economically optimal networks are much smaller and more centralized than environmental ones, and lead to costs of about 0.75 €/l second-generation ethanol. Environmental optimization results in cost between 0.88 €/l to 2.00 €/l, which implies that large-scale bioethanol production is not economically feasible with today’s oil prices and taxes. While the single-criteria optimization reveals conflicts within and between the environment, social, and economic dimensions, Pareto optimization is conducted to unveil trade-offs between conflicting goals. Significant environmental and social benefits can often be realized with only small economic detriments, and vice versa, economic profitability can substantially be improved at low environmental opportunity cost. Furthermore, the applied Pareto optimization shows that the endpoints human health and ecosystem quality are suitable aggregators of environmental impact categories, wherefore they could serve as representative of the environmental dimension in decision-making. Nonetheless, a transparent consideration of a broad range of impacts and knowledge about the categories’ contributions remains indispensable to reveal possible negative consequences of a decision. In a final step, the objective functions are matched to SDGs, and opportunity cost between the objective functions are calculated to unveil congruencies and conflicts between different goals. The assessment of relationships between the different SDGs supports the perception that different aspects of sustainability are not equally directed. Sustainability, expressed by the SDGs, is rather case-specific and varies between a multitude of interdependent social, environmental, and economic criteria. Decision-makers, whether at the corporate level pursuing one or more business objectives or at the policy level, using the SDGs as a framework, should be aware of the reciprocities between the different criteria. The dissertation shows that the European bioeconomy has a great potential to contribute to sustainable development. Multi-criteria optimization models enable sound trade-off decisions that are aligned to the SDGs

    The land use change impact of biofuels consumed in the EU: Quantification of area and greenhouse gas impacts

    Get PDF
    Biofuels are promoted as an option to reduce climate emissions from the transport sector. As most biofuels are currently produced from land based crops, there is a concern that the increased consumption of biofuels requires agricultural expansion at a global scale, leading to additional carbon emissions. This effect is called Indirect Land Use Change, or ILUC. The EU Renewable Energy Directive (2009/28/EC) directed the European Commission to develop a methodology to account for the ILUC effect. The current study serves to provide new insights to the European Commission and other stakeholders about these indirect carbon and land impacts from biofuels consumed in the EU, with more details on production processes and representation of individual feedstocks than was done before. ILUC cannot be observed or measured in reality, because it is entangled with a large number of other changes in agricultural markets at both global and local levels. The effect can only be estimated through the use of models. The current study is part of a continuous effort to improve the understanding and representation of ILUC

    Towards first-principles based kinetic modeling of biomass fast pyrolysis

    Get PDF
    Biomass conversion to chemicals and fuels through fast pyrolysis shows great potential but requires a more fundamental approach for its deployment. To this end, molecular-based kinetic modeling is starting to play a central role in the prediction of the molecular composition of bio-oil. A molecular-level representation of biomass provides the start point for the generation of detailed pyrolysis reaction networks for both the condensed and the gas phases. Significant progress has been made for cellulose, glucose-based carbohydrates, and lignin, together with the incorporation of the catalytic effects of minerals. Ab initio techniques are widely used to discriminate between reaction mechanisms and to calculate kinetic parameters. Automatic kinetic model generation is expected to play an even more important role in fast pyrolysis as it does already today. Experimental techniques enabled to obtain intrinsic kinetics and to decouple the timescales between reaction kinetics and analytic techniques. This greatly benefits the improvement of detailed kinetic models. The prospects for achieving a first-principles based kinetic model of biomass fast pyrolysis are promising. However, significant work is still needed to couple condensed- and gas-phase reaction networks

    Digestive metabolism of glucosinolates: a novel approach using urinary markers for estimating the release of glucosinolate breakdown products in the gastro-intestinal tract of mammals.

    Get PDF
    Glucosinolates have been implicated as a mediator of the cancer-protective properties of cruciferous vegetables. Enzymatic hydrolysis of glucosinolates by plant or microbial myrosinase yields a range of metabolites including beneficial isothiocyanates. Little is known about the fate of glucosinolates after their ingestion. Using urinary end-products of metabolism as markers, measurement of the production of isothiocyanates in the digestive tract of monogastric animals has been achieved. Initially, a range of isothiocyanates were administered to rats and their excretion as mercapturic acids was quantified. Relative recovery of different isothiocyanates was found to be consistent and predictable, allowing the use of artificial isothiocyanates as recovery standards in subsequent experiments. Subsequently, the relative influence of plant and bacterial myrosinase on isothiocyanate production was quantified in rats. A proportion of 0.80 (s.e.m. 0.076) of benzyl glucosinolate was hydrolysed to isothiocyanate by plant myrosinase. In the presence of both plant and microbial activity,, the proportion of benzyl isothiocyanate release was significantly decreased (0.50 s.e.m. 0.046, p < 0.01) suggesting microbial breakdown of isothiocyanates. The approach, adapted for use with human subjects, showed that the proportions of allyl isothiocyanate measured after ingestion of raw and cooked cabbage were 0.37 (s.e.m. 0.045) and 0.53 (s.e.m. 0.134) respectively in healthy male volunteers. A further experiment with rats established that isothiocyanate uptake in the distal digestive tract was significantly less than in the proximal intestine (0.12 s.e.m. 0.017 and 0.48 s.e.m. 0.029 respectively), suggesting a potential underestimation of isothiocyanate release in the distal digestive tract when using urinary markers. Finally, enhancement of bacterial fermentation by addition of inulin to the diet had little influence on isothiocyanate production in the gut. The findings suggested that the formation of the cancer-protective isothiocyanates was significant in vivo, thereby strengthening the evidence for a beneficial effect of cruciferous vegetables for health. The newly developed method opens up possibilities of concurrently exploring the digestive fate of isothiocyanates and the toxicity of carcinogenic compounds

    Biofuels, greenhouse gases and climate change. A review

    Get PDF
    International audienceBiofuels are fuels produced from biomass, mostly in liquid form, within a time frame sufficiently short to consider that their feedstock (biomass) can be renewed, contrarily to fossil fuels. This paper reviews the current and future biofuel technologies, and their development impacts (including on the climate) within given policy and economic frameworks. Current technologies make it possible to provide first generation biodiesel, ethanol or biogas to the transport sector to be blended with fossil fuels. Still under-development 2nd generation biofuels from lignocellulose should be available on the market by 2020. Research is active on the improvement of their conversion efficiency. A ten-fold increase compared with current cost-effective capacities would make them highly competitive. Within bioenergy policies, emphasis has been put on biofuels for transportation as this sector is fast-growing and represents a major source of anthropogenic greenhouse gas emissions. Compared with fossil fuels, biofuel combustion can emit less greenhouse gases throughout their life cycle, considering that part of the emitted CO2 returns to the atmosphere where it was fixed from by photosynthesis in the first place. Life cycle assessment (LCA) is commonly used to assess the potential environmental impacts of biofuel chains, notably the impact on global warming. This tool, whose holistic nature is fundamental to avoid pollution trade-offs, is a standardised methodology that should make comparisons between biofuel and fossil fuel chains objective and thorough. However, it is a complex and time-consuming process, which requires lots of data, and whose methodology is still lacking harmonisation. Hence the life-cycle performances of biofuel chains vary widely in the literature. Furthermore, LCA is a site- and timeindependent tool that cannot take into account the spatial and temporal dimensions of emissions, and can hardly serve as a decision-making tool either at local or regional levels. Focusing on greenhouse gases, emission factors used in LCAs give a rough estimate of the potential average emissions on a national level. However, they do not take into account the types of crop, soil or management practices, for instance. Modelling the impact of local factors on the determinism of greenhouse gas emissions can provide better estimates for LCA on the local level, which would be the relevant scale and degree of reliability for decision-making purposes. Nevertheless, a deeper understanding of the processes involved, most notably N2O emissions, is still needed to definitely improve the accuracy of LCA. Perennial crops are a promising option for biofuels, due to their rapid and efficient use of nitrogen, and their limited farming operations. However, the main overall limiting factor to biofuel development will ultimately be land availability. Given the available land areas, population growth rate and consumption behaviours, it would be possible to reach by 2030 a global 10% biofuel share in the transport sector, contributing to lower global greenhouse gas emissions by up to 1 GtCO2 eq.year−1 (IEA, 2006), provided that harmonised policies ensure that sustainability criteria for the production systems are respected worldwide. Furthermore, policies should also be more integrative across sectors, so that changes in energy efficiency, the automotive sector and global consumption patterns converge towards drastic reduction of the pressure on resources. Indeed, neither biofuels nor other energy source or carriers are likely to mitigate the impacts of anthropogenic pressure on resources in a range that would compensate for this pressure growth. Hence, the first step is to reduce this pressure by starting from the variable that drives it up, i.e. anthropic consumptions

    Assessment and optimization of chemical industrial processes from a life cycle perspective

    Get PDF
    During the PhD program in chemistry, curriculum in environmental chemistry, at the University of Bologna the sustainability of industry was investigated through the application of the LCA methodology. The efforts were focused on the chemical sector in order to investigate reactions dealing with the Green Chemistry and Green Engineering principles, evaluating their sustainability in comparison with traditional pathways by a life cycle perspective. The environmental benefits associated with a reduction in the synthesis steps and the use of renewable feedstock were assessed through a holistic approach selecting two case studies with high relevance from an industrial point of view: the synthesis of acrylonitrile and the production of acrolein. The current approach wants to represent a standardized application of LCA methodology to the chemical sector, which could be extended to several case studies, and also an improvement of the current databases, since the lack of data to fill the inventories of the chemical productions represent a huge limitation, difficult to overcome and that can affects negatively the results of the studies. Results emerged from the analyses confirms that the sustainability in the chemical sector should be evaluated from a cradle-to-gate approach, considering all the stages and flows involved in each pathways in order to avoid shifting the environmental burdens from a steps to another. Moreover, if possible, LCA should be supported by other tools able to investigate the other two dimensions of sustainability represented by the social and economic issues
    corecore