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ABSTRACT 

Digestive metabolism of glucosinolates: a novel approach using urinary markers for 

estimating the release of glucosinolate breakdown products in the 

gastro-intestinal tract of mammals. 

A thesis submitted for the degree of Doctor of Philosophy 

by Gabrielle C. M. Rouzaud 

Glucosinolates have been implicated as a mediator of the cancer-protective properties of 

cruciferous vegetables. Enzymatic hydrolysis of glucosinolates by plant or microbial 

myrosinase yields a range of metabolites including beneficial isothiocyanates. Little is 

known about the fate of glucosinolates after their ingestion. Using urinary end-products 

of metabolism as markers, measurement of the production of isothiocyanates in the 

digestive tract of monogastric animals has been achieved. Initially, a range of 
isothiocyanates were administered to rats and their excretion as mercapturic acids was 

quantified. Relative recovery of different isothiocyanates was found to be consistent and 

predictable, allowing the use of artificial isothiocyanates as recovery standards in 

subsequent experiments. Subsequently, the relative influence of plant and bacterial 

myrosinase on isothiocyanate production was quantified in rats. A proportion of 0.80 

(s. e. m. 0.076) of benzyl glucosinolate was hydrolysed to isothiocyanate by plant 

myrosinase. In the presence of both plant and microbial activity,, the proportion of benzyl 

isothiocyanate release was significantly decreased (0.50 s. e. m. 0.046, p<0.01) suggesting 

microbial breakdown of isothiocyanates. The approach, adapted for use with human 

subjects showed that the proportions of allyl isothiocyanate measured after ingestion of 

raw and cooked cabbage were 0.37 (s. e. m. 0.045) and 0.53 (s. e. m. 0.134) respectively in 

healthy male volunteers. A further experiment with rats established that isothiocyanate 

uptake in the distal digestive tract was significantly less than in the proximal intestine 

(0.12 s. e. m. 0.017 and 0.48 s. e. m. 0.029 respectively), suggesting a potential under- 

estimation of isothiocyanate release in the distal digestive tract when using urinary 

markers. Finally, enhancement of bacterial fermentation by addition of inulin to the diet 

had little influence on isothiocyanate production in the gut. The findings suggested that 

the formation of the cancer-protective isothiocyanates was significant, in vivo, thereby 

strengthening the evidence for a beneficial effect of cruciferous vegetables for health. 

The newly developed method opens up possibilities of concurrently exploring the 
digestive fate of isothiocyanates and the toxicity of carcinogenic compounds. 



INTRODUCTION 

Reducing the risk of cancer by dietary means has become an important strategy in the 

field of human health. A wide variqty of natural and synthetic compounds present in 

human diet may promote mutagenesis and carcinogenesis when they are absorbed 

(Ames, 1992). These are usually present in minimal quantities in the diet. The 

simultaneous presence of beneficial compounds in the diet is an important factor with 

regard to cancer prevention as it may counter-balance the toxicity of harmful 

compounds. 

Epidemiological studies have provided convincing evidence of the beneficial effect 

of a diet rich in fruits and vegetables in reducing cancer incidence (Steinmetz & 

Potter, 1991). The anti-carcinogenic properties of plant food are thought to be related 

to the occurrence of secondary plant compounds, also known as phytochemicals. One 

class of phytochernicals that are currently extensively studied are the glucosinolates 

and their related hydrolysis products. Studies have investigated their anti- 

carcinogenic and anti-mutagenic effects on various cellular systems, clarifying the 
Cý C) 

mechanisms underlying their cancer-protective effects (Johnson et al. 1994). The 

determination of dietary exposure and bioavailability of glucosinolates is of primary 

importance in determining their physiological relevance, particularly in the context of 

advising consumers on their dietary choice. It is difficult to optimise dietary 

allowances in relation to cancer protection as little is known of the metabolic fate of 

glucosinolates in vivo. The aim of this research was therefore to identify and quantify 

the break-down products of, glucosinolates released in the digestive tract under 

different physiological conditions. 

The human colonic microflora is a large ecosystem comprising more than 400 

species of bacteria (Macfarlane & Cummings, 1991). Its overall stability results from 

a complex and highly variable system of metabolic activities (Macfarlane & Gibson, 

1994). The interactions between dietary phytochemicals and microflora are not very 

well described. Only recently has the capacity of a human strain of bacteria to break 
down glucosinolates into isothiocyanates in vivo been studied in detail (Elfoul, 1999). 
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Confirmation of the ability of the microflora to produce cancer-preventive 

metabolites in the large bowel may aid the development of preventive nutrition since 

cancer risks are high in the colon. The possibility of enhancing or optimising this 

production with other components of the diet could also be important. As a 

prerequisite to such manipulation, it is important to elucidate the factors which 
influence the digestive metabolism of glucosinolates. From observations in vitro, it is 

known that damage to the plant matrix or changes in the chemical environment of the 

hydrolysis may result in the formation of different breakdown products. The 

preparatory processing of vegetables and the chemical variation induced by intestinal 

secretions along the digestive tract may also have an influence on the subsequent 

metabolite release in vivo. Consequently, a second objective in this work was to 

clarify the involvement of plant-related factors, microbial factors and other dietary 

factors on the pattern of glucosinolate hydrolysis in vivo. 
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CHAPTERI: 

REVIEW OF LITERATURE 
Metabolic fate of glucosinolates and their breakdown products in mammals 

1.1. Introduction 

According to the National Food Survey (1998), cruciferous vegetables are one of the 

most consumed vegetables in the UK (mean intake: 25g/person/day). Cruciferous 

foods consumed in the human diet include condiments (mustard, horseradish) and 
brassica vegetables (cabbage, cauliflower, Brussels sprouts, broccoli, turnip, radish 

and swede). The characteristic pungent and bitter taste of cruciferous vegetables 
derives from a particular class of thioglucosides, the glucosinolates. Glucosinolates 

in cruciferous plants have a number of possible biological functions including 

defence against fungal attack and pests. Based upon the consumption of cruciferous 

vegetables by humans, the mean daily amount of glucosinolates ingested is 100 

ttmollperson which constitutes a significant amount in comparison to some micro- 

nutrients (Sones et al. 1984). 

Glucosinolates have been the subject of a number of comprehensive reviews 
(Fenwick et al. 1983; Nugon-Baudon & Rabot, 1994; Mithen et al. 2000). The scope 

of the current review will therefore be limited to areas of particular relevance to the 

current study. Firstly the epidemiological evidence for a relationship between 

cruciferous vegetable consumption and cancer prevention will be reviewed. The 

specific involvement of glucosinolates in mediating the health benefits of brassica 

consumption will be considered. Glucosinolates are precursors of a range of 
biologically active products. Their release is catalysed by a thioglucosidase enzyme, 

commonly known as myrosinase. A brief review of this process will be presented 
together with recent findings on the action of different sources of myrosinases. 
Finally the nature of the glucosinolate breakdown products and their post-absorptive 
fate will be discussed. This overview aims to identify the best approach for the 

measurement of the digestive metabolism of glucosinolates. It also looks at the 

possible factors which may influence the metabolic fate of glucosinolates in vivo. 
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Much of our, curTent knowledge of glucosinolates is derived from studies on brassicas 

such as swede and kale or oilseed crops (rape or "Canola" and mustard) since they 

are important food crops for farm livestock. The overall goal of such research is the 

production of feed with a high proportion of protein and a low concentration of 

glucosinolates and glucosinolate derivatives since these latter compounds have 

detrimental effects on livestock production. Research on cruciferous vegetables 

produced for human consumption has a different goal. In this regard, research is 

geared toward the enhancement of flavour and the beneficial health properties of 

commercial vegetable varieties. As far as possible, this review focuses on research 
based on vegetables commonly consumed in human diets. 

1.2. Protective effect of cruciferous vegetables against cancer 
1.2.1. The epidemiological evidence 

A wide range of studies have shown an inverse correlation between consumption of 

vegetables and the incidence of cancer. High variability between studies exists but 

the overall consistency of results is striking. Among 87 epidemiological studies listed 

in the literature in 1996,68 showed a protective effect of cruciferous vegetables 

against cancer (Verhoeven et al. 1996). For other components of the diet the 

relationship is less clear. Carbohydrates, for instance, were associated with cancer 

protection in only 18 out of 43 surveys carried out (Steinmetz & Potter, 1991). The 

epidemiological relationship between consumption of cruciferous vegetables and 

cancer risk has also been examined more specifically (Verhoeven et al. 1996; Watson 

& Kohlmeier, 1999). A high intake of cruciferous vegetables was associated with a 

strongly decreased cancer risk for the digestive and respiratory tracts. Evidence for 

protection against hormone-dependent cancers, such as breast cancer, is weak. To 

date, however, there have been few epidemiological studies where the effect of 

cruciferous vegetables has been separated from, or adjusted for, consumption of other 

vegetables. Experimental data in laboratory animals have confirmed the 

epidemiological findings. As reported in a recent review, seven studies have shown 

that a cruciferous vegetable diet led to reduced incidence of chemically-induced 

cancers at various sites (Van Poppel et al. 1999). 
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1.2.2. The phytochemical components of cruciferous vegetables 
Cruciferous vegetables together with allium vegetables are a major source of 

sulphur-containing compounds in the human diet. The sulphur content of cruciferous 

vegetables varies between 0.5-4.5 mmol/100g wet weight (Holland et al. 1991). Most 

of the sulphur content of cruciferous vegetables is in the form of glucosinolates, 
disulphides or dithiol thiones. Cruciferous vegetables also have a high content of 

anti-oxidant vitamins. They are also a source of minerals such as potassium and 

magnesium. It is not clear whether the protective effects of cruciferous vegetables is 

specifically related to thioglucoside compounds but, as the anti-oxidative properties 

of vitamins are also relevant to cancer-protection, it is likely that the negative 

correlation between incidence of cancer and consumption of cruciferous vegetables is 

the result of the joint action of a range of riýiicro-components found in the vegetables. 
Experimental data give, nevertheless, convincing evidence for a dominant role of 

glucosinolates. Feeding trials aimed at identifying the mechanism of cancer 

protection have shown a positive correlation between the amount of glucosinolates 

and hydrolysis products in the diet and the induction of the enzymes responsible for 

detoxification of carcinogens (Sparnins et al. 1982; McDannel et al. 1987; Nijhoff et 

al. 1995; Steinkellner et al. 2000). The addition of purified glucosinolates to a non- 

cruciferous diet in animal feeding experiments led to a similar induction of 

xenobiotic-detoxifying enzymes (Bradfield et al. 1985). A host of studies have also 

shown a dramatic decrease in the incidence of chemically-induced cancers when 

glucosinolates or their breakdown products are administered to laboratory animals 

and these studies have been listed in several reviews (Verhoeven et al. 1997; Hecht, 

1999; Van Poppel et al. 1999). The evidence is thus converging to demonstrate that, 

among other micro-nutrients, glucosinolates and their derivatives may have a primary 

role in the mechanism of prevention against cancer. 

1.3. Biochemistry of glucosinolates 

1.3.1. Structure and biosynthesis 

Glucosinolates are thioglucoside compounds characterised by a common chemical 

structure. They consist of a thioglucose grouping, an O-sulphonate group and a side- 

chain R (Figure 1.1). The side-chain can be either an aliphatic, aromatic or indolyl in 

nature and approximately 100 glucosinolates have been identified. The structural 

6 



elucidation of glucosinolates has been reviewed elsewhere (Fenwick et al. 1983). 

Glucosinolates are usually given a common name in addition to their chemical 

nomenclature. For instance, prop-2-enyl glucosinolate is generally called sinigrin. 

Table 1.1 summarises the most important glucosinolates found in the Brassicaceae. 

Figure 1.1: General structure of glucosinolates 

B-D-glucopyranosyl -S \ 

C-R 

0 S03-N 

Glucosinolates are derived from the secondary metabolism of amino-acids in plants. 

The biosynthetic pathway of glucosinolates has been quite well characterised. 

Chemical and enzymatic pathways have been detailed in recent reviews (Mithen et 

al. 2000; Wallsgrove et al. 2000). Although cross-breeding manipulations have been 

successfully conducted to develop low-glucosinolate rapeseed varieties, the 

mechanisms underlying the regulation of glucosinolate synthesis in the plant cell is 

still unclear. Until now, it has not been possible to artificially manipulate the genome 

of brassica to selectively increase or repress the production of one specific 

glucosinolate or one class of glucosinolates. 

The exact location of glucosinolates in plant cells is still unclear. A study of 

horseradish roots reported the glucosinolates to be stored in vacuoles of non-specific 

cells but since the study relied on observation of lysed cells, it may be that in the 

intact cells, glucosinolates may also be found in the cytoplasm (Grob & Matile, 

1979). Glucosinolates are stored in their anionic form in plant cells. Commercially 

available purified glucosinolates are generally extracted from plants. They are then 

associated to cations such as potassium or sodium to form a stable salt. 

Glucosinolates are generally unstable at temperatures higher than 1 JOOC (VanEtten et 

al. 1966; MacLeod et al. 1981) but stable during freezing and freeze-drying 

(McGregor et al. 1983). 
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Table I. I: Examples of glucosinolates found in the Brassicaceae 

Side chain Glucosinolate Trivial name 
CH2=CH-CH2- 
CH2ý=CH-CH2, Mr 
CH2=CH-CH-CH(OH)-CH2- 
CH3-S-CH2"CHz-CH2-CH2 
CH3-SO-CH2-CH2-CH2-CH-2- 
O-CH7- 

O-CHi-CHI- 

HO-O-CHr- 

prop-2-enyl sinigrin 
but-3-enyl gluconapin 
2-hydroxybut-3-enyl progoitrin 
4-methylthiobutyl- glucoerucin 
4-methylsulphinylbutyl- glucoraphanin 

benzyl- glucotropaeolin 

2-phenyletbyl gluconasturtiin 

4-hydroxybenzyl- sinalbin 
H 
c 

CHF- indol-3-ylmethyl- glucobrassicin 

H 

Exposure to ultraviolet radiation may accelerate their degradation (Monde et al. 

1991). The de novo synthesis of aromatic glucosinolates and indole glucosinolates as 

well as their labelled equivalents has been described but the process is expensive and 

yield is low (Dawson et al. 1993). Therefore very few purified compounds are readily 

and commercially available for biological studies. 

1.3.2. Measurement of glucosinolates in plant material 
Several analytical methods for the measurement of glucosinolates in plant material 

have been developed. Early methods relied on the measurement of breakdown 

products released upon enzymatic hydrolysis including the glucose moiety or the 

aglucone compounds (Heaney & Fenwick, 1981; McGregor et al. 1983). To 

counteract the potential lack of accuracy inherent in the use of an enzymatic 

hydrolysis step, direct analysis of non-hydrolysed glucosinolates by HPLC has also 

been described (Helboe et al. 1980; Betz & Fox, 1994; Prestera et al. 1996). This 

method is, however, more suitable for isolation and preparation of glucosinolates 

than composition analysis. Other analytical methods are also available for structural 

elucidation of glucosinolates such as mass spectroscopy (Chiang et al. 1998). Rapid 

screening of cruciferous varieties in breeding programmes has employed a recently 

developed ELISA test (Van Doom et al. 1998). The strengths and weaknesses of 
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these techniques have been discussed in several reviews (Fenwick et al. 1983; 

McGregor et al. 1983; Mithen et al. 2000). In an attempt to standardise the analytical 

procedure and to achieve a meaningful comparison of data between studies, the 

analysis of individual glucosinolates after a desulphation step has now been adopted 

as a standard procedure for rapeseed crops within the European Community 

(Minchinton et al. 1982; AFNOR, 1995). 

1.3.3. Distribution 

Glucosinolates are only found in a restricted number of plant families (Fenwick et 

al. 1983). Among edible plants, they occur predominantly within the family of 

Brassicaceae (Table 1.2). Indian cress (Tropaeolaceae), Papaya (Caricaceae) and 
Caper (Capparaceae) are the three edible plants outside the Brassicaceae family 

containing glucosinolates. Despite the large number of glucosinolates, most species 

of vegetables contain only a few individual glucosinolates. The distribution of 

glucosinolates has been extensively studied in cruciferous plants. 

Table 1.2: Examples of glucosinolate-containing Brassicaceae 

Linnaean name Common name 
Brassica oleracca L. 
gongy1odes group Kohlrabi 
capitata group Red/white cabbage 
sabaada group Savoy cabbage 
gemmifera group Brussels sprouts 
italica group Broccoli 
botrytis group var. cauliflora Cauliflower 
acephala group var. millecapitata Thousand-head kale 

var. selensia Curly Kale 
var. sabellica Collard 

Brassica alboglabra Chinese kale 
Brassica chinensis Chinese cabbage 
Brassica campestris Turnip 
Brassica napus Swede 
Brassica nigra Black mustard 
Brassica juncea Brown mustard 
Sinapis alba White mustard 
Armoricia lapathifolia Horseradish 
Wasabi iaponica Wasabi 

The distribution of glucosinolates is variable between species (VanEtten et al. 1976; 

Heaney & Fenwick, 1980; Carlson et al. 1981; Carlson et al. 1987; Kushad et al. 
1999). Among the Brassica vegetables consumed in the human diet, glucobrassicin is 
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the most widespread glucosinolate (Nugon-Baudon & Rabot, 1994). Among the 

aliphatic glucosinolates, progoitrin and sinigrin occur most often. On the other hand, 

gluconasturtiin (phenethyl glucosinolate) occurs in a restricted number of brassipa 

species, including, for example, watercress. The proportion of indole glucosinolates 

to aliphatic glucosinolates in root vegetables, such as swede and turnip, is generally 

higher than in leafy vegetables (Carlson et al. 1981; Carlson et al. 1987). These large 

differences in glucosinolate profile have generated research studies on a wide range 

of cruciferous vegetables as it is not possible to consider one brassica as a model 

vegetable. Indeed, it is not fully understood whether the beneficial properties of 

brassicas are related to their full glucosinolate profile or to their content of specific 

glucosinolates. 

Figure 1.2: Glucosinolate concentrations in cyrus and maximus' varieties of. Brussels sprouts 
(Verkerk R., 1998, personal communication). Solid bars correspond to the cyrus variety and 
hatched bars correspond to the maximus variety 
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Within variety, the profile of glucosinolates is generally similar. Broccoli, for 

instance, is devoid of sinigrin despite a high content of total glucosinolates. The 

amount of glucosinolates can, however, vary according to the cultivar. For instance, 

sinigrin is generally present in significant amounts in Brussels sprouts (Carlson et al. 
1987). The cyrus cultivar, however, has a sinigrin concentration twice as high as the 

maximus cultivar (Figure 1.2). Concentrations of glucosinolates also vary within the 

different parts of plants. They are generally higher in seeds and growing organs than 

in vegetative tissues (Pihakaski & Pihakaski, 1978). Culture conditions have been 
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shown to significantly influence glucosinolate content (Heaney & Fenwick, 1980; 
Rosa et al. 1994; Ciska et al. 2000). When plants are subjected to stress, 
concentrations of glucosinolates also change. These factors, together with the 

multiplicity of methods of measurement of glucosinolates in plant material, make it 

difficult to compare glucosinolate profiles between vegetables and between studies. 
However, in any given vaiiety of cruciferous vegetables the relative proportion of 

individual glucosinolates is relatively stable (Kushad et al. 1999). 

1.3.4. Glucosinolate intake by humans 

Glucosinolate intake is difficult to assess not only due to the large variation in 
I 

glucosinolate content in vegetables but also the large within-population variation in 

choices regarding consumption of cruciferous vegetables. Cruciferous vegetable 

consumption varies markedly with country, season and social group (Sones et al. 

1984). One more difficulty is the fact that cruciferous vegetables are often processed 

either industrially or domestically, resulting in further change in glucosinolate 

content either by hydrolysis during chopping or by leaching in cooking water. These 

effects have been discussed elsewhere (de Vos & Blijleven, 1988; Mithen et al. 

2000). The most reliable attempt to estimate the mean daily intake of glucosinolates 

reported a value of 46.1 m&ay (approximately 100 Amol/day) when raw vegetables 

were ingested (Sones et al. 1984). This intake was calculated on the basis of the 

cruciferous consumption in the UK in 1980 and the glucosinolate content of 

vegetables available commercially at that time. However, the mean daily intake 

would probably be different now since the consumption of cruciferous vegetables has 

decreased from 49.7 g/person/day in 1980 to 25 g/person/day in 1998 (National 

Food Survey, 1999) and the varieties of vegetables available are different. Large 

within-population variation in the 'quantity and range of glucosinolates that are 
ingested is to be expected. For instance, the result of a food frequency questionnaire 
among 246 Singapore Chinese showed a very high frequency of cruciferous 
vegetable consumption (345 times per year) and a mean daily intake of 40.6 g (Seow 

et al. 1998). There was, however, a 2.5 fold difference between the low consumer 
and the high consumer group. The average glucosinolate intake in Singapore is 

probably much higher than in the Western population. Little is known about the 
intake of individual glucosinolates. More information on the kind of cruciferous 
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vegetables ingested and the amount consumed would be necessary for more accurate 

estimates of glucosinolate composition. Indeed, the wider the range of vegetables 

eaten, the more varied is the glucosinolate intake. A large variety of glucosinolates 

ingested may not necessarily be related to a high intake. Conversely, intake of one 

particular glucosinolate can be very low despite a substantial ingestion of total 

glucosinolates. Broccoli and cafiliflower, for instance, contain very little, or no, 

sinigrin despite a high content of total glucosinolates (Carlson et aL 1987). This 

information will be necessary to identify whether the beneficial effect of cruciferous 

vegetables is related to the amount of total glucosinolates ingested, or to specific 

glucosinolates. In addition, intake of readily available breakdown products as they 

often occur in condiments must be taken into account. A more detailed knowledge of 

the cruciferous vegetable consumption habits would be useful for experimental 

investigations. Indeed, feeding trials 'using cruciferous vegetables with a wide range 

of glucosinolates may give qualitative results which provide useful epidemiological 

information. Quantitative studies, however, need to focus on a restricted numberof 

glucosinolates for which the biological activities have been demonstrated. This 

information could ultimately lead to selection and commercialisation of vegetable 

varieties with high health potential. 

1.3.5. Biological properties 
Regardless of their importance in the defence mechanism of plants, once ingested by 

animals or humans, intact glucosinolates are thought to have no biological influence 

per se. Germ-free rats given rapeseed meal did not develop the adverse effects 

generally observed in animals harbouring a viable microflora, suggesting that 

glucosinolates have to be broken down to generate biological effects in vivo (Nugon- 

Baudon et al. 1988). The growth of turnour cells in vitro was not affected when they 

were challenged with purified glucosinolates whereas the related breakdown products 

showed anti -proliferative effects (Leoni et al. 1997). A study in vitro on a Chinese 

hamster ovary cell line has shown that intact sinigrin and gluconasturtfin can have 

genotoxic effects on cells but the amount of glucosinolates required to obtain these 

effects, however, is unlikely to occur in vivo (Musk et al. 1995). Therefore, the 

hydrolysis of glucosinolates is the primary process leading to the development of a 

biological response in the host. 
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1.4. Myrosinase 

Myrosinase is a thioglucoside glucohydrolase (EC 3.2.3.1) responsible for the 

hydrolysis of glucosinolates. Myrosinase activity in plant cells has been well 

characterised. Recent studies have demonstrated that thioglucosidase activity can also 

occur in other organisms such as fungi and mammalian gut bacteria (Oginsky et al. 

1965; Smits et al. 1993). 

1.4.1. Plant myrosinase 

1.4.1. I. Biochernistry 

Plant myrosinase is a glycoprotein with a molecular mass varying from 125 to 150 

kDa (Bones & Rossiter, 1996). Several isoforms of the enzyme have been isolated 

from different cruciferous vegetables. Some isoforms coexist within the same plant 

species such as in the swede (Brassica napus) (Bones & Slupphaug, 1989). The 

biochemical characteristics of the enzyme differ according to the vegetable matrix 

(Table 1.3). Generally, the optimum activity is at neutral pH although myrosinase 

activity of Brassica napus and Sinapis alba was optimum at a pH of 5 (Bjbrkman & 

Janson, 1972; Bones & Slupphaug, 1989). The optimum activity is at a temperature 

within the range of 55-75"C (Springett & Adams, 1989; Yen & Wei, 1993). Above 

this range of temperature, non-reversible inactivation of the myrosinase occurs. 

These properties are of importance as most cruciferous vegetables are heated at 

temperatures of around 100'C before ingestion. On the other hand, myrosinase is 

stable at -200C which indicates a good stability in frozen vegetables. Activity of 

myrosinase is also decreased by high pressure which may be used in industrial 

preparation to preserve vegetable flavours although it is not known whether the 

inactivation is reversible (Ludikhuyze et al. 2000). The purification and amýino-acid 

sequencing of myrosinase has allowed the elucidation of its structure and this is 

detailed elsewhere (Bones & Slupphaug, 1989). Little is known, however, about the 

conformation of the catalytic site (Bones & Rossiter, 1996). A family of genes coding 
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for myrosinase have been characterised and partially sequenced in cruciferous forage 

(Bones & Rossiter, 1996). 

Plant myrosinase is usually stored in the vacuoles of discrete specialised cells called 

myrosin cells or idioblasts (Thangstad et al. 1990). These cells are distributed among 
the non-specific glucosinolate-containing cells in plant tissues (Bones & Rossiter, 

1996). Little is known about the relationship between glucosinolate content and 

myrosinase occurrence in the plant. Analysis of the edible parts of cruciferous 

vegetables has not shown a significant correlation between myrosinase activity and 

glucosinolate content (Yen & Wei, 1993). However, as glucosinolates and 

myrosinase are involved in the same functions and found in the same family of 

plants, they are thought to be related in a "myrosinase-gl ucosin ol ate system". 

Several studies have focused on the distribution of myrosinase activity, showing 

large variation according to plant part (Bones, 1990). In white mustard (Sinapis 

alba), for instance, the enzyme activity decreases from storage tissues, where it is at. 

its highest, then in the growing organs and finally in vegetative parts (Pihakaski & 

Pihakaski, 1978). Myrosinase activity was also found to be higher in the outer leaves 

of Brussels sprouts than inner leaves, presumably as a defence mechanism against 

external -pathogens (Springett & Adams, 1989). Measured myrosinase activity in 

different plant tissues also varies with the total concentration of proteins of the 

considered tissue, the stability of the myrosinase in the myrosin cells and the level of 

myrosinase synthesis. As a result, myrosinase activity can be highly variable 

according to circumstances. For instance, upon cell disruption, the synthesis of 

myrosinase is increased which may result in misleading measurements of myrosinase 

activity. Several methods of measurement of myrosinase activity have been 

described, all relying on a similar principle: the enzyme is purified from the plant cell 

and subsequently incubated with sinigrin as substrate. Methods differ in their 

approach to the measurement of sinigrin hydrolysis (Palmieri et al. 1987). The use of 

molecular tools, such as mRNA, has allowed an estimation of myrosinase synthesis 

which potentially facilitates comparison of myrosinase distribution between different 

tissues or different species of brassicas (Falk et al. 1992). Myrosinase expression 

could not, however, account for the total capacity of myrosinase activity in the cells 
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as myrosinase can be a stable and long-lived molýcule in contrast to other P- 

glucosidases, (Botti et al. 1995). This uncertainty in the measurement of myrosinase 

activity highlights the difficulty in selecting cruciferous vegetables on the single 

criteria of myrosinase activity. 

1.4.1.2. Myrosinase-catalysed hydrolysis 

When plant cells are damaged, by food processing for instance, myrosinase is 

released and interacts with glucosinolates stored in other compartments of the plant 

cell. Plant myrosinase is responsible for the hydrolysis of the thioglucoside bond of 

glucosinolates. A proposed mechanism suggests that myrosinase catalysis occurs in 

two steps (Botti et al. 1995; Iori et al. 1996), The first step is the formation of an 

unstable intermediate compound, the thiohydroximate-0-sul phonate (Figure 1-3), 

immediately followed by the release of glucose. The aglucone moiety is 

spontaneously transformed to yield sulphate and a wide range of breakdown products 
including isothiocyanates, nitriles, epithioalkanes, oxazoli dinethi ones, ihiocyanate 

anions and organic thiocyanates (VanEtten et al. 1966). Section 1.5 describes the 

chemistry of these breakdown products and their metabolic fate. The myrosinases 
from different plant species are not adapted to a specific set of glucosinolates 
(Pihakaski & Pihakaski, 1978). Indeed, studies on the mechanism of hydrolysis have 

shown that the reaction was specific to the thioglucoside bond and to the O-D- 

glucose moiety, the myrosinase having no binding site to the side-chain (Botti et al. 
1995). In the absence of a thioglucoside bond, in the desulphog] ucosinol ate structure 
for instance, myrosinase-catalysed hydrolysis does not occur (Hanley et al. 1990). It 

is still unclear, however, whether or not myrosinase is involved in the subsequent 

rearrangement of the intermediate aglucone. The composition of the side-chain on 

another hand is involved as will be discussed in the following section. Furthermore, 

it is not known whether the new hydrolysis products formed can regulate myrosinase 
hydrolysis. 
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Figure 1.3: Enzyndc hydrolysis of glucosinolates and release of breakdown products 
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1.4.1.3. Factors influencing glucosinolate hydrolysis 
Glucosinolate hydrolysis may be influenced by external factors. Ascorbic acid 

(vitamin Q is an essential activator of myrosinase catalysis (Ohtsuru & Hata, 1979). 

Cruciferous vegetables have a high content of vitamin C and it is thought that it plays 

a role in the efficiency of the glucosinolate-myrosinase system. The reported 

optimum vitamin C concentration varies according to studies and vegetables. An 

Optimum concentration of 5-10 mM for broccoli and cabbage myrosinase has been 

reported in recent studies but much lower concentrations were suggested in earlier 

studies (Wilkinson et al. 1984; Yen & Wei, 1993; Ludikhuyze et al. 2000). These 

concentrations were derived from experiments where exogenous vitamin C was 

added to the reaction medium and they do not represent the actual cellular 
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concentrations found in the vegetable. It is hypothesised that ascorbic acid can bind 

to a specific site on myrosinase, changing the conformation of the catalytic site which 
facilitates the hydrolysis. High concentrations (greater than 50 MM) of ascorbic acid 
lead to an inactivation of myrosinase, probably by competing for the catalytic site 

(Ohtsuru & Hata, 1979; Bones & Rossiter, 1996). 

The presence of myrosinase-binding proteins associated with the cell membrane has 

been reported (Bones & Rossiter, 1996). Evidence for their specific function and 

mode of action are still sparse and incomplete (Bones & Rossiter, 1996). Metallic 

ions, such as Mg2+ associated with ascorbic acid, can enhance myrosinase activity 
(Ludikhuyze et aL 2000). Other factors also influence glucosinolate hydrolysis by 

interacting with the unstable intermediate formed after myrosinase catalysis. An 

epithiospecifier protein has been shown to facilitate the rearrangement of 

thiohydroxamate-o-sulphonate to epithionitriles for glucosinolates possessing an 

unsaturated side-chain. This small protein (30-40 kDa) was found in several edible 

cruciferous- vegetables such as Brussels sprouts, turnip, garden cress, mustard and 

horseradish (Petroski & Tookey, 1982; MacLeod & Rossiter, 1985). The presence of 

ferrous ion also enhances the activity of epithiospecifier protein (MacLeod & 

I Rossiter, 1985). The structure of glucosinolates and the nature of the reaction 

medium also have a strong influence on the rearrangements of the intermediate 

aglucone into hydrolysis products. For instance, variation in pH in the reaction 

medium leads to the formation of different breakdown products (Uda et al. 1986). At 

neutral or alkaline pH, isothiocyanates are the predominant products. At an acidic 

pH, the formation of nitriles predominates. The presence of metallic ions, such as 
ferrous ions, in the reaction medium enhances the pH effect by increasing nitrile 

release at the expense of isothiocyanates at both acidic and neutral pH (Tookey & 

Wolff, 1970; Uda et al. 1986). This switch in the pattern of released breakdown 

products is important in terms of biological effects. Glucosinolates are subject to 

extreme pH variation and chemical exposure throughout the process of food 

preparation and digestion. According to whether vegetables are consumed in an 

acidic form such as pickled cabbage or coleslaw, or in other preparations, the nature 

of hydrolysis products ingested by consumers may change. Furthermore, after 
ingestion of the vegetables, the glucosinolates are also exposed to the mineral 
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concentrations and pH of digestive fluids. These factors may influence the type of 
hydrolysis products actually available in the digestive tract. In an experiment where 

rapeseed meal was incubated under in vitro conditions simulating digestion in the 

stomach and small intestine of pigs, the concentration of the breakdown product of 

progoitrin, oxazolidine thione, was modified according to the origin of the biological 

fluids (Maskell & Smithard, 1994). 

The result of'glucosinolate hydrolysis is therefore complex. Although myrosinase 
hydrolysis is likely to be the major hydrolytic pathway, non-enzymatic hydrolysis 

may also occur in acidic conditions (Maskell & Sn-ýthard, 1994). According to 

variation in the medium conditions, such as pH, content of ascorbate, presence of 
bivalent ions, conditions of temperature, pressure and UV and ionising radiation, the 

myrosinase activity can be enhanced or suppressed and, therefore, the contribution of 

non-enzymatic hydrolysis changes. It is therefore desirable to expand. studies to 

clarify the conditions that are most likely to be important in particular physiological 

circumstances. 

1.4.2. Myrosinase activity in microorganisms 

1.4.2.1. Myrosinase activity in fungi 
Several authors have reported the presence of a myrosinase-like activity in fungi. 

Most of the strains involved are from the Aspergillus and Fusarium genera (Ohtsuru 

& Hata, 1973; Smits et al. 1993). In the same way as for plant myrosinase, 

myrosinase from fungi is able to catalyse the breakdown of glucosinolates to 

isothiocyanates and nitriles (Smits et al. 1993). The mechanism of breakdown has 

not been well described. The nature of released metabolites and the kinetics of 

hydrolysis seems to differ according to species and to the type of glucosinolates 

considered (Smits et al. 1993). Studies on A. niger and A. clavatus suggested that the 
fungal enzyme is located in the cytoplasm and its activity is unstable (Ohtsuru et al. 
1973; Smits et al. 1993). The characterised strains of fungi grow on cruciferous 

vegetables and have been considered as agents for the detoxification of brassica- 

based feedingstuffs. No fungus possessing a myrosinase activity has yet been 

identified in the mammalian microfauna. The involvement of fungal myrosinase 
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activity, however, is more relevant to ruminant species than human subjects as the 

human digestive tract does not harbour a constitutive microfauna. 

1.4.2.2. Microbial myrosinase activity 
The digestive microflora of mammals and birds has been shown to be a potent 
facilitator of glucosinolate hydrolysis. Myrosinase activity has been demonstrated in 

digestive and faecal contents of humans, rats, pigs and poultry (Greer, 1962; 

Slominski et al. 1988; Maskell & Smithard, 1994; Michaelsen et al. 1994) and in 

sheep and cattle rumen fluid (Lanzani et al. 1974; Wathelet et al. 1995). Myrosinase 

activity has also been reported for bacteria found in soil and food (Tani et al. 1974; 

Brabban & Edwards, 1994; Palop et al. 1995). 

Several authors have isolated strains of bacteria possessing myrosinase activity from 

human faeces (Oginsky et al. 1965; Rabot et al. 1995). Bacterial identification has 

shown that myrosinase activity occurs in a large variety of bacterial clusters in the 

dominant and subdominant bacterial populations. Table 1.4 summarises the main 

genera identified and the substrates used for the characterisation of the myrosinase 

activity. Anaerobic conditions seem to be more favourable to the expression of 

myrosinase activity, although some isolated strains can grow in aerobic conditions 
(Oginsky et al. 1965; Tani et al. 1974; Rabot et al. 1995). This observation may 

explain the fact that bacterial myrosinase has only been characterised in one strain of 
bacterium, Enterobacter cloacae (Tani et al. 1974). The isolated enzyme was smaller 
than plant and fungal myrosinase (molecular weight 61 kDa). It was found to be 

intracellular with an optimum activity at neutral pH. These latter characteristics weie 
found to be similar in the human digestive strain of Paracolobactrum aerogenoides 

and in a food-borne strain of bacterium Lactobacillus agilis (Oginsky et al. 1965; 

Palop et al. 1995). All the studies in vitro demonstrated that bacterial myrosinase 

activity was induced when bacteria grew on a medium supplemented with 

glucosinolates but myrosinase activity was suppressed when glucose was available 
(Tani et al. 1974; Brabban & Edwards, 1994; Maskell & Smithard, 1994; Palop et al. 
1995). The optimum induction was obtained when concentrations of glucosinolates 

were in the concentration range from 5 to 10 mM. Above these concentrations, 
glucosinolates suppressed microbial myrosinase activity (Tani et al. 1974). However, 
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a recent study in vivo on the metabolism of sinigrin by the human intestinal strain 
Bacteroides thetaiotaomicron has not shown any differences in sinigrin degradation 

when the host animals were fed a glucosinolate-based diet or a standard diet (Elfoul 

et al. 1998). Further evidence in vivo is required to establish whether microbial 

myrosinase induction is an artefact due to conditions in vitro. 

Table 1.4 : Characterisation of bacterial strains possessing a myrosinase activity 

Number of Substrate 
Bacterial strain identified Source used for References 

strains identification 
Escherichia coli 4 Human faeces progoitrin Oginsky et al, 1965 
Paracolobactrum aerogenoides 1 
Paracolobactrum coliforme I 
Paracolobactrum sp. I 
A erobacter acrogenoides I 
Proteus vulgaris 1 
Alcaligenesfaccalis 1 
Pseudomonas aeruginosa 1 
Bacillus subtilis I 
Bacillus cereus 1 
Staphylococcus epidermidis I 
Streptococcusfaecalis I 
Escherichia coli 17 Human faeces sinigrin Rabot et al, 1995 
Enterococcusfaccalis 1 
Enterococcusfaecium 3 
Bacteroides thetaiwaonticron 1 
Aeptostreptococcus sp. 3 
Escherichia coli 1 Human faeces rapeseed Rabot et al, 1993 
Bacteroides vulgatus I 
Enterobacter cloacae I Human faeces siniEin Tani et al, 1974 
Laclobacillus thertnobacterium 1 Chicken intestinal progoitrin + Nugon-Baudon et al, 

content sinigrin 1990 
r 

Unlike plant myrosinase activity, the addition of ascorbate to a suspension of 

glucosinolate-degrading bacteria in vitro was found to have a slight inhibitory effect 

on microbial myrosinase activity but the evidence is weak and confirmation would be 

necessary (Oginsky et A 1965; Maskell & Smithard, 1994). In the same way as for 

plant -myrosinase, metallic ions may have an influence on microbial hydrolysis of 

glucosinolates. Evidence for this relies on observations of animal performance: the 

addition of copper and ferrous ions to rapeseed meals free of plant myrosinase 

ameliorated the toxic symptoms generated by glucosinolates in farm animals and in 

rats (Vermorel & Evrard, 1987). Moreover, the hydrolysis of glucosinolates by the 
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digestive microflora of pigs in vitro was significantly retarded by a copper 

supplementation (Rowan et al. 1991; Maskell & Smithard, 1994). It is, however, 

difficult to draw conclusions on the direct influence of iron and copper on microbial 

myrosinase. Iron and copper may have a non-specific influence on the digestive 

microflora, modifying or suppressing microbial metabolic functions or organisms 

which in turn modify glucosinolate hydrolysis. Alternatively, metallic ions may 
interact directly with the glucosinolate precursors or the microbial breakdown 

products, thus modifying the metabolites and their related effects. The addition of 

polysaccharides to the diet, such as inulin or tylosin, also favourably modify the 

microbial degradation of glucosinolates but the specific action of these fibre sources 

on microbial myrosinase has not been investigated (Maskell & Smithard, 1994; 

Roland et al. 1996). 

Studies have reported that the kinetics of microbial myrosinase hydrolysis may differ 

according to the type of glucosinolates considered. This characteristic was noted in 

vitro for the chicken digestive strain Lactobacillus therniobacterium (Nugon-Baudon 

et al. 1990) and could be linked to a variable access of the glucosinolate to the 

catalytic site or to a difference in the re-arrangement of the aglucone product 

according to the side-chain. These reactions might involve factors such as myrosinase 
binding proteins or epithiospecifier protein. The existence of such factors in micro- 

organisms is not known and the presumed mechanisms thus remain speculative. 
Moreover, the presence of a complex microflora with several bacterial strains 

possessing myrosinase activity could mask the variation observed for individual 

strains. This is illustrated by the similarity in time curve degradation of five 

individual glucosinolates by porcine caecal contents (Maskell & Smithard, 1994). 

The very low amount of glucosinolates (Q. 4%) found in caecum, colon and faeces of 

rats fed a rapeseed meal devoid of plant myrosinase confirmed, nevertheless, that 

microbial myrosinase is able to hydrolyse a wide range of glucosinolates in vivo 
(Campbell eý al. 1995). 

The nature of the hydrolysis products released by bacterial myrosinase is not very 

well determined. Rats harbouring different strains of human digestive bacteria 

showed different toxic symptoms when they ingested rapeseed rneal devoid of 
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myrosinase (Rabot et al. 1993). It is likely that bacterial myrosinase leads. to the 

formation of a thiohydroxi mate-0-sul phonate intermediate and glucose as for plant 

myrosinase -although no direct evidence is available. From results observed in 

chimaera animals, it can be suspected that the re-arrangements of the aglucone might 

be different according to the complexity of the mftroflora and to the host species 

(Nugon-Baudon et al. 1988). Studies on ruminants and rats, using rapeseed or 

progoitrin, measured the production of 5-vinyl oxazolidine-thione, the breakdown 

product of progoitrin (Oginsky et al. 1965; Lanzani et al. 1974; Maskell & Smithard, 

1994; Wathelet et al. 1995). Isothiocyanates and nitriles derived from gluconapin 

were detected in incubations- with cattle rumen fluid in vitro (Wathelet et al. 1995). 

Isothiocyanate derivatives were not detected when rapeseed was incubated with 

porcine digestive contents (Maskell & Sn-ýthard, 1994). A measurable amount of 

thiocyanates was detected in the excreta of hens fed rapeseed but this result could not 
be reproduced in vitro (Slominski et al. 1988). 

When the metabolism of glucosinolates by single strains was studied in vitro, the 

release of glucose, subsequently metabolised to lactic acid, was observed with 

Lactobacillus strains (Nugon-Baudon et al. 1990; Palop et al. 1995). The aglucone 

released in vitro from sinigrin was exclusively allyl isothiocyanate with one strain of 

Lactobacillus (Palop et al. 1995) and exclusively allyl cyanide in another study on 

human faecal bacteria (Maisonneuve, 1995). The absence of allyl isothiocyanate 

however, does not necessarily mean that it is not released. Indeed, other work has 

suggested that allyl isothiocyanate can be further metabolised by glucosinolate- 
degrading bacteria (Palop et al. 1995). An illustration of this difference in metabolite 

release is given by a study on Bacteroides theta iotaomicron (Maisonneuve, 1995; 

Elfoul et al. 1998). In vitro, the myrosinase activity of this strain was shown to 

convert sinigrin to allyl cyanide but no allyl isothiocyanate was measured 

(Maisonneuve, 1995). Conversely, allyl cyanide could not be found, in vivo, but allyl 

isothiocyanate was detected and quantified (Elfoul et al. 1998). Recent studies have 

confirmed the ability of rat and human microflora to release isothiocyanates in vivo 

(Duncan et al. 1995; Elfoul, 1999). 
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Overall, knowledge on microbial myrosinase is still sparse and sometimes 

contradictory. The general mechanism of hydrolysis and the breakdown products 

released seem, however, to be similar to those found with plant myrosinase. The 

findings highlight the importance of working in conditions where the integrity of 

microbial activity is preserved. Further studies in vitro would be necessary to 

characterise the microbial myrosinase itself. The use of techniques simulating a 
human digestive ecosystem in vivo seems more appropriate to determine the 

breakdown products released in physiological conditions. The use of animal models, 

such as rats harbouring a human flora, may be a suitable tool for the investigation of 

glucosinolate metabolism by human gut bacteria. 

1.4.3. Myrosinase activity in cells and tissues 
There is no direct evidence in the literature of myrosinase activity in the intestinal 

epithelium. One study has reported the existence of a mammalian thioglucosidase but 

activity with glucosinolates as substrates was not tested (Goodman et al. 1959). In a 

study on germ-free rats where the toxicity of a diet enriched with glucosinolates was 

investigated, it was demonstrated that in the absence of plant or bacterial myrosinase, 

glucosinolates did not induce any toxicity, suggesting that mammalian tissue does not 

possess myrosinase-like enzymatic activity (Rabot et al. 1993). These results were 

corroborated by a more recent study conducted in germ-free rats receiving a 

substantial dose of sinigrin. In this experiment, breakdown products could not be 

quantified in the intestinal contents and intact sinigrin was recovered in faeces and 

urine (Elfoul, 1999). 

1.4.4. Metabolic fate of intact glucosinolates in vivo 
It has been suggested that, in the absence of myrosinase activity, glucosinolates could 

be absorbed directly by the intestinal tract (Lo & Hill, 1972; Freig et al. 1987; 

Slominsk-i et al. 1988; Michaelsen et al. 1994). Studies in rats and poultry have 

measured urinary excretion of intact glucosinolates after ingestion of rapeseed meal 

(LO & 011,1972; Freig et al. 1987). The excretion was much higher in rats (40% of 

administered dose) (Freig et al. 1987) than in poultry (2-3% of administered dose) 

(Lo & I-Ell, 1972) suggesting species differences. The absorption of intact 

glucosinolates is supported by findings demonstrating the passage of glucosinolates 
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across the intestinal epithelium of rats using an in vitro everted intestinal sac method 

(Michaelsen et al. 1994). The study suggested that a passive or facilitated transport 

may occur and no evidence of active transport through the intestinal mucosa was 

found. Small concentrations of glucosinolates were detected in blood of poultry (0.5- 

0.6% of ingested glucosinolates) (Freig et al. 1987; Slominski et al. 1988). The 

possibility that glucosinolates may bind to transport proteins, however, make it 

difficult to measure blood concentrations of glucosinolates accurately (Michaelsen et 

al. 1994). There have been no conclusive attempts to measure intact glucosinolates in 

human blood to date. From the data available, the extent of intact glucosinolate 

-absorption seems limited in vivo. Results obtained so far, however, cannot exclude 

the possibility that glucosinolates, once absorbed, may undergo further metabolism 

thereby explaining a wide variation in urinary excretion. A potential accumulation of 

glucosinolates in the intestinal tissues has been rejected by the everted intestinal sac 

study (Michaelsen et al. 1994). The desulphation of intact glucosinolates by 

mammalian sulphatase in the digestive tract was also refuted by a study showing an 

absence of desulphoglucosinol ate in urine and faeces of rats administered an oral 

dose of sinigrin (Elfoul, 1999). 

1.5. Breakdown products of glucosinolates 

The biological properties of glucosinolates are attributed to their breakdown 

products. Since the 1970s, the toxicity of glucosinolate breakdown products has been 

particularly well studied since the consumption of cruciferous plants by livestock has 

been shown to induce physiopathological disturbances in animals. The mechanism of 

toxicity is complex since several breakdown products may interact with each other to 

produce the detrimental effects. The symptoms induced by a specific breakdown 

product may also differ in different animal species (Fenwick et -al. 1983). The 

toxicity of glucosinolates and break-down products in animals has already been 

reviewed elsewhere (Duncan & Milne, 1989; Nugon-Baudon & Rabot, 1994). In 

humans, the occurrence of toxicity symptoms from glucosinolate breakdown 

products are rare (Michajlovskij et al. 1969). In contrast, the involvement of specific 

metabolites, such as isothioc anates, in cancer protection has generated a large body y Zý- 

of work on their mechanisms of action whereas information is still sparse on other 

minor metabolites. 
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1.5.1. Isothiocyanates 

Most of the glucosinolates give rise to stable isothiocyanates. These are highly 

volatile aglucones and confer the typical pungent flavour to brassica vegetables 
(Fenwick et al. 1983). Plants are thought to produce these secondary compounds 

either as attractants or repellents of insects or pests (Fenwick et al. 1983). They also 

possess a range of medicinal properties and have been employed in the past as 

antibiotics for the treatments of infections of the respiratory and urinary tracts 
(Fenwick et al. 1983; Mennicke et al. 1988). 

The anti-cancer properties of isothiocyanates are multiple as they act at several stages 
in the carcinogenic process (Johnson et al. 1994). They act as blocking agents by 

enhancing the 'detoxification metabolism of carcinogenic compounds. This 

chernopreventive effect is currently the most documented area of research and several 

reviews describe 
' 
the mechanisms involved (Zhang & Talalay, 1994; Hecht, 1995; 

Verhoeven et al. 1997; Hecht, 1999). Briefly, the primary mechanism involved is the 

induction of phase H enzymes of the xenobiotic-metabolising system which is the 

enzymatic complex responsible for the biotransformation of carcinogens (Nugon- 

Baudon & 116ot, 1994). The enzymes of the phase II system are responsible for the 

conjugation of foreign compounds to hydrophilic groups so that they are excreted 

more readily, thereby decreasing their potentially harmful effects. From variation 

obtained in studies according to the chosen experimental models, the chemical 

carcino0en the considered isothiocyanate and the enzymes investigated, it is 

suspected that isothiocyanates act quite specifically (Zhang & Talalay, 1994; Hecht, 

1999). Several naturally occurring glucosinolates have been shown to have 

significant effect at this stage. They are isothiocyanates derived from aromatic 

glucosinolates or from methylsulphinylalkyl glucosinolates. Phenethyl isothiocyanate 

has a specific chernopreventive effect on tobacco-related nitrosamines and is 

therefore efficient against lung turnorigenesis (Chung, 1992). Benzyl isothiocyanate 
0 

is able to enhance detoxification enzymes specifically in digestive tissues and exerts 

a protective effect against polycyclic hydrocarbons and heterocyclic aromatic amines 

which may be found in food (Wattenberg, 1977; Sparnins et al. 1982; Kassie et al. 
1999). In very low concentrations (from 0.2 to 0.5 AM), 4-methylsulphinylbutyl 
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isothiocyanate (sulphoraphane), 7-methylsulphinylheptyl isothiocyanate and 8- 

methylsulphinyloctyl isothiocyanate, act as efficient inducers of hepatic detoxification 

enzymes (Zhang et al. 1992; Fahey et al. 1997; Faulkner et al. 1998; Rose et al. 
2000). Sulphoraphane also inhibits mammary tumour incidence in rats (Fahey et al. 
1997). The preventive effect of isothiocyanates was emphasised by studies where the 

administration of the isothiocyanates after exposure to the carcinogen did not result 
in a protective effect (Wattenberg, 1977; Hecht, 1999). Other mechanisms of cancer 

prevention by isothiocyanates include anti-proliferative effects on tumour cell growth 

and enhancement of apoptosis in tumour cell lines (Musk & Johnson, 1993; Pintao et 

al. 1995; Leoni et al. 1997; Kirlin et al. 1999). These effects were particularly 

convincing with allyl isothiocyanate (Johnson, 1993; Smith et al. 1998; Kirlin et al. 
1999; Lund et al. 2000; Musk & Smith et al. 2000). The action of isothiocyanates is 

however paradoxical as they can be cytotoxic and genotoxic for cells in vitro or at 
high doses in vivo (Bruggeman et al. 1986; Musk et al. 1995; Nastruzzi et al. 1996; 

Kassie et al. 1999). At normal levels of dietary exposure in humans, these effects 

were not demonstrated. On the contrary, an enhancement of DNA repair was 

observed (Verhagen et al. 1997; Kassie et al. 1999; Kassie et al. 1999). Studies have 

also reported that isothiocyanate-conjugates presented the same biological effects as 
free isothiocyanates although to a lesser extent (Adesida et al. 1996; Chung et al. 
1997). The isothiocyanate-conjugates may, however, act as transporting agents as 

only free isothiocyanates can cross the cell membrane (Bruggeman et al. 1986). 

1.5.2. Nitriles and other minor breakdown products 
The release of nitriles from glucosinolate hydrolysis has been reported for several 

cruciferous vegetables. The nitriles derived from glucosinolates are complex organic 

nitriles (Table 1.5) (Daxenbichler et al. 1977). Nitriles produced from the hydrolysis 

of aliphatic glucosinolates undergo a rearrangement into cyano-epithioalkanes. The 

formation of epithioalkanes is generally mediated by the epithiospecifier protein 
(Bones & Rossiter, 1996). The release of nitriles from glucosinolate hydrolysis has 

been correlated with the toxicity of glucosinolates in livestock. Preferential target 

organs of nitriles include the liver, kidneys and neural tissues (Duncan & Milne, 

1989). The mechanism of toxicity of nitriles released by glucosinolates has not been 

described but studies on homologous nitriles suggest. that the toxicity may be related 
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to the release of free cyanide (Willhite & Smith, 1981; Farooqui et al. 1993). 

Glutathione conjugation has also been implicated in their toxicity (Pilon et al. 1988). 

Although consumption of nitrile derivatives of glucosinolates may occur when 

cruciferous vegetables are ingested in their form in coleslaw, the toxicity observed in 

animals has never been observed in humans. Homologous nitriles have, however, 

been shown to be neurotoxic and to be inducers of carcinogen (Szabo & Reynolds, 

1975; Tanii et al. 1993). Nitriles derived from non-indolyl glucosinolates are poor 

candidates for cancer protection (Nastruzzi et al. 2000). 

Table 1.5: Examples of nitrile and epithionitrile products derived from glucosinolates 

Glucosinolate Nitriles Sources References 
Progoitrin 1-cyano-2-hydroxy-3-butene Swede Daxenbichler, 1967 

1-cyano-2-hydroxy-3,4-epithiobutane 

Sinigrin 

Gluconapin 

Glucotropaeolin 

1-cyano-2,3-epithiopropane 
allyl cyanide 

1-cyano-3,4-epithiobutane 

phenylacetonitrile 

Brassicaceae plants Cole, 1975 
Cabbage Daxenbichler, 1977 

Tumip Kirk & MacDonald, 
1974 

Garden cress Cole, 1976 

Gluconasturtiin 2-phenylpropionitrile Brassicaceae plants Cole, 1975 

Organic thiocyanates appeared to be released from the hydrolysis of three specific 

naturally occurring glucosinolates. These are sinigrin, glucotropeolin, and 

glucoerucin (Bones & Rossiter, 1996). The formation of these metabolites have been 

shown in a restricted number of edible plants such as those of the cress family 

(Fenwick et aL 1999). Thiocyanate formation may also result from the post- 

absorptive metabolism of nitrile derivatives (Pilon et aL 1988). Thiocyanates are 
I 

involved in thyroid disorders and goitre formation in a mechanism similar to goitrin 

(Duncan & Milne, 1989). 

1.5.3. Oxazolidinethione 

Oxazoli dinethi ones derive from the cyclisation of isothiocyanates possessing a 
hydroxyl group in the 2- position on the R-chain, such as progoitrin which gives rise 

to an oxazolidine-2-thione commonly known as goitrin. Goitrin has been held 

responsible for goitre in rats consuming rapeseed meal. The effects of goitrin in 

laboratory animals have been extensively studied and reviewed (Elfving, 1980; 
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Duncan & Milne, 1989; Nugon-Baudon & Rabot, 1994) but their relevance in 

humans is debated. Indeed, the appearance of goitre in humans is restricted to 

s ituations where cruciferous vegetable consumption is exceptionally high and iodine 

intake is low (Michajlovskij et al. 1969; Langer et al. 1971; McMillan et al. 1986). 

Figure 1.4: Breakdown products of the indolyl glucosinolate glucobrassicin 
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Indole-3-carbinol 

Indole-3-acetonitrile 

1.5.4, Breakdown products of indole glucosinolates 
Upon myrosinase hydrolysis, indole I glucosinolates also break down to 

isothiocyanates and nitriles. For instance glucobrassicin is broken down to indole-3- 

acetonitrile and 3-indolylmethyl isothiocyanate. Due to the presence of the indolyl 

radical, the isothiocyanate metabolite is further rearranged to a thiocyanate ion and 
indole-3-carbinol (Figure 1.4). The mechanism of breakdown and the biological 

effects of indole glucosinolates have been reviewed elsewhere (McDanell et al. 1988; 

Nugon-Baudon & Rabot, 1994). The involvement of indole-3-carbinol in the 0 
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chernopreventive effect of cruciferous vegetables has been debated. Its action differs 

from isothiocyanates as it modulates the effect of phase I enzymes of the xenobiotic- 

metabolising system but this process may both induce or inactivate the potential 

carcinogenic compounds (Vermorel & Evrard, 1987; McDanell et al. 1988; Zhang et 

al. 1992; Mang & Talalay, 1994). 

1.6. Disposition and metabolism of breakdown products of glucosinolates 
1.6.1. Isothiocyanates 

Due to their medical interest, the post-absorptive fate. of isothiocyanates has been 

investigated in several species. The use of radiolabelled isothiocyanates in rats and 

mice has clarified their metabolism (BrUsewitz et al. 1977; Ioannou et al. 1984; 

Bollard et al. 1997; Conaway et al. 1999). Isothiocyanates are rapidly absorbed by 

the intestinal tract. A peak of radioactivity in blood occurs approximately three hours 

after administration (Bollard et al. 1997; Conaway et al. 1999). Once absorbed by the 

intestinal tract, isothiocyanates. are detoxified, primarily in the liver, where they 

undergo conjugation with glutathione (BrUsewitz et al. 1977). They are subsequently 

excreted in the urine as their related N-acetylcysteine conjugates (N-acetyl-S-(N- 

alkylthiocarbamoyl)-L-cysteines) commonly referred to as mercapturic acids (Figure 

1.5). The mercapturic acid pathway'has been clearly identified as the major route of 

excretion in rats and humans (Spamins et al. 1982; Mennicke et al. 1988). Fifty to 

80% of the dose is recovered in the urine 
' 
within 24h according to the studied 

isothiocyanate. Isothiocyanates are distributed in the liver, kidneys, lungs and brain 

but they do not accumulate except in bladder tissues (Bollard et al. 1997). Minor 

excretory pathways are faeces (6 to 9%) and breath (0.1 to 3%). The entero-hepatic 

pathway is also a variable route of excretion according to the type of isothiocyanate 

considered and may increase the proportion of faccal excretion (Bollard et al. 1997; 

Conaway et al. 1999). Excretion of thiocyanate ion was also detected in the urine of 

rats after administration of allyl isothiocyanate (Bollard et al. 1997). 

In humans, studies on the metabolism of isothiocyanates report a metabolism similar 

to rats. The consumption of garden cress, rich in the benzyl isothiocyanate precursor 

result in the excretion of the corresponding mercapturic acid; with no other 
metabolites identified (Mennicke et al. 1988). After consumption of brown mustard 
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Figure 1.5: Detoxification pathway of isothiocyanates into mercapturic acids in rat and human. 
(Brusewitz et al, 1977). GLY = glycine, GLU = glutan* acid 

R- N= C= S+ HS-CH2 -CH- CO - GLY 
1 

NH - GLU 

Glutathione S-transferase 

R- N= C- S- CHf- CH- CO- GLY 
UI 
s NH - GLU 

y- Glutamyl transpeptidase 

R- N= C- S- CHf- CH- CO- GLY 

's NH2 

Cysteinyl transpeptidase 

R- N= C- 5- CHr- CH -CO _C02H- 
11 1 

s NH2 

N- Acetyl transferase 

R- N= C- S-- CH; r- CH -CO - C02H 
11 1 

s NH -CO - CH3 
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rich in allyl isothiocyanate, the excretion of the corresponding N-acetyl cysteine 

conjugate, allyl mercapturic acid was detected (Jiao et al. 1994). After consumption 

of watercress, which is rich in phenethyl glucosinolate, the phenethyl mercapturic 

acid was measured (Chung et al. 1992). A dose-dependent relationship exists 

between ingestion of isothiocyanates and excretion of the metabolite (Chung et al. 

1992; Jiao et al. 1994; Shapiro et al. 1998). The specificity of the mercapturic acid to 

its precursor and the dose-dependent excretion are interesting characteristics as they 

suggest the possibility of using the urinary product to trace isothiocyanate uptake. 
The conversion rate of isothiocyanate to mercapturic acid however may vary. The 

conversion rate of allyl isothiocyanate was estimated to be 53% (s. e. m. 4.05) in 

humans after ingestion of brown mustard (Jiao et al. 1994). In a feeding trial using 

horsefadish, the conversion rate of allyl isothiocyanate was estimated at 42% (s. e. m 

1.58) (Shapiro et al. 1998). 

Other urinary products exist in other species. In guinea-pigs and rabbits, 
isothiocyanates are excreted as cyclic mercaptopyruvates (G6rler et al. 1982). In 

mice, mercapturic acids and cyclic mercaptopyruvates co-exist but the latter is the 

predominant excretory product (Eklind et al. 1990; Bollard et al. 1997). In dogs, 

excretory products are mainly hippuric acids (Mennicke et al. 1987). Phenethylarnine 

in the plasma of dogs has also been used as a marker for phenethyt isothiocyanate 

. 
(Negrusz et al. 1998). Phenethylamine, however, is also the main metabolite of the 

amino acid phenylalanine and therefore is not suitable for quantitative studies of 

isothiocyanate metabolism (Negrusz et al. 1998). N-acetyl cysteine conjugates are 

easily quantified in urine by HPLC (Mennicke et al. 1987). In blood, the 

measurement of N-acetyl cysteine conjugates is difficult as they are thought to be 

bound to protein and blood cells (Conaway et al. 1999). 

1.6-2. Nitriles and other breakdown products 
Little is known of the metabolism of nitrile derivatives of glucosinolates. Their 

metabolic fate may only be assumed from findings with other nitrile compounds. 

Distribution of radioactive allyl cyanide showed a major excretion in the urine (41%), 

in expired air (34%) and in faeces (6%) (Farooqui et al. 1993). Investigation of the 

fate of aliphatic nitriles and unsaturated nitriles indicated that metabolic pathways 
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were complex and variable according to the saturation of the side-chain (Silver et al. 

1982; Farooqui et al. 1993; Markus & Kwon, 1994). Mercapturic acids related to 

unsaturated acrylonitrile, crotonitrile and cinnamonitrile have been detected in the 

urine of rats (Van Bladeren et al. 1981). A mercapturic acid derivative related to 1- 

cyano-3,4-epithiobutane, the breakdown product of butenyl glucosinolate, has been 

found in the urine of rats (Brocker et al. 1984). These findings suggest a possible 

route of excretion -for nitrile derivatives from glucosinolates although this has not 

thus far been investigated. 

The enzyrnic detoxification of nitrile compounds leads in some instances to the 

formation of cyanide which can be measured in blood (Silver et al. 1982; Westley, 

1988; Farooqui et al. 1993). Further metabolism of cyanide leads to formation of 

thiocyanate ion which is excreted in urine (Silver et al. 1982; Westley, 1988; 

Farooqui et al. 1993). Thiocyanate ion is therefore often used as marker of 

degradation of cyanogenic compounds (Strugala et al. 1995; Carlsson el al. 1999). 

The metabolism of nitriles can also be undertaken by bacteria, suggesting that, in 

vivo, breakdown of nitriles by microflora may occur before absorption (Carter et al. 
1980; Harris et al. 1987). 

In investigation of the fate of glucosinolates, measurement of thiocyanate ion can be 

confusing as a marker of nitrile formation. This is because thiocyanates excreted after 
ingestion of cruciferous plants may have several origins. They can be formed as 
direct hydrolysis products of glucosinolates by myrosinase or they can be the 

metabolic products of indolyl nitriles. 

Goitrin has been shown to be excreted mainly in urine of rats in its intact fon'n. A 

minor excretion of an unknown metabolite was also measured in facces (Elfving, 

1980). The detection of organic thiocyanates in biological fluids remains difficult. 

1.7. Fate of glucosinolates and measurement of bioavailability 

To understand the balance between the beneficial and detrimental effects of 

glucosinolates, it is important to determine the bioavailability of the metabolites 

exhibiting these effects. Bioavailability is generally defined as the proportion of 
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ingested compound reaching the general circulation and made available for tissue 

uptake (Fairweather-Tait, 1998). A knowledge of the b' ioavailability usually 

encompasses the measurement of three variables; namely the amount of ingested 

compound, the amount of compound taken up by the intestinal tract and the amount 

of compound arising in the general circulation (Figure 1.6). In the case of 

glucosinolate metabolites, there is still a gap of knowledge in the assessment of 
intestinal uptake and availability of the metabolites in blood. Numerous dietary and 
host-related variables may interfere at different levels in the metabolic process and 
modify the final bioavailability of glucosinolate metabolites (Figure 1.6). The 

administration of vegetables with labelled glucosinolates by humans would be an 
ideal way of investigation but for technical and ethical reasons this is not possible. 

Other approaches must, in consequence, be considered. In this regard, the use of 
urinary markers is a useful tool. A recent study reported a significant excretion of 

phenethyl mercapturic acid after ingestion of watercress, a vegetable rich in 

phenethyl glucosinolate (Getahun & Chung, 1999). The excretion represented 45% of 
the glucosinolate precursor when watercress was eaten raw and 4.1% when it was 

cooked. In a different study, the total amount of mercapturic acids excreted in urine 

was measured after consumption of different cruciferous vegetables (Shapiro et al. 
1998). In both studies, a wide inter-indivi dual variation was noted but was not 

accounted for. This variation was attributed to differences in the efficiency of the 
detoxification process. For this reason, the proportion of markers reported in these 
studies measured only the minimum amount of isothiocyanates available to the body. 
Although this demonstrates that the measurement of the end-products of metabolism 
is a good indicator of isothiocyanate production, the actual intestinal uptake of the 

metabolites is still unknown. As the key-factor influencing the bioavailability of 
isothiocyanates and nitriles is their release from glucosinolates, an accurate 
measurement of this step, independently of the variation occurring during the post- 

*absorptive phase, is paramount for assessing the overall availability. 
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Figure 1.6: Different stages in the pathway of glucosinolates and potential factors which may 
influence the bioavailability of their breakdown products 
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More recently, studies have applied the use of urinary markers to the specific 

measurement of isothiocyanate release in the digestive tract of rats. To achieve this, 

the variability in the post-absorptive fate of isothiocyanates was measured by the 

administration of an artificial isothiocyanate concurrently to the studied 

glucosinolate. The recovery of the artificial isothiocyanate allowed the normalisation 

of the excretion rate for each rat. By this means, the proportion of allyl isothiocyanate 

released from an oral single dose of sinigrin was found to be 13% in the absence of 

cruciferous vegetable in the diet and 41% when rats were fed a cauliflower diet 

(Duncan et al. 1997). In a study where rats harbouring a whole human mftroflora and 

rats harbouring a single human strain of Bacteroides thetaiotaomicron ingested 

sinigrin, the release of allyl isothiocyanate was 9% and 10% respectively (Elfoul, 

1999). This approach has the potential to be of value in investigating'metabolism of 

glucosinolate although existing data is limited and restricted to one isothiocyanate. 

The application of the method to a larger range of metabolites and to dietary 

glucosinolates would improve the understanding of glucosinolate hydrolysis in vivo. 

1.8. Conclusion 

Glucosinolates have an interesting status as micro-constituents since they lead either 

to beneficial or toxic products. Numerous factors can potentially affect the fate of 

glucosinolates. This literature review stresses the large variability in the glucosinolate 

distribution in plants. This may be reflected by a wide difference in glucosinolate 
intake in humans. The existence of several sources of hydrolysis and the crucial 
influence of environmental factors on the nature of released metabolites have been 

described but the significance of these results in vivo is unclear. Moreover, the extent 

to which glucosinolate hydrolysis products arise in the gut and are absorbed has not 

been adequately investigated until now. The improvements of methods of 
investigation allowing in vivo studies where conditions minýiic physiological 

situations would increase the possibilities of exploration and should permit a more 

comprehensive understanding of the digestive fate of glucosinolates. 

36 



CHAPTER 2: 

I EXPERIMENT I 

Assessment of the use of urinary mercapturic acids as markers of 

glucosinolate metabolite release in rats fed a cruciferous diet. 

2.1. Introduction 

Isothiocyanates are excreted as their mercapturic acid' derivatives in rats (Mennicke 

et al. 1987). These compounds are therefore potentially useful biomarkers for 

investigation of the metabolic fate of dietary glucosinolates. Mercapturic acids from 

allyl isothiocyanate, benzyl isothiocyanate and phenethyl isothiocyanate have already 

been used separately in previous metabolic studies (BrUsewitz et al. 1977; Chung et 

a 1.1992; Duncan et al. 1997). Information obtained from a single isothiocyanate may. 

be misleading since the extent of release of one particular glucosinolate derivative 

may not be representative of all glucosinolates present in the diet. It is, therefore, 

important to test a suite of isothiocyanates for which markers are available. 

Glucosinolates break down under the action of myrosinase to a number of hydrolysis 

products of which isothiocyanates are just one group. Nitriles are another important 

group of glucosinolate breakdown products (Fenwick & Heaney, 1983). To obtain a 

comprehensive understanding of glucosinolate hydrolysis, it is necessary to follow 

the formation of several glucosinolate metabolites (isothiocyanates and nitriles for 

instance) at the same time. As nitriles also undergo conjugation with glutathione 

(Van Bladeren et al. 1981), their recovery as mercapturic acids may also offer a 

potential tool for measuring nitrile release. 

Early studies investigating the digestive fate of glucosinolates have generally used 

purified glucosinolates given as a single dose to simulate dietary ingestion (Duncan 

et al. 1997; Elfoul et al. 1997). Variability in the pattern of metabolite release might 

occur depending on the mode of ingestion of glucosinolates. Indeed, the kinetics of 

metabolite release may be different depending on whether the glucosinolates are 

given as a pure single dose or are present in the diet. These latter compounds are 

I (N-acetyl-S-(N-alkylthiocarbamoyl)-L-cysteines) hereafter referred to as alk-yl mercapturic acids for 

clarity 
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likely to be absorbed at a much slower rate as they more gradually enter the digestive 

tract. 

The relative proportions of different hydrolysis products which arise is likely to 

depend on the chemical conditions under which hydrolysis occurs. The presence of 

metallic ions, such as ferrous ions, has been shown to enhance nitrile production by 

plant myrosinase at the expense of isothiocyanate formation in experiments in vitro 

(Uda et al. 1986). Whether a similar phenomenon occurs in the digestive tract is not 

known. It may be that the composition of the meal in which brassica vegetables are 

consumed will influence the profile of breakdown products and hence the ultimate 

physiological consequences of consuming these vegetables. 

Consequently, this experiment was designed to pursue three objectives: (1) to 

identify the mercapturic acid derivatives of isothiocyanates -and nitriles which could 

be subsequently used in studies in vivo using rats, (2) to determine the pattern of 

glucosinolate degradation when glucosinolates were given as a part of the diet, (3) to 

investigate whether intake of ferrous ions ffifluenced the profile of primary 

compounds released during glucosinolate hydrolysis. 

Following the conduct of the experiment, the metabolic fate of nitriles by the urinary 

route was revealed to be insufficiently characterised to attempt a quantification of 

their excretory products. Analysis of urinary nitrile mercapturic acids was therefore 

not attempted although inclusion of nitrile compounds in the experiments is fully 

described. 

2.2. Materials and methods 
2.2.1. Animals 

Twelve male, adult Fischer 344 rats, aged 9 weeks and harbouring a conventional 

flora (mean weight: 250g, s. e. m. 4.0) (INRA Breeding Unit, Jouy-en-Josas, France), 

were placed in metabolism cages (Iffa-Credo, Saint Germain sur I'Arbresle, France). 

Rats were randomly allocated to four groups of three animals (group A, B, C and D). 

Rats were weighed once a week throughout the experiment. Room temperature was 
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maintained at 21'C and lights were on a 12: 12h light: dark cycle. Food and water 

were offered ad libitum. 

2.2.2. Experimental design 

Rats in groups A and B acted as control groups (Control treatment) and received 

pure drinking water whereas rats in group C and D were supplemented with a haem 

form of iron in their drinking water (Iron treatment, Table 2.1). The experiment was 

conducted over 30 days divided into two periods. Period 1 involved the measurement 

of the recovery of isothiocyanates as their mercapturic acid derivatives when they 

were administered to rats as a single dose. It was also intended to measure the 

recovery of nitriles as their urinary products in Period 1. During this phase, rats 

received no glucosinolate in the diet and were administered either with a mixture of 

isothiocyanates (ITC dose) or nitriles (NITR dose) on two different occasions. 

Composition of both mixtures corresponded to the expected isothiocyanates and 

nitriles derived from sinigrin, benzyl glucosinolate, phenethyl glucosinolate and 

glucobrassicin (Figure 2.1). Groups A and C received the ITC dose first and 

subsequently the NITR dose whereas the sequence of administration was reversed in 

groups B and D (Table 2.1). 

Period 2 was designed to measure the proportional release of isothiocyanates and 

nitriles coming from dietary glucosinolates and from dosed sinigrin. Rats were 

therefore offered a diet containing various glucosinolaies but nominally free of 

sinigrin. Rats were administered on one occasion with a single oral dose of sinigrin 

(SIN dose). On a different occasion, the expected breakdown products of sinigrin, 

allyl isothiocyanate and allyl cyanide (ISO/CN dose), were directly administered to 

the animals to measure their recovery as urinary metabolites. As in Period 
_1, 

groups 

A and C received the SIN dose first and subsequently the ISO/CN dose whereas the 

,, sequence of administration was reversed for groups B and D (Table 2.1). 
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Table 2.1: Experimental design 

Order of administration of the dose 
Control treatment Iron treatment 

Group A Group B Group C Group D 
Period Diet (n=3) (n=3) (n=3) (n=3) 

Period I Standard ITC NITR ITC NITR 
NITR ITC NITR ITC 

Period 2 Cruciferous SIN ISOICN SIN ISOICN 
ISOICN SIN ISOICN SIN 

Standards to measure recovery rates were also included in the diets and dosing 

mixtures to allow inter-animal variation in recovery of isothiocyanates and nitriles to 

be quantified. Butyl isothiocyanate and acrylonitrile were given orally when rats were 

administered single oral doses. Propyl isothiocyanate and crotonitrile were included 
in the cruciferous diet. 

2.2.3. Treatments 

For the Iron treatment, a solution of sodium Fe. EDTA (Ferrostraneg, Parke-Davis, 

Courbevoie, France) was added to drinking water to a final concentration of 30.7 

ml. l" which corresponded to a concentrati6n of 0.2 gX' iron. A fresh solution was 

made up daily and given to animals in dark feeding bottles to avoid oxidation due to 

exposure to light. The amount of water drunk by the animals was measured daily. 

2.2.4. Diet 

A separate diet was offered in the two experimental periods. Both were semi- 

synthetic diets, the composition of which simulated a human diet. The control diet 

(Standard diet) was offered to animals during the first phase of the experiment and 

contained no glucosinolates (Table 2.2). In period 2 of the experiment, a vegetable- 

containing diet was given to rats (Cruciferous diet). This diet was based on a 

mixture of broccoli (Brassica oleracea var. italica), watercress (Nasturtium 

officinalis) and garden cress (assumed to be Lepidium sativum but later suspected of 
being Brassica napus from the glucosinolate profile) (Table 2.2). 
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Table 2.2 Composition of the diet (in g. kg" Dry Matter) 

Ingredients Standard 
Diet 

Cruciferous 
Casein 50.00 50.00 
Soya isolate (PPSOOE, Protein Technologies International) 120.00 84.00 
Broccoli 0.00 49.00 
Gardencress 0.00 61.00 
Watercress 0.00 74.00 

Saccharose 
Mashed potato 
Maize starch 

50.00 50.00 
290.00 290.00 
289.85 168.85 

Lard 30.00 30-00 
Maize oil 30.00 30-00 
Cholesterol 0.15 0.15 

Cellulose 60.00 33-00 
Mineral additive" 70.00 70.00 
Vitamin additive b 10.00 10.00 

Total 1000.00 1000.00 
Protein content 171.16 176.7 
Enerav W. ke"DM) 17514.00 17087.00 

'The mineral additive includes (g. kg"DM of diet): CaBP04 30.1, KCI 7.0, NaCI 7.0, MgO 0.735, 
MgS04 3.5, Fe203 0.21, FeS047H20 0.35, MnSO4H20 0.17, CuSO45H20 0.035, ZnSO4 71420 0.141, 
COS04 71420 2.8 *I 0'4and KI 5.6* 10-4. 
bThe vitamin additive includes (mg. kg*'DM of diet): thiamin 20, riboflavin 15, pantothenic acid 70, 

0 
pyridoxine 10, myoinositol 150, cyanocobalarnin 0.05, ascorbic acid 800, a-tocopherol 170, 
menadione 40, niacin 100, chofine 1360, folic acid 5, p-aminobenzoic acid 50, biotin 0.3, retinol 
19800 ITJ. kg"diet and cholecalciferol 2500 IU kg"'diet. 

The total amount of glucosinolates in the diet was 3.9 jimol/g dry matter of which 

phenethyl glucosinolate accounted for a proportion of 0.32 (Table 2.3). All three 

vegetables had undetectable concentrations of sinigrin. Vegetables were purchased 
from a local greengrocer (Knowles, Aberdeen, UK). They were freeze-dried and 

ground before inclusion in the diet. Artificial propyl isothiocyanate and crotonitrile 

were also added to the Cruciferous diet (1.25 ýtmol of each compound/g diet) as 

standards to allow correction of post-absorptive isothiocyanate and nitrile recovery. 
Diets were prepared in pelleted form and stored in double vacuum-bags which were 

sterilised by y irradiation at 45 kGy (U. A. R, Villemoisson, France). A period of 

seven days of habituation to the food was allowed at the beginning of the two feeding 

periods before the administration of the dosing mixtures. The daily food intake of 
individual rats was recorded by weighing feeding troughs before and after filling at 
the same time every day. 
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Table 2.3: Glucosinolate composition of the cruciferous vegetables and glucosinolate content of 
the Cruciferous diet. Data expressed in Arnol/g Dry Matter. 

Glucosinolate Broccoli Gardencress Watercress Cruciferous diet 
Glucoiberin 0.47 
Progoitrin 0.68 52.4 2.02 
Epiprogoitrin 1.80 0.20 
Sinigrin 
Glucoraphanin 2.08 
Gluconapoleiferin 4.56 0.16 
Sinalbin 0.38 
Gluconapin 1.26 
4-hydroxy glucobrassicin 0.42 1.00 0'. 05 
Glucobrassicanapin 1.20 
Glucotropaeolin 1.79 
Glucobrassicin 0.54 0.83 0.62 0.09 
Gluconasturtfine 1.15 24.6 1.27 
4-methoxy glucobrassicin 0.41 1.07 0.66 0.10 
Neoglucobrassicin 0.68 0.32 0.04 
Unknown 0.73 
Total 5.28 66.00 27.6 3.94 

2.2.5. Composition of dosing mixtures 
After light anaesthesia with diethyl ether, animals were administered the dosing 

mixtures by a flexible stomach tube. The ITC dose contained 10 /Amol each of allyl, 

benzyl, butyl, phenethyl and propyl isothiocyanate, diluted in 0.5 ml corn oil. The 

NITR dose contained 10 jimol each of acrylonitrile, allyl cyanide, crotonitrile and 

benzyl cyanide, diluted in 0.5 ml of corn oil, and 2 ILmol each of indole-3-acetonitrile 

and in dole- 3-carbinol, diluted in 0.1 ml of 500 ml. l" ethanol. The ITC dose was 

administered to rats on day 8 (groups A and Q and day 12 (groups B and D). The 

NITR dose was administered on day 9 (groups B and D) and day 11 (groups A and 

Q. 

The SIN dose contained 10 Amol sinigrin diluted in 0.5 ml water followed by 10 

Amol each of butyl isothiocyanate and acrylonitrile, diluted in 0.5 ml corn oil. The 

ISOICN dose consisted of 10 Amol each of allyl isothiocyanate, butyl isothiocyanate, 

acrylonitrile and allyl cyanide, diluted in 0.5 ml corn oil. The SIN dose was 

administered on day 23 (groups A and Q and day 27 (groups B and D) while the 

ISO/CN dose was administered on day 24 (groups B and D) and day 26 (groups A 

and Q. Glucosinolates and their breakdown products were flushed into the stomach 

using an equal volume of the appropriate vehicle. 
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Sinigrin was purchased from Sigma (Saint-Quentin-Fallavier, France). Allyl, propyl, 
butyl, benzyl and phenethyl isothiocyanate, acrylonitrile, crotonitrile, indole-3- 

acetonitrile and indole-3-carbinol were purchased from Aldrich (Saint-Quentin- 

Fallavier, France). 

2.2.6. Urine and facces collection 
Six hours before administering the dose, the metabolism cages were cleaned and the 

collection receptacles were emptied. Urine and faeces output were collected at the 

time of the dose administration and subsequently 6,24 and 48 hours after dosing. 

Sodium azide (final concentration: 0.2 ml. l", Sigma, France) was added to urine 

collection receptacles to prevent microbial growth. 

2.2.7. Analysis 

2.2.7. l. Synthesis of mercapturic acids 
Standards were required for the analysis of mercapturic acid derivatives of 

isothiocyanates (N-acetyl-S-(N-alkyl-thiocarbamoyl)-L-cysteines). The methyl, allyl, 

butyl, benzyl and phenethyl mercapturic acid derivatives were synthesised as their 

dicyclohexylarnine salts (Mennicke et al. 1983, Appendix 1). The purity was checked 

by HPLC. Melting points were 134-142'C for butyl mercapturic acid (quoted range: 

135-138*C), 145-153'C for propyl mercapturic acid and 149-1540C for phenethyl 

mercapturic acid. 

2.2.7.2. Quantification of mercapturic acids 
Urine samples were analysed for mercapturic acids by a BPLC method. Samples 

were prepared according to published methods (Duncan et al. 1997, Appendix 2). As 

mercapturic: acids are highly polar and labile molecules, they are not readily extracted 
from an aqueous medium. At alkaline pH, however, the mercapturic acid derivatives 

break down to release N-acetyl cysteine and the related isothiocyanate. The principle 

of the method consisted of forming isothiocyanates under alkaline conditions and 

converting them into the corresponding thioureas by reaction with n-butylamine 
(Figure 2.2). The thioureas were subsequently extracted in diethyl ether. The solvent 
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phase was finally evaporated and the thioureas resuspended in acetonitrile and 

analysed by BPLC. 

Figure 2.2: Conversion of lsothiocyanate to thiourea 

R-N=C=S+ CH3"(CH2)3-NH2 > S=C 
/ NH-R 

\ NH - (CH2)3-CH3 

In this experiment, 0.2 ml of urine was used. Methyl mercapturic acid (0.3 

AmolIsample) was used as an internal standard. The inclusion of an internal standard 
in the analytical procedure allowed correction for extraction and evaporative losses 

during sample preparation. Samples were analysed in duplicate. HPLC separation 

was carried out on a Gilson modular HPLC system (Gilson, Villiers le Bel, France) 

equipped with a 250 mm Lichrospher(D reversed phase C18 (Merck, Darmstadt, 

Germany) column. The mobile phase consisted of a gradient of distilled water and 

acetonitrile. The gradient was programmed as follows: acetonitrile 30 to 70% over 20 

min then 70 to 30% over 5 min. The flow rate was 1 ml. min". Eluted peaks were 

detected by UV absorbance at 240 nm (UV/VIS detector, model 118, Gilson, 

Villiers le Bel, France). Peaks areas were derived by integration using Gilson 715 

system controller software (Gilson, Villiers le Bel, France). Retention times were 5.7 

min for methyl mercapturic acid, 10.1 min for allyl mercapturic acid, 11.2 min for 

propyl mercapturic acid, 14.5 min for butyl mereapturic acid, 16.0 min for benzyl 

mercapturic acid and 17.8 min for phenethyl mercapturic acid. A standard solution 

containing 1.5 mM of each synthetic mercapturic acid was analysed identically to test 

samples and used to determine the detector response factor of studied mercapturic 

acids relative to methyl mercapturic acid. The individual response factors of 

standards relative to methyl mercapturic acid were 1.94 (s. e. m. 0.12) for allyl 
isothiocyanate, 2.13 (s. e. m. 0.15) for propyl isothiocyanate, 2.03 (s. e. m. 0.13) for 

butyl isothiocyanate, 2.02 (s. e. m. 0.11) for benzyl isothiocyanate and 2.07 (s. e. m. 
0.15) for phenethyl isothiocyanate. Mercapturic acid concentrations were calculated 
by comparing their peak areas to the peak area of methyl mercapturic acid in the test 

sample corrected by the response factor. Preliminary analysis carried out on urinary 
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outputs of rats, which had not ingested any glucosinolate or breakdown products, 

showed no excretion of mercapturic acids or co-eluting substances. 

2.2.8. Calculation and statistical analysis 

Proportional release of isothiocyanate from its parent glucosinolate was calculated as 

the ratio of the total amount of urinary mercapturic acid measured after 

administration of the parent glucosinolate to the estimated potential amount of 

mercapturic acid excreted if 100% of the parent glucosinolate had been converted to 
its related isothiocyanate. Isothiocyanate release was thus calculated: 

Proportion of isothiocyanate 
release from parent glucosinolate 

Actual amount of excreted mercapturic acid 

Potential amount of excreted mercapturic acid 
given 100% conversion 

To illustrate the method of calculating the potential amount of excreted mercapturic 

acid given 100% conversion, the example of allyl isothiocyanate release from a 

single oral dose of sinigrin is detailed here. The administration of allyl isothiocyanate 

and butyl isothiocyanate in the ISO/CN dose allowed the calculation of a ratio 

between the excretion of allyl mercapturic acid and butyl mercapturic acid. 

Amount of excreted allyl mercapturic acid LSO/CN dose 
Ratio ISO/CN dose :: 

Amount of excreted butyl mercapturic acid so/cN dose 

This ratio was relatively constant between rats and could, therefore, be used to 

calculate the potential excretion of allyl mercapturic acid using the excretion of butyl 

mercapturic acid after administration of the SIN dose: 

Putative excretion of allyl Ratio ISOICN dose * 
Amount of excreted butyl 

mercapturic acid SIN dose mercapturic acids SIN dose 
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The actual proportion of allyl isothiocyanate release from sinigrin was therefore: 

AlIXITnercal2turic acid qm A- - 
Proportion of allyl isothiocyanate Butyl mercapturic acid SIN dose 
release from sinigrin 

Ally) mercanturic flCid mn/mii- 
Butyl mercapturic acid ISOICN dose 

This formula assumes that the amounts of sinigrin, allyl isothiocyanate and butyl 

isothiocyanate included in the dosing mixture are equimolar. In the case of dietary 

glucosinolates, the amount of precursor ingested was variable and therefore the 

amount of excreted mercapturic acid was expressed as a proportion of the amount of 

precursor ingested. The principle of the calculation was similar to the above 

example. 

Analysis of variance was used to analyse factors influencing the excretion of 

mercapturic acids and the release of allyl isothiocyanate and phenethyl isothiocyanate 

from their respective precursors. Factors tested were iron supplementation, rat and 

dosing occasion. Analyses were performed using Genstat 5 (Lawes Agricultural 

Trust, 1989). 

2.3. Results 

2.3.1. Excretion of mercapturic acids arising from an artificial dose of 
isothiocyanates 

Mercapturic acids were found in the urine of rats for all the isothiocyanates 

administered during Period 1. A proportion of more than 0.95 of the total amount of 

mercapturic acids was excreted within 24h (Figure 2.3). The proportion of the 

isothiocyanates recovered as mercapturic acids varied according to the 

isothiocyanates considered (Table 2.4). Butyl mercapturic acid and phenethyl 

mercapturic acid had lower excretory rates than those of allyl mercapturic acid, 

propyl mercapturic acid and benzyl mercapturic acid. The Iron treatment did not 

significantly affect the recovery of isothiocyanates as their mercapturic acids (Figure 

2.3). 
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Figure 2.3 : Cumulative excretion of mercapturic acids over 48 hours following ITC dose 
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Table 2.4: Total amount of excreted mercapturic acid markers after administration of ITC dose 
(in, umol) 

Treatment 
Markers 

Control 
Mean s. e. m. 

Iron 
Mean s. e. m. 

Allyl mercapturic acid 7.32 0.322 6.67 0.397 
Propyl mercapturic acid 6.64 0.292 6.21 0.627 
Butyl mercapturic acid 4.52 0.407 4.31 0.372 
Benzyl mercapturic acid 7.17 0.608 6.78 0.526 
Phenethyl mercapturic acid 4.93 0.504 4.60 0.450 

Correlation analysis showed that the amounts of excretion of individual markers of 
isothiocyanates was highly correlated to each other (Table 2.5). This confirmed that 

artificial isothiocyanates, such as propyl isothiocyanate and butyl isothiocyanate, are 

good predictors of the level of excretion of other isothiocyanates arising in the 
digestive tract and could be used in Period 2 to correct for differences in excretion 

rates between animals. 

Table 2.5: Correlation matrix between the excretion of markers coming from Isothiocyanates 
given in ITC dose. 

Markers Allyl 
mercapturic 

acid 

Propyl 
mercapturic 

acid 

Butyl 
mercapturic 

acid 

Benzyl 
mercapturic 

acid 

Phenethyl 
mercapturic 

acid 
Allyl mercapturic acid 1.000 
Propyl mercapturic acid 0.858 1.000 
Butyl mercapturic acid 0.801 0.739 1.000 
Benzyl mercapturic acid 0.815 0.783 0.935 1.000 
Phenethyl_mercapturic acid 0.738 0.775 0.900 0.978 1.000 

2.3.2. Excretion of mercapturic acids arising from a single dose of sinigrin 

The proportion of allyl isothiocyanate and butyl isothiocyanate, recovered as their 

mercapturic acids after administering the dose ISOICNq were not significantly 

influenced by. Iron supplementation (Table 2.6). There was a close relationship 

between recovery of allyl and butyl mercapturic acids W=0.602, p<0.001, Figure 

2.4). The relative recovery of allyl mercapturic acid versus butyl mercapturic acid 

calculated from the ISO/CN dose was on average 1.37 (s. e. m. 0.098) and this value 

was not significantly influenced by Iron supplementation. Total excretion of allyl 

mercapturic acid after administration of the SIN dose was very low (Table 2.6). The 

proportion of sinigrin converted to allyl isothiocyanate was significantly higher in 
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Control rats (0.06 s. e. m. 0.011) than in I ro n- supplemented rats (0.02 s. e. m. 0.010, 

P<0.001). 

Table 2.6: Excretion of mercapturic acid after administration of ISO/CN and SIN dose (in ; Lmol) 

Dose ISO/CN SIN 
Treatment Control Iron Control Iron 
Markers Mean s. e. m. Mean s. e. m. Mean s. e. m. Mean s. e. m. 
Allyl mercapturic acid 6.57 0.629 6.30 0.634 0.57 0.158 0.12 0.101 
Butyl mercapturic acid 4.89 0.610 4.84 0.560 6.41 0.653 4.84 0.939 

2.3.3. Excretion of mercapturic acids arising from dietary glucosinolates 
While rats were consuming the Cruciferous diet (Period 2), only propyl mercapturic 

acid and phenethyl mercapturic acid were recovered in measurable amounts. The 

proportion of ingested propyl isothiocyanate excreted as mercapturic acid was only 
0.14 (s. e. m. 0.031) in Control animals and 0.12 (s. e. m. 0.044) in Iron treated rats 

(Table 2.7). T-his output of propyl mercapturic acid was approximately 5-fold lower 

than the expected excretion calculated on the basis of the excretory rate of propyl 

isothiocyanate found for the ITC dose during Period 1 (Table 2.7). Consequently, 

propyl isothiocyanate incorporated into the diet did not prove to be an effective 

recovery standard and butYl isothiocyanate was used instead. The relative recovery of 

phenethyl mercapturic acid to butyl mercapturic acid was estimated from the amount 

of phenethyl and butyl mercapturic acids excreted after administration of the ITC 

dose in period 1 as 1.08 (s. e. m. 0.031). This. value was used to estimate post- 

absorptive recovery of phenethyl isothiocyanate in Period 2. By this means, the 

proportion of phenethyl isothiocyanate release from dietary phenethyl glucosinolate 

was estimated to be 0.53 (s. e. m. 0.040) for Iron -supplemented animals and 0.60 

(s. e. m. 0.055) for Control animals and this difference was significant (Figure 2.5, 

P<0.05). 
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Figure 2.4: Relationship between excretion of allyl mercapturic acid and butyl mercapturic acid 
after adninistration of ISO/CN dose 
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Table 2.7: Amount of propyl mercapturic acid excreted over 48 hours during feeding of the 
Cruciferous diet 

Amount of ingested Predicted amount of Actual amount of 
propylisothiocyanate propyl mercapturic acid propyl mercapturic acid 

- 
(, Umol) in urine (, u mol) in urine (Amol) 

- Treatmeni Mean S. e. m. Mean s. e. m. Mean s. e. m. 
Control 36.3 0.88 26.6 1.10 6.1 0.87 
Iron 32.8 0.83 21.8 0.76 4.4 0.87 

2.3.4. Diet intake and iron intake 

Food intake was significantly lower when rats were fed the Cruciferous regimen in 

comparison to the Standard one. Food intake was not significantly influenced by 

iron supplementation in either Period 1 or Period 2 (Table 2.8). In Iron-treated rats, 

the amount of ingested Iron was significantly higher wi th the cruciferous diet than 

with the standard diet. 

2.4. Discussion 

This experiment was designed to evaluate urinary end-products which could be 

potentially used. as markers of the digestive metabolism of glucosinolates in further 

studies. The substantial excretion of urinary mercapturic acids, following 

administration of isothiocyanates at physiological rates, demonstrated their potential 

efficacy in the context of dietary studies where the rate of glucosinolate delivery to 

the gut is likely to be low. This experiment was the first attempt to measure the 

recovery of a range of isothiocyanates simultaneously. It confirmed previous findings 

where the recovery of allyl, benzyl and phenethyl isothiocyanate into mercapturic 
acids ranged from a proportion of 0.37 to 0.80 of the initial dose (Brusewitz et al. 
1977; Bollard, et A 1997; Conaway et aL 1999). These findings open up the 

possibility of conducting experiments where allyl isothiocyanate, benzyl 

isothiocyanate and phenethyl isothiocyanate can be quantified concurrently. 
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Mercapturic acids from isothiocyanates which are not common in plants, such as 

methyl isothiocyanate, propyl isothiocyanate and butyl isothiocyanate, could be used 
in animal experiments to quantify variations occurring during the post-absorptive 
biotransformation of isothiocyanates or as internal standards in the subsequent 

analysis of samples. 

Previous studies of isothiocyanate production from ingested glucosinolates have 

measured the appearance of mercapturic acids in the urine following ingestion of 
intact glucosinolates (Chung et al. 1992; Shapiro et al. 1998; Getahun & Chung, 

1999). The isothiocyanate production was not estimated precisely in these studies as 

the post-absorptive fate of isothiocyanates was not accounted for. To refine the 

estimates of isothiocyanate production from intact glucosinolates, a new approach 
has been adopted in the current experiment. On each occasion that intact 

glucosinolates were administered to animals, an additional isothiocyanate was given 

concurrently so that the conversion rate of isothiocyanates to mercapturic acids at the 

time of the measurement could be known. In the current experiment butyl 

isothiocyanate was used as the recovery standard. The relationship between excretion 

rate of butyl isothiocyanate and allyl isothiocyanate was used to predict the excretion 

rate of allyl isothiocyanate arising from hydrolysis of sinigrin'. A similar approach 

was used in estimating release of phenethyl isothiocyanate from phenethyl 

glucosinolate. The experiment has verified that relative recoveries of a range of 

isothiocyanates are consistent between animals and are not influenced by dietary 

manipulations. This increases the confidence with which estimates of isothiocyanate 

production from intact glucosinolates can be made. 

Urinary end-products of nitrile derivatives were not quantified in the current 

experiment. Although the formation of mercapturic acids from nitriles, such as 

crotonitrile and acrylonitrile, has been reported (Van Bladeren et al. 1981), the high 
ioxicity 

of these compounds did not allow an inclusion of significant quantities in the 

dose mixture and in the diet to clearly identify their urinary metabolites. Furthermore, 

the chemistry of aliphatic nitriles varies notably from that of conjugated nitriles. 
Urinary excretion may not be the main route of detoxification for nitrile derivatives. 
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The very low concentrations of benzyl glucosinolate and indole glucosinolates in the 

cruciferous diet did not allow a measurement of the release of their derivatives as 

planned in the initial experimental design. The vegetables included in the cruciferous 
diet were chosen on the basis of typical glucosinolate composition derived from the 

literature. Subsequent analysis of the glucosinolate content of the vegetables showed 

that the vegetables, sold as garden cress and used in this experiment, was probably 

not Lepidium sativum but was more likely to have been Brassica napus. Substantial 

amounts of glucobrassicin were present in the broccoli but the level of inclusion of 

broccoli was relatively low. There was a limit to how much vegetable could be 

incorporated into the diet without causing digestive problems in the experimental 

animals. The high fibre content of the diet may also explain the decrease in food 

intake when rats were fed the cruciferous diet in this experiment. These difficulties 

highlighted the necessity of using vegetables with a high content of the 

glucosinolates of interest and a relatively high inclusion rate to allow a significant 

supplementation of the animal diet while respecting the dietary balance and without 

impairing the normal food intake by rats. 

The low recovery of allyl isothiocyanate arising from the oral dose of sinigrin was 

surprising as previous studies have shown that a substantial proportion of allyl 

isothiocyanate was released from an oral dose of 50 [Lmol of sinigrin (Duncan et al. 

1997). The initial sinigrin solution was discarded and could not be analysed so a 

potential error in the actual amount of sinigrin ingested cannot be excluded. 

Alternatively, the -administration of only 10 jimol of sinigrin in this experiment may 

have resulted in an urinary concentration of allyl mercapturic acid which was at. the 

limits of detection in the chemical analysis. 

The high volatility and instability of propyl isothiocyanate may explain the low 

recovery of propyl mercapturic acid when rats were given the cruciferous diet 

containing propyl isothiocyariate. The justification for including , propyl 

isothiocyanate in the diet was to account for the gradual delivery of compounds to the 

digestive tracts in normal feeding circumstances. Other techniques of delivery of 

propyl isothiocyanate were also tested, such, as spraying an isothiocyanate solution on 
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the pellets given to rats but outcomes were not satisfactory as it was difficult to 

accurately control the amount of isothiocyanate actually ingested by the animals. 

The substantial proportion of phenethyl isothiocyanate arising from dietary phenethyl 

glucosinolate precursor showed that the isothiocyanate was the major hydrolysis 

products under the conditions of this experiment. The reduction in isothiocyanate 

release caused by iron supplementation agrees with studies in vitro in which the 

presence of ferrous ions in the hydrolysis medium tended to favour nitrile production 
(Tookey & Wolff, 1970; Stoewsand et al. 1986). Further analysis of urine samples 
for nitrile derivatives would be required to confirm this hypothesis. 

In conclusion this experiment has demonstrated the validity of new urinary 
biomarkers for the measurement of isothiocyanate bioavailability in the digestive 

tract when the precursors were given as part of the diet. This approach shows 

considerable potential for use in further experiments aimed at characterising the 

factors influencing glucosinolate hydrolysis. 
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CHAKER 3: 

EXPERIMENT 2 

Influence of plant and bacterial myrosinase activity on the metabolic fate of 
sinigrin and benzyl glucosinolate in the digestive tract of rats harbouring a 

human faccal flora 

3.1. Introduction 

The breakdown of glucosinolates is thought to occur at two stages following their 

consumption by mammals. The first stage occurs when plant cells are disrupted 

during ingestion of plant. This process exposes glucosinolates to plant myrosinase 

and hydrolysis occurs to yield several metabolites among which are the 

isothiocyanates (Cole, 1976). Depending on the activity of plant myrosinase, this 

hydrolysis may not be comprehensive and intact glucosinolates may reach the lower 

part of the intestinal tract. Bacteria possessing a myrosinase-like activity may then 

facilitate a further glucosinolate hydrolysis (Oginsky et al. 1965). Glucosinolates may 

thus -be hydrolysed by myrosinase of two different origins and the extent of their 

respective involvement in glucosinolate breakdown is unclear. 

When vegetables are eaten raw, plant myrosinase is still active in the diet. 

Glucosinolate hydrolysis may then be hypothesised to be mainly due to plant 

myrosinase and to a lesser extent to microbial myrosinase. Glucosinolates 

metabolites are then more likely to be absorbed in the upper part of the intestinal 

tract. On the other hand, when vegetables are processed and cooked, plant 

myrosinase is inactivated and it can be hypothesised that the contribution of 

microbial myrosinase to glucosinolate breakdown may increase. Glucosinolate 

metabolite absorption would then occur primarily in the large bowel. 

The objective of this experiment was to measure the respective influence of dietary 

myrosinase and microbial myrosinase activity on the release of allyl isothiocyanate 

and benzyl isothiocyanate in the digestive tract of rats. To study the role of microbial 

- myrosinase, two sets of animals differing in microbial status were used. One set 

harboured a whole human faccal. flora (Flora+ treatment) while a second set was 

germ-free (Flora- treatment). To investigate glucosinolate metabolism due to plant 
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myrosinase, two diets differing in myrosinase activity were given to rats. One diet 

contained the plant myrosinase in its native form (Alyro+ treatment) while the other 

diet contained the same cruciferous material treated to inactivate the plant 

myrosinase (Myro- treatment). Study of the interaction between plant and microbial 

myrosinase was achieved by alternately offering the two diets to Myro. and Myro+ 

rats. The proportion of sinigrin and benzyl glucosinolate broken down to their related 
isothiocyanates was measured using mercapturic acids as markers of metabolism. 

3.2. Materials and methods 

3.2.1. Animals 
Sixteen male adult Fischer 344 rats were used. They were born germ-free and bred in 

germ-free conditions at the INRA-UEPSD breeding unit. Rats were aged 6-9 weeks 

at the start of the experiment (mean weight: 163g s. e. m. 2.7). Animals were 

randomly allocated to Flora+ and Flora- treatments. 

3.2.2. Maintenance of animals 

To maintain their bacterial status, rats were kept in groups of four animals in four 

sterile isolators (La Calhene, Velizy, France). Isolators were sterilised prior to the 

experiment. Incoming air was filtered by paper filter (Sofiltra. Poeleman, La Garenne, 

Colombes, France). To avoid bacterial contamination, Flora+ and Flora- rats were 
housed in different isolators. A positive pressure (50 Pa) was maintained within the 

isolators. All items introdu ced into the isolators were sterilised beforehand (Elfoul, 

1999). Withdrawal of material and samples was achieved by transfer through a sash 

which was sterilised after each use or by transfer via a removable germ-free 

container. Within each isolator, rats were individually housed in metabolism cages 
(Iffa-Credo, Saint Gen-nain sur I'Arbresle, France). A sterilised diet and autoclaved 

ultra-filtered water were given ad libitum to rats. Rats were weighed once a week 

throughout the experiment. Room temperature was maintained at 21"C and lights 

were on a 12: 12h light: dark cycle. 
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3.2.3. Inoculation of human flora to animals 
Fresh faeces were obtained from a healthy male subject. Preparation of a faccal 

suspension was carried out in an anaerobic cabinet to preserve microbial div6rsity. 

The fresh faecal flora was homogenised in a Brain Heart Infusion rriedium (Elfoul, 

1999). At day 1, rats from Flora+ treatment were orally administered with 1.0 ml of 

a 10-2 dilution of the fresh faecal suspension. 

3.2.4. Control of bacterial status 
Throughout the duration of the experiment, the bacterial status of rats in each isolator 

was checked weekly. To verify the germ-free status of Flora. rats, fresh faeces were 

collected and diluted in LCY medium (Djouzi, 1995). A microscopic examination of 

the faecal suspension allowed an initial observation of the absence of bacterial 

contamination. A further investigation was carried out by inoculating the faecal 

suspension on culture media adapted to anaerobic bacteria (Djouzi, 1995). After 7 

days of incubation at 37"C, the absence of bacterial growth in the culture media 

confirmed the germ-free status of rats. The implantation of the human flora in Flora+ 

treated rats was verified by microscopic observation of a fresh faecal suspension. The 

diversity of bacteria was assessed as well as the level of colonisation. 

3.2.5. Experimental design 

The experiment was designed as a split plot experiment where the main plots were 
defined by the microbial status of the rats (Table 3.1). The sequence of offering the 

diet was allocated to two sub-plots. In one sub-plot, rats were given the Myro+ 

treatment first and the Myro- treatment second, whereas the sequence of diet 

treatments was reversed in the second sub-plot. Each period of feeding lasted three 

weeks. Each period began with a 9-day adaptation phase to allow rats to habituate to 

the food. On days 10 and 17, rats were administered a dose containing benzyl 

glucosinolate (BGLS dose) or a mixture of isothiocyanates (ITC dose). The sequence 

of administration of the dosing mixtures was randomised within each sub-plot of rats 
(Table 3.2). 
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Table 3.1 Experimental design 

Microbial status Germ-free Hurnan Flora 
Isolator ABCD 
number of rats 4444 
Sequence of diets 
Period 1 (3 weeks) Myro+ Myro- Myro+ M yro- 

_Period 
2 (3 weeks) Myro- Myro+ Mvro- Myro+ 

Table 3.2 Design of the administration of dose mixture to rats. Grey areas indicate period where 
the diet Myro+ was offered to the rats. White areas indicate periods when Myro- diet was offered. 

Isolator 
No of rats 

A 
22 

B 
22 

D 
22 

c 
2 2 

BGLS frc 
ITC BGLS 

BGLS ITC 
ITC BGLS 

Period I Day 10 BGLS ITC BGLS ITC 
Day 17 ITC BGLS ITC BGLS 

Period 2 Day 10 BGLS ITC 
Day 17 ITC BGL 

BGLS ITC 
ITC BGLS 

BGLS ITC 
- n"ll C, 

Table 3.3 Composition of the diets given to rats (in g. kg" Dry Matter) 

Diet 
Ingredients Myro + Myro- 
Casein 50.00 50-00 
Soya isolate (PP500E, Protein Technologies International) 90.00 90.00 
Brussels sprouts (myro+) 150.00 
Brussels sprouts (myro-) 150-00 

Saccharose 50.00 50-00 
Mashed potato 230-00 230.00 
Maize starch 229.85 229.85 

Lard 30.00 30.00 
Maize oil 30.00 30.00 
Cholesterol 0.15 0.15 

Cellulose 60.00 60.00 
Mineral additive a 70.00 70.00 
Vitamin additive b 10.00 10.00 

Total 1000.00 1000 
Protein content 157.00 160.70 
Energy W. kg- I DM) 16.83 17.08 

a The mineral additive includes (g. kg- I DM of diet): CaHP04 30.1, KCI 7.0, NaCl 7.0, MgO 0.735, 

MgS04 3.5, Fe201 0.21, FeS047H-, O 0.35, MnS04H,, O 0.17, CUS045H20 0.035, ZnS04 7H-, O 0.141, 

COS04 7H-, O 2.8*'1 0-4 and KI 5.6* 10-4 

The vitamin additive includes (mg. kg- I DM of diet): thiamin 20, riboflavin 15. pantothenic acid 70, 

pyridoxine 10, myoinositol 150, cyanocobalamin 0.05, ascorbic acid 800, (x-tocopherol 170, 

menadione 40, niacin 100, choline 1360, folic acid 5, p-aminobenzoic acid 50, biotin 0.3, retinol 
19800 IU. kg- I diet and cholecalciferol 2500 IU. kg- I diet. 
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3.2.6. Diet composition and preparation 
The Myro+ and Myro- diets were sen-ý-synthetic diets simulating a human-type diet 

(Table 3.3). They contained 150g. kg" freeze-dried Brussels sprouts (Brassica 

oleracea variety cyrus, Novartis Seeds, The Netherlands). Analysis of the 

glucosinolate content in Brussels sprouts showed that sinigrin accounted for a 

proportion of 0.54 of the 
' 
total amount of identified glucosinolates but benzyl 

glucosinolate was absent (Table 3.4). The total glucosinolate concentration in both 

diets was 3.6 Amol. g7l of which sinigrin accounted for 1.9 Amol. Diets were pelleted 

and packed in double-vacuum bags which were sterilised by y irradiation at 45 kGy 

(U. A. R, Villemoisson, France). The daily food intake of individual rats was recorded 
by weighing feeding troughs before and after filling at the same time every day. 

Table 3.4: Glucosinolate composition of Brussels sprouts (Brassica oleracea variety cyrus) 
(ILMOI. g*1 dry matter) 

Glucosinolate Brussels sprouts 
Glucoiberin 1.88 
Progoitrin 2.52 
Sinigrin 13.0 
Gluconapin 1.80 
4-OH Glucobrassicin 0.15 
Glucobrassicin 3.95 
4-OMe Glucobrassicin 0.77 
Total 24.1 

In the Myro- diet, freeze-dried Brussels sprouts were treated to inactive myrosinase 

prior to inclusion in the diet. Inactivation of myrosinase was achieved by soaking 100 

g ground, freeze-dried Brussels sprouts in 1 litre of 700 ml. l" boiling ethanol for 10 

min at 75"C. - Ethanol was subsequently evaporated at 60"C, using a rotary evaporator 

and aqueous residues were removed by oven-drying at 70'C. To check any losses of 

glucosinolates during the inactivation process, the glucosinolate content of the final 

batch was measured (method described below) and compared with the glucosinolate 

content. in the initial vegetable material. The activity of myrosinase in non-treated 
Brussels sprouts was not measured in the current experiment. 
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3.2.7. Measurement of isothiocyanate release 
The procedure used for the measurement of isothiocyanate release in the digestive 

tract was similar to that in Experiment 1. Briefly, animals were administered on one 

occasion with a dose containing the glucosinolate precursor (BGSL dose) and on 

another occasion the isothiocyanates expected to arise in the digestive tract after 
hydrolysis of the glucosinolate precursors (ITC dose). Butyl isothiocyanate was also 

given to animals on both dosing occasions as a recovery standard. The rationale for 

the use of a recovery standard was explained in Chapter 2. 

3.2.8. Composition of dosing mixtures 
The BGLS dose contained 25 jimol of benzyl glucosinolate (potassium salt, Merck, 

Darmstadt, Germany) diluted in 0.25 ml ultra-filtered water and sterilised by 

filtration (Millex-GS 0.22Am filter, Millipore, Saint-Quentin-en Yvelines, France). 

The butyl isothiocyanate solution contained 25 Amol of butyl isothiocyanate (Sigma, 

Saint- Quentin Fallavier, France), diluted in 0.25 ml com oil (Sigma). The ITC dose 

contained 25 Amol of allyl isothiocyanate, 25 jimol of benzyl isothiocyanate and 25 

jimol of butyl isothiocyanate (Sigma), diluted in 0.25 mi corn oil. Solutions 

containing isothiocyanates were prepared in sealed-cap vials and autoclaved (20 min, 

120T). Vials of ultra-filtered water and pure corn oil were also prepared and 

autoclaved for use as flushing solutions. The doses were administered orally using a 

sterile stainless-steel stomach tube to rats anaesthetised with sterile ether. 

3.2.9. Sample collection 
The day before each dosing, metabolism cages were cleaned. Urine and faeces were 

subsequently collected at t= 0,6,24,48,72,120 and . 144h after administration of 

dosing mixtures. To avoid bacterial degradation of uri. nary markers, sodium azide 
(final concentration 0.2 ml. l*', Sigma) was'added to the urine collection receptacles 

. of Flora+ rats. No sodium azide was added to Flora. rats as no bacterial degradation 

was considered occur. Furthermore, preliminary tests showed that sodium azide did 

not interfere with the analyses. 
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3.3. Analysis 

3.3.1. Analysis of mercapturic acids 

Analysis of mercapturic acids in urine was conducted as described in Chapter 2. A 

solution of 1.5 mM propyl mercapturic acid (N-acetyl-S-(N-propylthiocarbomoyl)-L- 

cysteine) was used as an intemal standard. Preliminary analysis showed that a 

proportion of 0.95 of mercapturic acids were excreted in 48h. Consequently urine 

samples collected at t=72,120,144h were bulked in proportion to their volume prior 

to analysis. 

3.3.2. Desulpho-glucosinolate analysis 
Faeces were freeze-dried and ground. Two hundred micro-litres of 1.0 mM phenethyl 

glucosinolate internal standard was added to 0.2 g of ground facces. Samples were 

analysed in duplicate. Extraction of glucosinolates was carried out twice using 700 

ml. l" boiling methanol to obtain a final volume of 5 ml extract. Extracts were 

subsequently enzymatically desulphated (Minchinton et al. 1982). Separation of 

desulpho-glucosinolates was carried out on a Gilson modular HPLC system (Gilson, 

Villiers le Bel, France) equipped with a 250 mm Lichrospher- reversed phase C18 

(Merck, Darmstadt, Germany) column. The mobile phase consisted of a gradient of 

distilled water and 200 ml. l" acetonitrile programmed as previously described in the 

literature (Spinks, et al. 1984). Eluted peaks were detected by LTV absorbance at 228 

nm (UV/VIS detector, model 118, Gilson, Villiers le Bel, France). Peaks areas were 

derived by integration using Gilson 715 system controller software (Gilson, Villiers 

le Bel, France). Retention times were 7.9 min (s. e. m. 0.019) for desulpho-sini grin, 

22.5 min (s. e. m. 0.056) for desulpho-benzyl glucosinolate and 31.6 min (s. e. m. 

0.072) for desulpho-phenethyl glucosinolate. Equimolar amounts of 1.0 MM 

synthetic sinigrin, benzyl glucosinolate and phenethyl glucosinolate, which had been 

desulphated identically to test samples, were used to determine the detector response 

factors of measured desulpho-glucosinolates relative to the internal standard. The 

average response factors calculated for 10 standard samples were respectively 1.53 

(s. e. m. 0.067) for desulph o-sini grin and 1.85 (s. e. m. 0.076) for desulpho-benzyl 

glucosinolate. Concentrations of desulphosi ni grin and desulpho-benzyl glucosinolate 
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in samples were calculated by comparing their respective peak areas to the internal 

standard peak area in the test sample corrected by their respective response factor. 

3.3.3. Calculations and statistical analysis 

The amount of mercapturic acids in the urine was calculated in a similar fashion to 

Experiment 1. The actual amount of intact glucosinolates excreted in the faeces of 

rats was obtained by multiplying glucosinolate concentrations by the dry weight of 

total faeces output. For dietary intake data, daily values were averaged over the 16 

days after the adaptation period for each feeding period. Analysis of variance was 

performed using Genstat 5 (Lawes Agricultural Trust, 1989). To account for the split- 

plot design of the experiment, a block structure was adopted in the analysis. Isolators, 

rats within isolator, feeding period within isolator and feeding period within 
individual rat were the terms used in the block structure. The effects of feeding 

period and day of dose administration were considered as treatments as their 

allocation was balanced in the experimental design. The effect of diet, types of dose 

mixture and microbial status and their interactions were also analysed as treatment 

effects. With such a structure, the effect of bacterial status was analysed between 

isolators. The effects of feeding period and diet were studied between feeding periods 

within isolator. The effects of day of administration and dose mixture were analysed 
between periods within individual rats (Appendix 3). 

3.4. Results 

3.4.1. Excretion of mercapturic acids 
3.4.1.1. Excretion of benzyl and butyl mercapturic acids after ITC dose 

The proportion of isothiocyanates recovered as their mercapturic acids after 

administration of 25 /. tmol of isothiocyanates was 0.41 (s. e. m. 0.018) for butyl 

isothiocyanate and 0.60 (s. e. m. 0.041) for benzyl isothiocyanate (Table 3.5). The 

excretion of benzyl mercapturic acid and butyl mercapturic acid was highly 

correlated (p<0.001, see Figure 3.1) suggesting that concurrently administered butyl 

mercapturic acid could be used as a good predictor of the recovery of benzyl 

isothiocyanate as its mercapturic acid. 
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Figure 3.1: Relationship between cumulative excretion of butyl mercapturic acid and benzyl 
mercapturic acid after administration of ITC dose. 
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Regression equation: 
Benzyl mercapturic acid = 1.36 Butyl mercapturic acid + 0.67 r2= 0.847 

Table 3.5: Cumulative excretion of mercapturic acids over 144h after administration of 25 Amol 
of precursor isothiocyanate: NS = Non significant at p<0.05. 

Excretion of mercapturic acid 
Bacterial status 

Precursor Diet Flora+ Flora- Mean SED Level of significance 
Benzyl isothiocyanate Myro+ 15.6 18.6 17.1 0.68 NS 

Myro- 12.2 14.1 13.2 
Mean 13.9 16.4 
SED 3.51 

Level of significance NS 

Butyl isothiocyanate Myro+ 11.0 12.6 11.8 1.20 NS 
Myro- 9.1 10.1 9.3 
Mean 9.8 11.4 
SED 2.14 

Level of significance NS 
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The mean excretion ratio of benzyl mercapturic acid to butyl mercapturic acid was 
1.42 (s. e. m. 0.03 1). Bacterial status, type of diet and sequence of offering the diet had 

no significant influence on this ratio. 

3.4.1.2. Proportion of benzyl isothiocyanate release from benzyl 

glucosinolate after BGSL dose 

Diet had a significant influence on the release of benzyl isothiocyanate with higher 

estimates when rats were consuming the Myro+ diet than when the Myro- diet was 

offered (p<0.05)(Table 3.6). The proportion of benzyl isothiocyanate release was 
higher in germ-free rats (Flora. ) than in rats harbouring a microflora (Flora+), 

(p<0.05) (Table 3.6), indicating a negative effect of the presence of the microflora on 
the amount of benzyl isothiocyanate available for intestinal uptake. The excretion -of 
mercapturic acid reached a plateau at 48h (Figure 3.2). The proportion of mercapturic 

acids detected beyond 48 hours contributed for less than 0.2 of the total excretion. 
The sequence of offering the diet had no significant effect but rats administered with 

the BGSL dose at day 10 had a significantly higher isothiocyanate release than rats 
dosed at day 17 (p<0.05). 

Table 3.6: Proportion of benzyl isothiocyanate released in the digestive tract of rats after 
administration of 25 Amol of benzyl glucosinolate. 

Proportion of 
benzy] isothiocyanate release 

Bacterial status 
Precursor Diet Flora+ Flora- Mean SED Level of significance 
Benzyl glucosinolate Myro+ 0.50 0.80 0.65 0.0486 P<0.05, Myro- 0.05 0.04 0.05 

Mean 0.27 0.42 
SED 0.0294 

Level of significance p<0.05 
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3.4.1.3. Excretion of allyl mercapturic acids from ITC dose and BGSL 
The background level of allyl mercapturic acid excretion was measured from the 

urinary outputs following the BGSL dose (Table 3.7). The excretion of allyl 

mercapturic: acid was increased after the ITC dose due to the presence of allyl 

isothiocyanatc in the dose (Table 3.7). After both doses, the excretion of allyl 

, mercapturic acid was significantly higher when rats were fed the Myro+ diet than 

when they were fed Myro- diet (p<0.05) (Table 3.7) but it was not significantly 
different in the presence or absence of microbial activity. 

Table 3.7: Cumulative excretion of allyl mercapturic acids over 144h: with an oral 
administration of 25 pmol allyl isothiocyanate (ITC dose) or without administration of allyl 
isothiocyanate (BGSL dose). NS = Non significant at p<0.05. 

Excretion of allyl mercapturic acid 
Bacterial status , Dose Diet Flora+ Flora- Mean SED Level of significance 

ITC Myro+ 67.2 58.9 63.3 2.61 p<0.05 Myro- 16.4 13.2 14.7 
Mean 43.5 34.5 
SED 5.98 

Level of significance NS 

BGLS Myro+ 31.8 42.4 37.1 1.83 p<0.05 Myro- 4.72 0.84 2.79 
Mean 18.3- 21.6 
SED 2.86 

Level of significance NS 

3.4.2. Proportion of glucosinolate excreted in facces 

Faecal excretion of non-digested glucosinolate was measured after administration of 

the BGSL dose. Intact glucosinolates were only detectable in the faeces of germ-free 

rats (Flora. ). The absence of a measurable concentration of glucosinolates in the 

faeces of rats harbouring a human flora (Flora+) indicated a strong influence of the 

presence of the microflora. When plant myrosinase only was active (Flora-9 Myro+), 

the proportion of benzyl glucosinolate recovered in the faeces was 0.04 (s. e. m 0.0 11). 

The proportion was less than 0.01 for sinigrin. In the total absence of myrosinase 

activity (Flora-, Myro-), the faccal recovery was 0.34 (s. e. m. 0.072) for benzyl 

glucosinolate and 0.07 (s. e. m. 0.018) for sinigrin. Sinigrin was excreted continuously 
'whereas excretion of benzyl glucosinolate reached a peak between 6 and 24 hours 
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after administration of the oral dose. At t= 72h, the cumulative amount of benzyl 

glucosinolate excreted when the Myro- was offered was 0.86 (s. e. m 0.023) of the 

total excretion but traces were still detectable after 144h (Figure 3.3). 

Figure 3.3: Excretion of sinigrin and benzyl glucosinolate in facces of germ-free rats (Flora-) 
over 144h after administration of BGSL dose. * sinigrin, N benzy] glucosinolate, _ 
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3.4.3. Live weight 
Rats gained on average 18.8 g (s. e. m. 1.53) per week and this rate of gain was not 

significantly influenced by microbial status. 

3.4.4. Daily food intake and daily glucosinolate intake of rats 
Mean food intake by rats was 16.9 g (s. e. m. 0.34) of pellets per day. Flora- rats ate 

significantly more than Flora+ rats (p<0.01). The amount of Myro+ diet ingested by 

rats was significantly higher than that of the Myro. diet (p<0.005). Food intake was 

not affected by the sequence of offering the diet. The average intake of sinigrin was 

33.1 Amol per day (s. e. m. 0.66). 

69 

0 24 48 72 96 120 144 



3.5. Discussion 

A fuller understanding of the cancer. -protective effects of brassica vegetables requires 

more information about the fate of glucosinolates from their synthesis in plant cells 

to their absorption from the gut as breakdown products and delivery to tissues. 

Studies on the effect of cooking vegetables have provided a better appreciation of the 

fate of glucosinolates during food preparation (de Vos & Blijleven, 1988). The fate 

of glucosinolates following ingestion is much less well understood. Plant myrosinase 
is likely to play a role in glucosinolate hydrolysis following ingestion of brassica 

vegetables by humans. If vegetables are cooked prior to ingestion, however, intact 

glucosinolates may reach the lower gut. Upon microbial hydrolysis (Elfoul, 1999), 

they may exhibit a protective effect on the colorectal epithelium (Lund et al. 2000) 

where the occurrence of cancer is high. This experiment aimed to improve 

understanding of the relative contribution of plant myrosinase and the myrosinase 

activity of the microflora. 

Preparation of the diets was conducted in such a way as to produce diets which 

differed only in their activity of plant myrosinase but where an equivalent content of 

glucosinolates was preserved. The Myro- diet thus represented a cooked vegetable 

whereas the Myro+ diet was the equivalent of ingesting the vegetable in its raw 

form. Although Brussels sprouts are not consumed raw in human diets, they offered a 

good model for this metabolism experiment as various biological effects such as 

colon6cyte apoptosis have been studied using the same variety of vegetables (Smith 

et al. 2000). 

The major difference in the production of benzyl isothiocyanate after ingestion of raw 

and cooked diet confirmed that the activity of plant enzyme plays a major role on the 

subsequent fate of ingested glucosinolates. The release of isothiocyanate by plant 

myrosinase, in vitro, has been well documented at pH greater than 6.0 (Gil & 

MacLeod, 1980). The substantial release of benzyl isothiocyanate when rats were fed 

raw Brussels sprouts confirmed that, in vivo, conditions of hydrolysis are favourable 

for isothiocyanate production after disruption of plant cells. When plant myrosinase 

only was active, the proportion of dosed benzyl glucosinolate accounted for by 

isothiocyanate release and faecal excretion was around 0.84. Although other 
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breakdown products, such as nitriles, were not measured in the current experiment, 
their release in the digestive tract were probably limited in the conditions of this 

experiment. This observation promotes support for earlier findings in which the 

occurrence of toxic symptoms after ingestion of cruciferous vegetables was low 

(McMilia'n et al. 1986). 

The presence of the intestinal microflora led to total degradation of glucosinolates as 
demonstrated by the essentially zero concentrations of intact glucosinolates in the 
faeces. This result confirmed the ability of the human microflora to degrade 

glucosinolates. Several studies have shown a similar effect following incubations of 
human faeces in vitro and using single strains of bacteria (Rabot et al. 1995; Getahun 

& Chung, 1999). The breakdown products resulting from the microbial hydrolysis in 

vivo, however, have not been well characterised. In recent studies, the main microbial 

metabolite detected in vivo following gavage with sinigrin was allyl isothiocyanate. A 

proportion of approximately 0.10 of sinigrin was converted to allyl isothiocyanate in 

rats harbouring a human faecal flora, this proportion was 0.15 for rats harbouring a 

single strain of Bacteroides thetalotaomicron (Elfoul, 1999). Surprisingly, in the 

current study, the release of benzyl isothiocyanate by microbial myrosinase was 

relatively low. Moreover, the effect of plant myrosinase was not enhanced by the 

myrosinase activity of the microflora. Indeed, the presence of an active n-ftroflora 

seemed to reduce the excretion of benzyl mercapturic acid. These observations 

suggested that the mi croflora may be able to catalyse both the release of 
isothiocyanates and their further breakdown to other final products resulting in 

minimal absorption by the distal digestive tract. When both sources of myrosinase 

were active, however, the proportion of benzyl glucosinolate broken down to benzyl 

isothiocyanate found in the current studies (0.50) was'similar to previous findings on 

allyl isothiocyanate release from sinigrin in conventional rats (0.41) (Duncan et al. 
1997). 

Unexpectedly, the excretion of glucosinolates was not complete in the absence of any 

sources of myrosinase. Only a proportion of 0.34 of benzyl glucosinolate was 

excreted in faeces. In a parallel experiment, the faecal recovery of sinigrin was in the 

same order of magnitude (0.28) (Elfoul, 1999). These results suggest a possible 
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metabolism other than enzymatic hydrolysis for the proportion of glucosinolatcs 

(0.66 of administered benzyl glucosinolate) which are not accounted for. Among the 

possible metabolic pathways are the desulphatation of glucosinolates by the intestinal 

desulphatase enzymes or the intestinal absorption , of intact glucosinolates. The 

absence of desulphated glucosinolates in faeces of germ-free or human-flora rats 

given an oral dose of sinigrin rules out an endogenous desulphatation of 

glucosinolates (Elfoul, 1999). On the other hand, a small excretion of intact sinigrin 

(0.03 of the initial dose in germ-free rats and 0.04 in animals associated with a 

human flora) has been measured in the urine of rats administered an oral dose of 

sinigrin, confirming the potential absorption of intact glucosinolates by the intestinal 

wall (Elfoul, 1999). 

The proportion of allyl isothiocyanate released from dietary sinigrin could not be 

measured in the current study. Due to the background excretion of allyl mercapturic 

acid, there was not a strong relationship between the excretion of butyl isothiocyanate 

and allyl isothiocyanate administered in ITC dose and hence butyl isothiocyanate 

could not be used to normalise excretion rate of sinigrin. Limiting the background 

excretion could improve the estimates if animals received the food as a discrete meal 

instead of ad libitum. Nevertheless, the level of excretion of allyl mercapturic acid in 

urine and intact sinigrin in faeces supported the estimates found with benzyl 

glucosinolate. 

The findings indicated that, in the conditions defined for this experiment, the activity 

of plant myrosinase in vivo was the major factor of influence on the production of 

isothiocyanates. Myrosinase from raw vegetables induced a substantial and rapid 

release of isothiocyanates, probably in the upper digestive tract. In contrast, after 

ingestion of cooked vegetables, the isothiocyanates resulting from microbial 

hydrolysis tended to be released to a lesser extent and this was probably due to the 

ability of the microflora. to utilise the newly formed isothiocyanates. Consequently, 

methods of preparation of vegetables may have a determinant role in the cancer- 

protective effect generally associated with brassica vegetable consumption. 
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CHAPTER 4: 

EXPERIMENT 3 

Measurement of isothiocyanate release 
in the intestinal tract of healthy human volunteers. 

1. Introduction 

Glucosinolates may be hydrolysed during and following ingestion by humans to 

release a range of hydrolysis products. Among the, breakdown products, the extent of 
formation of isothiocyanates in the human digestive tract is of particular interest. 

Studies on the effects of isothiocyanates in rodents in vivo (Stoner et al. 1998; 

-ýF 
Wattenberg, 1977) and on human tumour cell lines in vitro (Musk & Johnson, 1993) 
have not yet fully established whether the rates of isothiocyanate production in the 
digestive tract is of sufficient magnitude to significantly reduce cancer risks. Indeed, 

information on the release of the isothiocyanates in the digestive tract of humans is 

still crude. Isothiocyanate release is likely to be highly dependent on the activity of 
myrosinase in the vegetable material (Getahun & Chung, 1999). Plant myrosinase, 
however, can be inactivated by heat when vegetables are cooked, thus modifying the 

extent of isothiocyanate release. Moreover, the intestinal microflora, may influence 

the proportion of isothiocyanates available for intestinal absorption (Experiment 2). 
Consequently, the pattern of isothiocyanate release in humans may vary according to 
individual food habits and to the enzymatic capacity of the intestinal microflora. 

The aim of this study was to measure the actual amount of isothiocyanates arising in 

the digestive tract of healthy human volunteers, in situations similar to normal 
feeding circumstances. White cabbage, a vegetable commonly consumed in both raw 

and cooked form, is rich in sinigrin (Sang et al. 1984). The conversion of sinigrin to 
allyl isothiocyanate in vivo was therefore compared after consumption of raw and 

cooked cabbage by volunteers. 

Intestinal release of isothiocyanates was measured using mercapturic acids of 
isothiocyanates as markers of metabolism, The method developed for rats 
(Experiment 1) was adapted for humans. In human investigations, natural sources of 
readily available isothiocyanates had to be used to measure the post-absorptive 
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conversion of isothiocyanates to mercapturic acids. Mustard contains high 

concentrations of allyl isothiocyanate and no sinigrin (Sang et al. 1984). The 

recovery of allyl isothiocyanate 'to its mercapturic acid was therefore measured 
following ingestion of mustard. Watercress is a good source of phenethyl 

glucosinolate and is essentially free of sinigrin (MacLeod & Islam, 1975). An 

autolysate of watercress provided a source of phenethyl isothiocyanate (Getahun & 

Chung, 1999; MacLeod & Islam, 1975). Watercress autolysate was thus offered to 

volunteers concurrently to mustard or raw or cooked cabbage to correct for variation 
in excretion rate of mercapturic acids. 

4.2. Materials and methods 
4.2.1. Experimental design - 

The experiment involved offering three defined meals to each volunteer in sequence 
(Figure 4.1). The defined meals included raw cabbage (Treat COL), cooked cabbage 

(Treat COOK) or mustard (Treat MUST). Meals were separated by periods of 48 

hours to allow complete excretion of - mercapturic acids. Volunteers were ranked 

according to their habitual consumption of vegetables (Appendix 4b) and then 

divided into two blocks of six on the basis of this consumption (high vegetable 

consumers and low vegetable consumers). Within each block, treatments were 

allocated to meal-times in two 30 Latin Squares with rows comprising meal-times 

and columns comprising volunteers (Table 4.1). In this way the order of offering 

meals to subjects was balanced within blocks. 

4.2.2. Volunteers 

Twelve non-smoking, male volunteers aged 25-39 years were recruited. The average 

body mass index of all volunteers was 23 (s. e. m= 0.59). Prior to the study, volunteers 

were asked to complete a questionnaire to assess their general health and their 

habitual food intake (Appendix 4a). Volunteers signed a consent form before taking 

part in the tnal*. Ethical agreement for the study was obtained from the Grampian 

Research Ethics Committee. 
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Figure 4.1: Experiment timetable 

Day I Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 

Avoidance of cruciferous vegetables other than experimental meals 
Food diary 

Urine Urine Urine 

collection collection collection 

IF IF IF 

MEAL I MEAL 2 MEAL 3 

Table 4.1: Experimental design: the allocation of volunteers to blocks was based on the results of a 
food questionnaire on habitual vegetable consumption. C 

Low/normal vegetable consumers 
12 3 4 5 6 

Meal I CAB CAB COL MUST COL MUST 
Meal 2 MUST COL CAB COL MUST CAB 
Meal 3 COL MUST MUST CAB CAB COL 

Normal/high ve getable consumers 
7 8 9 10 11 12 

Meal I CAB MUST MUST COL CAB COL 
Meal 2 MUST CAB COL CAB COL MUST 
Meal 3 COL COL CAB MUST MUST CAB 
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Volunteers were asked to avoid cruciferous vegetables in their diet for two days prior 

to the study and throughout the period of experiment. They were also asked to keep a 

food diary, in order to check the observance of the diet. 

4.2.3. Vegetables 

On three different occasions (t= 0,48 and 96h) volunteers were given a lunch 

including one of the three cruciferous foods. Meal MUST included 50 ml watercress 

suspension and 10 g mustard. Meal COL included 50 ml watercress suspension and 

150g white cabbage coleslaw. Finally, meal CAB included 50 ml watercress 

suspension and 150g cooked white cabbage. The Kilor variety of white cabbage 

(Brassica oleracea capitata) was used as it contains a high concentrations of sinigrin. 

Watercress (Nasturtium officinalis, John Hurd, Warminster, UK) and ready-made 

mustard (Colman, Norwich, UK) were purchased from a wholesale grocer. White 

cabbage was obtained from Novartis Seeds Ltd, Lancashire, England. In addition to 

the experimental foods, volunteers were also served an accompaning course 

composed of chicken fricassee and rice and a sweet course composed of fruit salad 

and ice cream. The accompaniments were identical for all meals served. 

4.2.4. Preparation of experimental meal 
4.2.4. I. Watercress suspension 

Watercress was freeze-dried immediately after purchase and ground to a powder 

using a coffee mill. The* watercress suspensions were made up by re-suspending 2.0 

g of watercress powder in 50 ml water. To improve palatability, 1.2 g of sweetener 

(Canderele, Monsanto p1c, England, UK) was added to each suspension. A separate 

suspension was made up for each volunteer in 100 ml plastic bottles. Three extra 

portions per day were also prepared for analysis of phenethyl isothiocyanate content. 

The homogenates were sealed and incubated for two hours at 40T to allow a 

complete hydrolysis of phenethyl glucosinolate into phenethyl isothiocyanate. 
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4.2.4.2. Cabbage preparation 

As glucosinolate concentrations vary in different parts of the plant (Pihakaski & 

Pihakaski, 1978), special precautions were taken when cutting cabbage into portions. 

Cabbage was cut into an even number of wedges, two adjacent wedges forming a 

pair. Each wedge was adjusted to 150 g. For the COL meal, wedges of cabbage were 

individually chopped in a food processor less than 30 min before serving. A salad 

dressing made of yoghurt and sultana raisins was served with the raw cabbage. 

Portions of cooked cabbage were micro-waved pair by pair immediately before 

serving for 4 min at 650 Watts. Subsequently, for each paired portion, one was given 

to a volunteer whereas the other one was reserved at room temperature until the end 

of the meal and then kept at -20*C until analysis. 

4.2.5. Urine collection 
Prior to meal ingestion, volunteers were asked to collect a urine sample. After each 

meal, urine samples were collected at each micturition over 24 hours by volunteers. 

The volume of each micturition was recorded by the volunteers and a 15 ml sample 

from each micturition was collected and kept at -20"C. 

4.2.6. Analysis 

4.2.6. I. Chernicals 

Allyl, butyl, benzyl and phenethyl isothiocyanates were purchased from Aldrich, 

Dorset, UK. Methanol (analytical grade) and absolute ethanol were purchased from 

BDH, Poole, Dorset, UK. Dichloromethane and acetonitrile were BPLC grade and 

purchased from Rathburn, Walkerbum, Scotland, UK. Sinigrin monohydrate, 

purified from horseradish, was obtained from Sigma, Poole, Dorset, UK. Phenethyl 

glucosinolate was prepared as a potassium salt by Dr A. Robertson, St Andrews 

University, Scotland, UK. 

4.2.6.2. Quantification of isothiocyanates in watercress and mustard 
Phenethyl isothiocyanate concentration in watercress juice and allyl isothiocyanate 

concentration in mustard were analysed by a modification of published methods 

(Youngs & Wetter, 1967). For watercress samples, JOOAJ of 67mM benzyl 4: 1 

isothiocyanate in absolute ethanol was added as an internal standard to 10 ml of 
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watercress juice. The juice was extracted twice with 10 ml of dichloromethane using 

centrifugation at 1000 g to separate the layers. The solvent extracts were pooled and 

concentrated under an air stream to approximately 1 ml. Each sample was analysed in 

duplicate by gas chromatography. For mustard sample preparation, 1g of ready-made 

mustard was added to 10 ml water and 100AI of 67mM butyl isothiocyanate (in 

absolute ethanol) was added as an internal standard. The extraction procedure was 

the same as for watercress. The extracts were analysed on a gas chromatograph 
(Philips PU4550, Philips Scientific, Cambridge, UK) fitted with a BPX5 bonded 

phase capillary column (SGE, Milton Keynes, UK) of 30m length with an internal 

diameter of 0.52Am an da film thickness of 0.2 [Lm. Column temperature was 
isothermal at 90'C for detection of benzyl and phenethyl isothiocyanate and 70*C 

for detection of allyl and butyl isothiocyanate. Injection and detection temperatures 

were 200'C. The carrier gas was helium and detection was by flame ionisation. Peak 

areas were measured on a Spectra-Physics Chrornjet integrator (San Jose, California, 

USA). Retention times and response factors were determined by using 67 mM 

solutions of isothiocyanates made up in absolute ethanol, diluted 10 times in water 

and extracted in the same way as for watercress juice. The retention times, for allyl, 
butyl, benzyl and phenethyl isothiocyanates were respectively: 17.2,19.7,6.6 and 
12.1 min. The response factor for allyl isothiocyanate: butyl isothiocyanate was 0.72 

and the response factor for phenethyl isothiocyanate: benzyl isothiocyanate was 1.19. 

Concentrations of allyl isothiocyanate and phenethyl isothiocyanate were 

subsequently determined relative to the respective internal standard included in the 

test sample. 

4.2.6.3. Quantification of sinigrin in white cabbage: 
Portions of raw and cooked white cabbage, reserved after the experimental meals, 

were freeze-dried and ground. Analysis of desulpho-sini grin was conducted as 
described previously (Chapter 3, Section 3.3.2. ). 

4.2.6.4. Myrosinase activity 
Myrosinase activity was determined for each portion of raw and cooked cabbage 

using a modification of published methods (Bones & Slupphaug, 1989). The 

procedure involved a, preliminary phase of extraction of the myrosinase from the 
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vegetable material. A 0.5g sample of freeze-dried and ground cabbage was re- 

suspended in 20 ml ice-, cold distilled water and placed onto an agitator for 1 hour at 

4*C. The sample was subsequently centrifuged at 17,000 g for 30 min and the 

supematant was dialysed for 48 hours against ice-cold distilled water using pre- 

soaked dialysis tubing made of cellulose membrane (Sigma, Poole, Dorset, UK). The 

distilled water was changed every 12 hours. Dialysates were centrifuged at 17,000 g 

for 30 min and approximately 15 ml of supematant containing the myrosinase 

enzyme were collected. To concentrate the myrosinase solution, a5 ml aliquot of 

sample was freeze-dried. The myrosinase extract was reconstituted by adding 0.75 ml 

distilled water. The myrosinase activity was subsequently tested by measuring the 

glucose released from a known amount of sinigrin incubated with the myrosinase 

extract. For each myrosinase extract, a 0.25 ml sample was mixed with 0.55 ml citric 

acid - sodium citrate buffer (0.05M, pH 5.5) and 0.2 ml of 36mM sinigrin. The 

sample was incubated for 30 min at 37"C. Thereafter, the myrosinase was 

inactivated by heating the sample at 100"C for 5 min. The sample was allowed to 

cool and released glucose was measured using a diagnostic kit (A-1 15, Sigma, Poole, 

Dorset, UK), adding 1 ml of glucose assay reagent to 0.25 ml of sample. Absorbance 

was read at 520 nm using a Unicam SP 1800 Ultraviolet spectrophotometer (Unicam, 

Cambridge, UK) against a blank solution where the enzyme solution was replaced by 

water. To check for the presence of any residual glucose in the freeze-dried 

myrosinase extract, glucose concentration was also measured in the myrosinase 

solutions incubated with water instead of sinigrin. The actual release of glucose was 

calculated by the difference between glucose release in the absence of sinigrin and 

glucose release in the sample containing sinigrin. 

4.2.6.5. Mercapturic acid analysis 
Urine samples were analysed for mercapturic acid derivatives by BPLC (Chapter 2, 

section 2.2.7.2). Prior to analysis, urine samples were concentrated as follows. A 

volume of 10 ml urine sample was transferred to a 20 ml glass vial and 200 Al butyl 

mercapturic acid (1.5 mM in 500 ml. l"' ethanol) was added as an internal standard. 

Urine was subsequently freeze-dried and finally re-suspended in 1 ml water. An 

aliquot of 0.4 ml of the concentrate was used for analysis. 
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4.2-6.6. Calculation of allyl isothiocyanate release from sinigrin 

The proportion of released allyl isothiocyanate after ingestion of meal COOK and 
COL was calculated as follows. The total amount of allyl and phenethyl mercapturic 

acid excreted over 24 hours was determined for each meal type. To account for 

individual differences in the intake of precursor, the yield of mercapturic acids was 

expressed as proportions of precursor initially ingested (Formulas A and B). The 

formula used to calculate allyl isothiocyanate is detailed below for meal COL. 

Similar calculations were used for meal COOK. 

Formula A: 

Molar proportion of allyl mercapturic acid = 

Allyl mercapturic acid 

Sinigrin 

Formula B: 

Molar proportion of phenethyl mercapturic acid = 

Proportion of allyl isothiocyanate 
released from raw cabbage 

Phenethyl mercapturic acid 

Phenethyl isothiocyanate 

A COO B COL 

A MUST /B MUST 

4.2.7. Statistical analyses 
Analysis of variance was performed on the ratios A/B calculated for meal COOK, 

COL and MUST. A log transformation was applied to the ratios to conform to the 

assumption of equal variance required for this analysis. Analysis was carried out 

using individual volunteers as the block structure. The effects of experimental meals 

(called meal in the analysis), sequence of administration of meals (day) and habitual 

consumption of vegetables (vegetable) and the interactions of the three were assessed 

as treatments. Within the analysis, a contrast was applied for comparison between 

ingestion of sinigrin and ingestion of allyl isothiocyanate (meals COOK and COL 

versus meal MUST). A second contrast allowed comparison between ingestion of 

raw or cooked cabbage (meal COOK versus meal COL). To account for differences 

in the extent of myrosinase catalysis, myrosinase activity measured in either raw or 
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cooked cabbage were used as two distincts covariates in the statistical analysis. 

Within the structure described above, the effect of vegetable, the interaction of meal 

with day and the three-order interaction of meal, day and vegetable was assessed 

between volunteers, the main effects of meal and day, the interaction of vegetable 

with meal and the interaction between vegetable and day were assessed within 

volunteers (Appendix 5). Statistical analysis was performed using Genstat 5 (Lawes 

Agricultural Trust, 1989). 

4.3. Results 

4.3.1. Intake of glucosinol ate and i sothiocyanate precursors 

The difference in sinigrin intake between treatments COL and COOK was significant 

(p<0.001) (Table 4.2). The intake of phenethyl isothiocyanate was not significantly 

different between meals (Table 4.2). Myrosinase activity was significantly higher in 

raw cabbage (19.1 Amol. If'. mg-' Dry Matter, s. e. m 4.60) than in cooked cabbage 

(0.85 jimol. 1f I. mg7l Dry Matter, s. e. m. 3.19). 

4.3.2. Excretion of mercapturic acids 

For all meals, the urinary excretion of allyl and phenethyl mercapturic acids was 

, complete within 24 hours (Figure 4.3). The peak of marker excretion occurred within 

12 h of ingestion of meals. 

There was a significant (p<0.001) positive linear relationship between the excretion 

of phenethyl mercapturic and allyl mercapturic acid excreted after meal MUST 

(Figure 4.3, r'=0.733, p<0.001). Phenethyl mercapturic acid could therefore be used 

as a predictor of allyl mercapturic acid excretion after meal COL and COOK. After 

meal MUST, the recovery of isothiocyanates as their mercapturic acid was 0.33 

(s. e. m 0.038) for allyl isothiocyanate and 0.30 (s. e. m. 0.031) for phenethyl 

isothiocyanate. There was no significant difference in phenethyl mercapturic acid 

excretion between the different meals. 
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Table 4.2: Amount of glucosinolates and breakdown products ingested by volunteers and mean 
excretion of urinary markers. 

Amount of compound ( Amol) 
Meal COL Meal COOK Meal MUST 

Compound Mean s. e. m. Mean s. e. m. Mean s. e. m. 
INGESTED 
Sinigrin 163.9 10.91 69.9 5.17 
Allyl isothiocyanate - 179.8 6.22 
Phenethyl isothiocyanate 42.8 2.11 42.7 2.09 42.9 2.13 

EXCRETED 
Allyl mercapturic acid 17.9 1.89 16.9 2.71 54.4 6.13 
Phenethyl mercapturic acid 15.3 1.96 18.6 1.96 14.1 1.48 

Figure 4.2: Relationship between the excretion of allyl and phenethyl mercapturic acid when 
pre-formed allyl and phenethyl isothiocyanate were ingested (meal MUST) 
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Figure 4.3: Cumulative excretion of urinary markers over 24 hours after Ingestion of meals (a) 

COL, (b) COOK and (c) MUST. Dotted lines denote phenethyl mercapturic acid, solid lines denote 

allyl mercapturic acid. Excretion is expressed as a molar proportion of the amount of ingested 

precursors. 
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4.3.3. Proportion of allyl isothiocyanate release after ingestion of raw and 

cooked cabbage 

The average proportion of sinigrin broken down into allyl isothiocyanate was 0.37 

(s. e. m. 0.045) after meal COL and 0.53 (s. e. m. 0.134) after meal COOK but the 

difference between meals was not statistically significant. 

4.4. Discussion 

The aim of this experiment was to compare the relme of isothiocyanates in two 

defined nutritional situations where vegetables were eaten either cooked or raw. Heat 

treatment led to an inactivation of plant myrosinase. This was reflected in the very 

low value of myrosinase activity in cabbage material subjected to microwave cooking 
(meal COOK). Previous studies in rats indicated that isothiocyanate release was 

significantly decreased when plant myrosinase was inactivated (Experiment 2). In the 

current experiment, the estimates of allyl isothiocyanate excreted after meal COOK 

and COL were not significantly different. This suggests that the method of food 

preparation did not significantly modify the release of allyl isothiocyanate. 

The proportional release of allyl isothiocyanate found after ingestion of raw cabbage 

(0.37) was consistent with previous data obtained when cruciferous vegetables were 

eaten raw. In Experiment 2, the proportion of benzyl isothiocyanate released after 

consumption of Brussels sprouts by rats harbouring a human flora was 0.50. When 

conventional rats were given raw cauliflower, allyl isothiocyanate was released to a 

similar extent (0.41) (Duncan et al. 1997). These results suggested that the release of 

isothiocyanates in vivo, may be estimated to be between a third to a half of the 

amount of aliphatic glucosinolate content of the plant. 

The extent of isothiocyanate release after consumption of raw cruciferous vegetables 

was little affected by variation between individual in the current experiment. 
Estimates of allyl isothiocyanate release when cabbage was eaten raw were 

consistent. No differences were found between high consumers oi vegetables and 
individuals with a lower habitual consumption. In contrast, the range of phenethyl 
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isothiocyanate released after ingestion of raw watercress by healthy volunteers was 

between 0.30 to 0.67 of glucosinolate precursor in carlier'studies but variations in 

post-absorptive fate were not accounted for (Chung et al. 1992). 

The release of allyl isothiocyanate after the COOK meal supports the hypothesis that 

the endogenous microflora was responsible for the hydrolysis of the intact 

glucosinolates arising in the bowel in the absence of plant myrosinase. The high 

estimates of isothiocyanate release in COOK meals contrasted with previous findings 

where glucosinolate conversion to isothiocyanate was found to be 5 to 10-fold lower 

in the absence of plant myrosinase (Duncan et A 1997; Elfoul, 1999; Getahun & 

Chung, 1999). The release of isothiocyanates after ingestion of cooked cabbage was 
highly variable in the current experiment. This variation between individuals 

suggests that microflora of different individuals may vary in its capacity to release 
isothiocyanate. Studies on the kinetics of glucosinolate degradation by different 

human flora would be requested to confirm these findings. 

Myrosinase activity of the watercress suspension may have contributed to the 

observed variation in mercapturic acid excretion after the COOK meal. Myrosinase 

activity of the ingested watercress juice was not measured in the current ex periment. 
The amount of watercress administered was, however, low in comparison to cabbage 

and it was assumed that its contribution to the breakdown of sinigrin would be 

minimal. The myrosinase activity in cooked cabbage was effectively zero rejecting 

possible bias due to incomplete inactivation, except for one portion of cabbage where 

myrosinase was still active (31 Amol. If 1. mg" Dry Matter). This was accounted for in 

the subsequent statistical analysis. 

Mercapturic acids were detected in the urine of all subjects after administration of the 

experimental meals except for one subject where the amount of marker detected was 

very low after each experimental meal (Figure 4.2). The ingestion of a high protein 
dietary supplement by this volunteer may have interfered with isothiocyanate release 

as isothiocyanates can bind with proteins (Drobnica & Augustin, 1965). 
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The original intention was to give volunteers equimolar amounts of the precursor, 

sinigrin, or allyl isothiocyanate at each experimental meal, the only variable factor 

being the activity of myrosinase. Preliminary studies on food processing and 

glucosinolate concentrations in cruciferous vegetables indicated that micro-waving 

effectively inactivated plant myrosinase (Verkerk, 1999). Furthermore, micro-waving 

was less likely to induce glucosinolate loss than any other cooking methods (Verkerk, 

1999, unpublished). This cooking method was therefore adopted in the current 

experiment. The content of sinigrin in the cooked portions of cabbage was, however, 

significantly diminished in comparison with the raw counterparts. A preparation at a 

higher micro-wave power and with a shorter cooking time might have prevented 

these losses. 

The current experiment has demonstrated that the method of measurement of 

isothiocyanate release developed in rats could be used in investigations with humans 

provided that appropriate sources of isothiocyanates and glucosinolates are used. The 

method enabled a comparison of isothiocyanate release within subjects, allowing an 

improvement in the accuracy of estimates in comparison with earlier human studies. 

The experiment suggested that isothiocyanates may be released to similar extents 

when vegetables are ingested raw or cooked, indicating that the involvement of the 

microflora in isothiocyanate release may be greater than suggested previously. The 

large variation observed between individuals after ingestion of cooked vegetables 

suggests however that the capacity of the microflora with regard to isothiocyanate 

release may vary according to the subject. It may be that some individuals may 
benefit more 

, 
from the cancer-protective effects of brassicas than others according to 

the properties of their intestinal microflora. 
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CHAPTER 5: 

EXPERIMENT 4 
Urinary excretion of N-acetyl cysteine conjugates following 

gastric or caecal delivery of isothiocyanates to rats 

5.1. Introduction 

Mercapturic acids provide a useful means of estimating production of 
isothiocyanates in the intestinal tract. This approach has the advantage of being non- 
invasive, requiring only urine samples. Furthermore, being end-products of 

metabolism, mercapturic acids are likely to provide a more reliable estimate of 
isothiocyanate production than direct measurement in digestive fluids. This is 

because the latter measurements are instantaneous and represent transient 

concentrations which are subject to variation depending on the relative rates of . 
production and absorption from the digestive tract. 

Previous experiments have shown that considerable inter-animal variation exists in 

the recovery of isothiocyanates as urinary mercapturic acids (Duncan, 1990; Getahun 

& Chung, 1999). Such variation could potentially reduce the usefulness of urinary 

mercapturic acids as markers of isothiocyanate release. To quantify i nter-indi vi dual 

variation in isothiocyanate recovery, the approach adopted -in previous experiments 
has been to administer homologous isothiocyanates concurrently with parent 

glucosinolates. The use of such homologous isothiocyanates assumes that a discrete Cp 

dose of an isothiocyanate delivered instantaneously to the stomach has a similar 

metabolic fate to isothiocyanates arising from glucosinolate hydrolysis. Such an 

assumption seems reasonable when hydrolysis of glucosinolates occurs in the upper 
digestive tract under_ the action of plant myrosinase as both orally-dosed 

isgthiocyanates and isothiocyanates arising from glucosinolates are likely to be 

released in the same digestive compartment. Whether the absorptive fate of orally 
administered isothiocyanates can adequately mimic the metabolic fate of 
isothiocyanates arising in the lower gut from hydrolysis of glucosinolates by 

microbial action is less certain. In the latter case, the approach assumes that 

isothiocyanates are recovered as mercapturic acids to the same extent along the entire 
intestinal tract. Differences may however exist between the . proximal and distal 

digestive' tract. The current experiment was therefore conducted to compare the 
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recovery of isothiocyanates as their mercapturic acids when they were delivered to 

the stomach or to the caecurn of rats. 

5.2. Materials and methods 

5.2.1. Animals 

Ten male,, adult, Fischer 344 rats (mean weight: 353g s. e. m. 5.37) (INRA breeding 

unit, Jouy-en-Josas, France) were placed in individual metabolism cages (Iffa-Credo, 

Saint Germain sur IArbresle, France) and fed a standard diet (Table 5.1) for a period 

of 6 weeks. The animals were separated into two groups of 5 rats each balanced for 

body weight. A period of twelve days was allowed before starting administration of 

treatments to allow the rats to habituate to the cages and to the diet. 

Table 5.1: Composition of the pellets given to rats throughout the experiment (g. kg*l Dry Matter) 

Ingredients Standard diet 
Casein 50.00 
Soya isolate (PP500E, Protein Technologies International) 120-00 

Saccharose 50-00 
Mashed potato 290.00 
Maize starch 289.85 

Lard 30-00 
Maize oil 30-00 
Cholesterol 0.15 

Cellulose 60-00 
Mineral additive' 70-00 
Vitamin additive b 10.00 

Total 1000.00 

'The mineral additive includes (g. kg"DM of diet): CaBP04 30.1, KCI 7.0, NaCl 7.0, MgO 0.735, 
MgS04 3.5, Fe203 0.2 1, FeS047H20 0.35, MnS04H20 0.17, CUS045H20 0.035, ZnS04 7H20 0.141, 
COS04 7H20 2.8*10-4and KI 5.6* 10-4. 
bThe vitamin additive includes (mg. kg"DM of diet): thiamin 20, riboflavin 15, pantothenic acid 70, 

pyridoxine IQ, myoinositol 150, cyanocobalamin 0.05, ascorbic acid 800, (x-tocopherol 170, 
menadione 40, niacin 100, choline 1360, folic acid 5, p-aminobenzoic acid 50, biotin 0.3, retinol 
19800 IU. kg"diet and cholecalciferol 2500 IU kg-ldiet. 
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5.2.2. Treatments and procedure 
The experiment was conducted as a cross-over design with the two treatments being 

administered to each rat in sequence. The Gastric treatment consisted of a single 
dose of 25 itmol each of allyl isothiocyanate and benzyl isothiocyanate administered 
by oral gavage. The Caecal treatment consisted of a single dose of 25 Amol each of 

allyl isothiocyanate and benzyl isothiocyanate administered directly into the caecurn. 
by the rectal route. One group of five rats received the Gastric treatment first and the 

other group received the Caecal treatment first. Treatments were administered on 
day 13 and day 29 of the experiment. 

Prior to isothiocyanate administration, animals were anaesthetised by intra-muscular 

injection of ketamin (Imalgene 1000,100 mg. kg*l body weight, M6rial, Lyon, 

France). Isothiocyanates doses were diluted in 0.25 ml pure corn oil. The mixture 

was subsequently flushed with 0.25 ml pure corn oil. When the Gastric treatment 

was given to rats, the isothiocyanate mixture was administered by gavage using a 

stainless steel stomach tube. When the Caecal treatment was given, a teflon catheter 

(Hasselcath, diameter 5F, length 600 mm, Plastimed, St Leu la Foret, France) was 

introduced rectally and positioned in the caecum. The progression of the catheter 

along the distal digestive tract and the delivery of the dose to the caecum were 

monitored by X-ray radiography (Fluorscopic Stenescop 600, G. E. Medical Systems, 

Velizy, France). To avoid chemical interference with the dosing mixture, no radio- 

opaque contrast chemical was used. The caecum was located on the X-ray image by 

introducing 0.80 ml air prior to administration of treatment. The air provoked a slight 

, swelling of the caecum which appeared distinctively on the X-ray image. One 

millilitre of air was also injected after the oil administration to ensure complete 

flushing of the catheter. 

Six hours prior to dosing, urine collection receptacles were emptied and cleaned. 
After dosing, rats were put back into their respective cages. Total urine output was 

collected at t=O, 6,24 and 48h after administration of treatments, To avoid bacterial 
degradation of urinary markers, sodium azide (final concentration 0.2ml. l") was 
added to the urine collection receptacles. 
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5.2.3. Analysis 

The mercapturic acids derived from allyl isothiocyanate and benzyl isothiocyanate 

were measured by IHPLC (Chapter 2, Section 2.2.7.2). Two hundred microlitres of 

urine were used and butyl mercapturic acid (0.3 limol/sample) was used as the 

intemal standard. The proportion of isothiocyanates converted to their related 

mercapturic acids for each rat on each dosing occasion was calculated by dividing 

the cumulative molar amount of mercapturic acid excreted over 48 hours by the 

molar amount of administered isothiocyanate. The excretion rate was calculated by 

dividing the amount of excreted mercapturic acid at each urinary output by the 

duration of urine collection. 

5.2.4. Statistical analysis 
Cumulative excretion of mercapturic acids was analysed using hierarchical analysis 

of variance appropriate to a cross-over design. The data were log-transformed to 

conform to the assumption of constant variance. The analysis was structured so that 

the effect of dosed compounds (named product in the analysis), days of 

administration (named day) and the interaction of the two were nested within animals 

(animal). The effect of Gastric and Caecal treatments (named site in the analysis), 

day and product and all interactions were assessed within the above structure. The 

day. site interaction was assessed between rats. The effects of day and site were 

analysed in the animal. day stratum to account for random variation in day effect. The 

effect of product and its interactions with other variables were analysed within day 

and within individual animal (Appendix 6a). 

To analyse variation in the time-course of mercapturic acid excretion, an excretion 

rate was calculated for each compound and for each time interval. A log- 

transformation was applied to the new data set to provide for the assumption of 

constant variance. Analysis of variance was conducted using a different block 

structure than described previously to account for temporal variation over the 48 

hours of collection. The effect of time of collection (time) was nested within day, the 

latter being itself nested within animal. The effect of treatments, days of 

administration and dosed compounds and all interactions were assessed within the 

above structure. As for the previous analysis, the* day. site interaction was assessed 
between rats. The effects of day and site were analysed in the animal. day stratum to 
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account for random variation in the day effect. The difference between products and 

their interactions with other variables was analysed within an individual animal 
having accounted for random variation due to the effect of time and day (Appendix 

6b). All calculations were performed using Genstat 5 (Lawes Agricultural Trust, 

1989). 

5.3. Results 

The extent of urinary excretion of mercapturic acids was greater following Gastric 

administration than when compounds were given by the Caecal route. This was the 

case for-both allyl and benzyl isothiocyanates (Table 5.2). This difference was 

observed for all rats except one for which the excretion of mercapturic acids was 

very low for both isothiocyanates in each treatment. The amount of excreted 
mercapturic acids was significantly higher at day 29 than at day 13 (p<0.05). 

Table 5.2: Excretion of urinary mercapturic acids after administration of 25 jumol of the related 
isothiocyanates (pmol) in Gastric and Caecal treatments. NS: non significant at p<0.05 

Treatment 
Gastric Caecal 

Excretory product Mean Mean SED Level of significance 
Afflyl mercapturic acid 12.26 3.21 0.084 N. S. Benzyl mercapturic acid 11.91 2.99 
SED 0.212 
Level of significance P<0.001 

A proportion of 0.9 of the excretion observed occurred within 24 hours (Figure 5.1). 

The proportions of allyl isothiocyanate and benzyl isothiocyanate converted into 

mercapturic, acids were 0.49 (s. e. m. 0.043) and 0.48 (s. e. m. 0.042) respectively, of 
the dose initially given in the Gastric treatment. When the Caecal treatment was 

given, the amount of excreted mercapturic acids represented a proportion of 0.13 

(s. e. m. 0.028) of allyl isothiocyanate and 0.12 (s. e. m. 0.020) of benzyl isothiocyanate 

initially administered to the animals. There was no significant difference between the 

total amount of excreted allyl mercapturic acid and excreted benzyl mercapturic acid 
(Table 5.2). The kinetics of excretion indicated that excretion of allyl mercapturic 

acid was more rapid than excretion benzyl mercapturic acid (Figure 5.2, Table 5.3). 
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Figure 5.1: Cumulative excretion of mercapturic acids after administration of Gastric and 
Caecal treatments. 0 allyl inercapturic acid, * benzyl mercapturic acid 
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Figure 5.2 Excretion rate of mercapturic acids over 48 hours after administration of 
isothiocyanates. 0 allyl mercapturic acid * benzyl mercapturic acid 
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Table 5.3: Comparison of the rate of excretion between allyl and benzyl mercapturic acids after 

administration of Gastric and Caecal treatments. 

Treatment 
Gastric Caecal 

Excretory product Mean Mean SED Level of significance 
Allyl mercapturic acid 0.35 0.11 0.064 P<0.01 Benzyl mercapturic acid 0.28 0.084 
SED 0.187 
Level of significance P<0.01 
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5.4. Discussion 

This experiment was designed to elucidate whether the extent of absorption of 
isothiocyanates was similar in the proximal and in the distal, part of the intestinal 

tract. Approximately 0.48 of the isothiocyanate dose was excreted when 
isothiocyanates were administered orally compared with approximately 0.12 when 

delivered to the caecum., confirming that the upper intestine is a more efficient site of 

absorption for isothiocyanates. 

Several physiological factors may explain the major differences in recovery of 

isothiocyanates according to the site of isothiocyanate delivery. The most plausible 

explanation for the low excretory rate after Caecal treatment is the contribution of 

caecal microflora to the breakdown of isothiocyanates. The ability of intestinal 

microflora to break down isothiocyanate was suggested by the outcome of 

Experiment 2. Recent findings have also shown that amines, a putative breakdown 

product of isothiocyanates, were released in in vitro incubations of a human faecal 

flora with sinigrin (Rabot et al. unpublished). The breakdown of isothiocyanates to 

amine derivatives has also been shown previously for non-digestive tract bacteria 

(Tang et al. 1972). Nitriles, a further possible metabolite of glucosinolates, are also 

known to be broken down by intestinal microflora (Duncan & Milne, 1992). The 

results of the current experiment suggest that microbial microflora may significantly 

reduce the amount of glucosinolate derivatives available for absorption by the distal 

digestive tract. 

Some constraints inherent to the administration of the Caecal treatment may have 

played also a role in the low excretion rate of mercapturic acids. The introduction of 

the catheter rectally may have resulted in transient physiological perturbation of the 

large intestine. Defecation was observed at the time of the surgery on several rats. 
Studies using radio-labelled isothiocyanate have shown that a proportion of 0.10 of 

radioactivity was excreted in faeces when rats were given a dose of isothiocyanate 

orally (Conaway et al. 1999). The delivery of isothiocyanate directly at the caecal 

site may have increased the faecal excretion of isothiocyanates thereby allowing a 

smaller recovery of isothiocyanates as mereapturic acids. 
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An additional factor which may explain the low recovery of isothiocyanates is that 

colonocytes may not absorb isothiocyanates due to their lipophilic nature. In normal 

circumstances, the proportion of fat and lipophilic compounds arising in the distal 

digestive tract is minimal. Fat is mostly absorbed by enterocytes. The formation of 

micelles from conjugation of fatty molecules with biliary salts increases their 

solubility and facilitates their hydrolysis and absorption in the upper digestive tract 
(Jacotot & Le Parco , 1992). The efficiency of absorption of fat and associated 
compounds by the colonic mucosa may therefore be low. For similar reasons, the 

presence of high concentrations of corn oil in the caecum. may have disturbed the 

normal course of digestion after administration of the Caecal treatment. 

The conjugation of isothiocyanate to glutathione-S-transferaSe in the cytoplasm of 
intestinal cells is a further factor which may have affected the recovery of 
isothiocyanates to mercapturic acids. Glutathione-S-transferase plays an essential 

role in the conversion of isothiocyanate to mercapturic acids (BrUsewitz et al. 1977). 

Glutathione-S-transferase is distributed along the digestive tract but its activity is 

generally lower in the distal part than upper part of the digestive tract (Nijhoff et al. 
1995). The activity of glutathione-S-transfcrase was not measured in the current 

experiment. It is therefore difficult to draw definitive conclusions on its influence on 

observed recoveries. 

Regardless of the reasons for lower recovery of isothiocyanates as mercapturic acids 
following delivery to the caecum, the results have important implications for the use 

of mercapturicý acids as markers of isothiocyanate, release in the intestine. The site of 
hydrolysis of glucosinolates is likely to differ depending on the residual activity of 

plant myrosinase in ingested food. If myrosinase has been denatured during cooking, 

parent glucosinolates may pass to the large intestine where they undergo hydrolysis 

under microbial action. Predicting recovery of isothiocyanates as mercapturic acids 

using orally administered homologous isothiocyanates is therefore likely to lead to 

errors in estimates of isothiocyanate release in the lower gut. This suggests that the 

glucosinolate-degrading capacity of gut microbes using mercapturic acids as markers 

may have been under-estimated in previous experiments. The low estimates of 
isothiocyanate release observed in rats harbouring a human flora consuming a 

myrosinase-free diet must be treated with some caution and alternative methods of 
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estimating isothiocyanate release from the digestive microflora will need to be 

developed before drawing definitive conclusions. 
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CHAPTER 6: 

EXPERIMENT5 

Influence of a fermentable oligosaccharide on the release of isothiocyanate 

in the large bowel of rats 

6.1. Introduction 
The biological effects of glucosinolates following their ingestion are dependent on 
both the extent to which they are hydrolysed in the digestive tract as well as the 

identity of metabolites produced during hydrolysis. In vitro studies have shown that 

pH has a major influence on the profile of metabolites arising during hydrolysis with 

a low pH tending to favour production of nitriles and a high pH leading to 

isothiocyanate production. This feature of glucosinolate chemistry has interesting 

implications when considering the course of hydrolysis in the digestive tract. The pH 

of the digestive tract varies along its length and is also modified by the transit of the 

food bolus. Acidic conditions prevail in the stomach whereas more alkaline 

conditions are found in the small intestine and large bowel (Figure 6.1). Depending 

on the extent to which plant myrosinase is denatured prior to ingestion of plant 

material, the site of hydrolysis and hence the pH conditions under which 

glucosinolates are broken down may vary greatly. Furthermore, more subtle 

differences in the pH of caecal contents caused by variation in the profile of the end- 

products of fermentation may influence glucosinolate hydrolysis and hence the 

biological effects of glucosinolates. Some oligosaccharides, for example, are known 

to reach the large bowel intact and their fermentation may lead to a more acidic pH in 

the lower gut. To investigate the influence of variation in the type of fermentation 

occurring in the lower gut on glucosinolate hydrolysis, an experiment was conducted 

in which rats were fed on diets with or without added inulin, a fermentable 

oligosaccharide. The release of isothiocyanates in different portions of the digestive 

tract following administration of an artificial glucosinolate was directly measured 
following serial slaughter. 
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Figure 6.1: Average pH in different compartments of the human digestive tract (from Lecerf, 
1996 and Macfarlane &Cummings, 1991) 
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6.2. Materials and methods 
6.2.1. Description of the experiment 

To study the effect of a diet enriched in fermentable oligosaccharide versus a control 
diet, two treatments were compared. On one treatment-24 rats were fed a control diet 

(Control diet) whereas on the other treatment, rats were fed a diet enriched with 
inulin, a water-soluble oligosaccharide (Inulin diet). Within each group, animals 

were distributed into six sub-groups corresponding to six different times of slaughter: 
t= 0,6,12,15,18,24. At t= Oh, all the rats were inoculated with a dose containing 

artificial benzyl glucosinolate and dietary sinigrin. At each time of slaughter, four 

animals per treatment were sacrificed. As a large number of animals was required, 
the experiment was carried out in two phases using half the animals from each 
treatment in each phase. 

6.2.2. Animals 

Forty-eight germ-free rats were used. Rats were aged 16 to 18 weeks and weighed on 

average 343 g (s. e. m. 3.2). Five days prior to the experiment, they were inoculated 

with aI ml suspension of human faecal flora (Chapter 3, Section 3.2.4). Animals 

were maintained in groups of three in conventional cages within two isolators (Table 

6.1). Allocation of animals to isolators, to diets and to times of slaughter was 
balanced for body weight variations. 

6.2.3. Diet 

The Control diet was a semi-synthetic diet simulating a human type diet (Table 6-2). 

In the Inulin diet, the fraction of carbohydrate was reduced and replaced by 105 

g. kg*l DM inulin, (Orafti, Tiemen, Belgium). A seven-day period of adaptation to 

the food was allowed. On the day of glucosinolate dose administration, rats were 

fasted for six hours before gavage to avoid any stomach congestion due to the 

volume of the glucosinolate dose. Access to food was resumed after administration of 

glucosinolates. 
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Table 6.2: Composition of the diet (g. kg*l Dry Matter) 

Diet 
Ingredients Control Inulin 
Casein 50.00 50.00 
Soya isolate (PP500E, Protein Technologies International) 120.00 120-00 
Inulin (Orafti) 105.00 

Saccharose 50.00 50-00 
Mashed potato 290.00 185.00 
Maize starch 289.85 289.85 

Lard 30-00 30,00 
Maize oil 30.00 30.00 
Cholesterol 0.15 0.15 

Cellulose 60.00 60.00 
Mineral additive 70.00 70.00 
Vitamin additiveb 10.00 10.00 

Total 1000.00 1000.00 
'The mineral additive includes (g. kg*'DM of diet): CaIHP04 30.1, KCI 7.0, NaCl 7.0, MgO 0.735, 
MgS04 3.5, Fe203 0.21, FeS047H20 0.35, MnSO4H20 0.17, CuSO45H20 0.035, ZrIS04 7H20 0.141, 
COS04 7H20 2.8*10-4and KI 5.6*10-4. 
bThe vitamin additive includes (mg. kg*'DM of diet): thiamin 20, riboflavin 15, pantothenic acid 70, 
pyridoxine 10, myoinositol 150, cyanocobalamin 0.05, ascorbic acid 800, a-tocopherol 170, 
menadione 40, niacin 100, cboline 1360, folic acid 5, p-aminobenzoic acid 50, biotin 0.3, retinol 
19800 IU. kg"diet and cholecalciferol 2500 IU k 

,,. 
'diet. 

6.2.4. Administration of glucosinolates 
For each rat, the glucosinolate dose consisted of a suspension of 100 jimol of benzyl 

glucosinolate (Potassium salt, Merck, Darmstadt, Germany) and 0.8 g of freeze-dried 

and powdered Brussels sprouts suspended in 5 ml sterile water. Brussels sprouts 

(variety cyrus) were treated to inactivate myrosinase (Chapter 3, section 3.2.6). The 

main glucosinolate -present in the Brussels sprouts was sinigrin (10.3 Amol. gýl dry 

matter). The amount of sinigrin present in the glucosinolate dose was therefore 8.2 

Amol (the glucosinolate composition of Brussels sprouts is detailed in Chapter 3, 

Table 3.4). The glucosinolate dose was administered orally using a stomach tube 

under light ether anaesthesia. Administration of the glucosinolate dose occurred at 
21: 00 which was two hours into the dark period of the light/dark cycle. 

For logistical reasons, it was not possible to administer the glucosinolate dose to all 

rats simultaneously. The glucosinolate administration was therefore done on two 

different days. To avoid any confounding effect between day of glucosinolate 
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administration and time of slaughter, animals were grouped so that animals 

slaughtered at two consecutive times did not receive the dose on the same day (Table 

6.1). The day of administration allocated in Period 1 was reversed for each time of 

slaughter in Period 2 of the experiment. 

6.2.5. Collection of gut contents 
Rats were removed from isolators and slaughtered using a lethal dose of carbon 
dioxide. The digestive tract was removed and wettened using 9 g. l" NaCI solution. 
Stomach, small intestine, caecum and colon were separated. The pH was measured in 

the caecal contents. The digestive contents of each compartment were separated into 

three replicate aliquots. Two aliquots were reserved for analysis of non-digested 
glucosinolates. The rest of the digestive contents was transfer-red into glass vials 

(Polylabo, Paris, France) containing a defined volume of O. 1M phosphate buffer 

solution (pH = 7). Glass vials of 50 ml capacity containing 20 ml buffer solution 

were used for the caecal contents. Smaller vials of 10 ml capacity containing 4 ml 
buffer solution were used for digestive contents coming from the other 

compartments. The vials were capped with airtight septa and sealed caps (Elfoul, 

1999). The weight of total digestive contents as well as the weight of each aliquot 

were recorded for each compartment. 

6.2.6. Quantification of non digested glucosinolate in digestive contents 
Digestive contents were freeze-dried and ground. Analysis of desulpho- 

glucosinolates by BPLC was performed using previously described methods (Chapter 

3, section 3.3.2) except that the amount of starting material varied from 0.025g to 

0.1g. 
I 

6.2.7. Quantification of isothiocyanates in digestive contents 
The quantification of allyl and benzyl isothiocyanates was carried out by gas 

chromatography using solid phase micro-extraction (SPME). The sample vials were 

thawed at room temperature and 40 Al of a 0.251LM phenyl isothiocyanate solution 

was injected through the septum as an internal standard. The sample was thoroughly 

vortexed to obtain an homogenous solution. A carboxen/polydimethylsiloxane- 
coated silica fibre (film thickness 75 11m, Supelco, Saint Quentin Fallavier, France) 
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fitted into a protective stainless steel needle, was introduced in the sample vial. The 

sample vial was placed in a waterbath at 451C. The micro-extraction fibre was 

exposed to the headspace of the sample vial for 10 min to allow adsorption of the 

volatile isothiocyanates. The adsorbed compounds were subsequently desorbed in the 

splitless injection port of a gas chromatograph (Carlo Erba HRGC 5300, Milano, 

Italy) during 20 seconds at 2500C. Separation of compounds was carried out using a 

non-polar capillary column (CP-Sil 8 CB, 25m length, internal diameter: 0.53 mm, 
film thickness: 2 Am Chrompack, Les Ulis, France). Carrier gas was nitrogen (70 

kPa). The temperature gradient was programmed as follows: basal temperature was 

stable at 450C for 3 min then temperature increased to 800C at 60C. Min-', the rate 

slowed down to 4"C. rnin-I until temperature reached 155"C then the temperature was 

rapidly increased at 200C. min' to 200'C. Detection was by flame ionisation 

detection. Detector temperature was set at 2500C. Peak areas were measured on a 
Shimadzu C-R6A integrator. The retention times for allyl isothiocyanate, phenyl 

isothiocyanate and benzyl isothiocyanate were 7.1,18.3 and 24.4 min respectively. 

Calibrations curves were plotted using equimolar amounts of 2.5,5 and 10 nmol of 

allyl, benzyl and phenyl isothiocyanates which were injected in glass vials of 

identical capacity to sample vials. The response factors were significantly higher in 

50 ml glass vials than in the 10 ml vials (Figure 6.2). For this reason, different 

response factors were used according to the type of vials used (Table 6.3). Amount of 

isothiocyanates released in the digestive contents were quantified by comparing the 

peak area of allyl isothiocyanate or benzyl isothiocyanate to the peak area of phenyl 
isothiocyanate in the sample corrected by the response factor. 

Table 6.3: Response factors used for quantification of allyl and benzyl isothiocyanate by SPME- 
GC analysis. Mean response factor was obtained from the ratio of peak areas of compounds to peak 
area of internal standard from standard solutions containing 2.5,5,10 and 20 nmol of ally], benzyl and 
phenyl isothiocyanates. 

Vial capacity 
10 n-d 50 ml 

- 
Compounds Mean s. e. m. Mean S. C. M. 
Allyl isothiocyanate 2.44 0.212 2.62 0,697 
Benzylisothiocyanate 0.32 0.037 0.42 0.267 
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Figure 6.2 a and b: Relationship between the peak areas of phenyl isothiocyanate and ally] 
isothiocyanate (Figure a) and between phenyl isothiocyanate and benzyl isothiocyanate (Figure 
b). Peak areas were obtained by GC following solid phase micro-extraction of standard solutions 
containing 2.5,5,10 and 20 nmol of each compounds. * represents areas obtained for 50 H capacity 
vials, 0 represents areas obtained for 10 ml capacity vials. 
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Identification of chromatographic peaks were confirmed on one sample for each 

compartment and for each diet using GC-MS (Fisons GC 800 coupled to quadrupole 
Fisons MD 800) equipped with an acquisition daia system INCOS (Finnigan). 

Compounds were separated on a capillary column Q2, Quadrex, length: 25m, 

internal diameter: 0.25 mm, film thickness: 0.25 pm). Column temperature was 

programmed as described above for the i'sothiocyanate analysis. Injection port and 
interface temperatures were set at 250T and source temperature was 200'C. 

Ionisation mode was the electronic impact at 70 eV (emission current: 0.5mA). 

Masses were scanned from 30 to 400 amu. 

6.2.8. Statistical analysis 
The method of Residual Maximum Likelihood (Genstat 5, Lawes Agricultural Trust, 

1989) was used to analyse the effect of diets and time of slaughter on the sinigrin, 

benzyl glucosinolate, allyl isothiocyanate and benzyl isothiocyanate contentrations in 

the digestive tract. Period was used as a block in ýhe analysis. Comparison between 

diet was tested by compartments. Analysis was restricted to times of slaughter where 

non-zero concentrations were observed. 

6.3. Results 

6.3.2. Effect of pH 
The pH of caecum contents was significantly more acidic. when rats were given the 

Inulin diet (pH = 5.8 s. em. 0.16) in comparison to their Control counterparts (pH = 
6.7 s. e. rn 0.06) (p<0.001). Caecal pH was the lowest 6 hours after glucosinolate 

administration (Figure 6.3). 

6.3.3. Non-digested glucosinolates 
Glucosinolates were found in substantial amounts only within the first twelve hours 

following the gavage. The kinetics of glucosinolate appearance in the different 

compartments was similar for both diets. At t= Oh, glucosinolates were found in the 

upper tract, primarily in the stomach and to a lesser extent in the small intestine 

(Figure 6.4 and 6.5). The large volume of materials in the stomach of rats 
immediately after gavage at t= Oh led to an over-estimation of the amount of 
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glucosinolates in comparison to 100 Amol given by gavage. Six hours after the meal, 

glucosinolates were detected in the caecurn and colon. The major proportion of the 

glucosinolate dose, however, was still present in the stomach and small intestine. The 

total amount of non-digested glucosinolates at t=6h showed high inter-animal 

variation averaging 1.13 Amol (s. e. m. 0.330) for sinigrin and 18.8 ttmol (s. e. m. 4.330) 

for benzyl glucosinolate. Beyond 12 hours, residual glucosinolates were not detected 

except on one occasion for rats fed the control diet and slaughtered at t= 18h. The 

amount of residual glucosinolates measured in rats fed the Inulin diet was not 

significantly different from rats fed the Control diet (p>0.05). 

Figure 6.3: Effect of diet on caecal pH of rats. Black bars corresponds to rats fed the Control diet, 
hatched bars corresponds to rats fed the Inulin diet 
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Figure 6.4 Amount of non-digested sinigrin in the intestinal tract of rats. 
The digestive compartments represented are: stomach =, intestine= , caecurn c, 'I'll' 
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Figure 6.5: Amount of non digested benzyl glUco. sinolate in the intestinal tract of rats 
The digestive compartments represented are: stomach =, intestine= . caecum ISM 

, colon 
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Figure 6.6: Amount of allyl isothiocyanate released in the intestinal tract of rats 
The digestive compartments represented are: stomach =, intestine= , caecum colon 
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Figure 6.7: Arnount of henzyl isothiocyanate released in the intestinal tract of rats 

The digestive compartments represented are: stomach =, intestine= . caccurn ýM . colon 
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6.3.4., Isothiocyanates released in the digestive tract 
The total amount of allyl isothiocyanate detected in the digestive tract of rats was in 

the range of 0-48 nmol which represented a proportion of 0.00 to 0.06 of the initial 

dose whereas the amount of benzyl isothiocyanate detected varied from 15 to 258 

nmol, representing a proportion of 0.01 to 0.03 of the initial dose. Release of 

isothiocyanates thus represented a minor proportion of the amount of administered 

glucosinolates. Variability between animals at each time of slaughter was observed. 
Overall, there was no statistical difference in the quantitative production of 

isothiocyanates in rats fed the Inulin or the Control diet (p>0.05). An account of the 

main features of appearance and disappearance of the compounds according to the 

diet is given by compartment below. 

6.3.4.1. Stomach 

Allyl isothiocyanate and benzyl isothiocyanate were detected in the stomach 
immediately following gavage (t=Oh), regardless of the dietary treatments. At later 

times of slaughter (t=6,12,15,18h), residual levels of isothiocyanates could be 

measured in the gastric compartment. Allyl isothiocyanate had completely 
disappeared from the stomach at t=24h but residual amounts of benzyl isothiocyanate 

could still be detected. 

6.3.4.2. Small intestine 
Allyl isothiocyanate was not detected in the small intestine in either the Inulin or 

Control treatments. Small amounts of benzyl isothiocyanate, varying between 2 

nmol to 12 nmol, were found in the small intestine at all times of slaughter. 

6.3.4.3. Caecurn and colon 
Amounts of isothiocyanates in the caecum and colon followed a similar trend. In 

these distal compartments, the highest release of isothiocyanates was detected at 

t=6h. At this time of slaughter, the amounts of allyl isothiocyanate found in the 

caecurn were 28 nmol (s. e. m. = 17.3) and 19 nmol (s. e. m. = 10.9) for animals fed 

Control and Inulin diets respectively. The amounts of benzyl isothiocyanate found 
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in the caecum were 110 nmol (s. e. m. = 44.4) and 42 nmol (s. e. m. = 10.7) for animals 

fed Control or Inulin diets respectively. 

The release of allyl isothiocyanate in animals fed the Intilin diet showed an abrupt 
decrease at t=12h whereas release of allyl isothiocyanate continued over 15 hours in 

animals fed the Control diet, suggesting a more rapid disappearance of the 

compound in the presence of dietary fibre. The temporal pattern of benzyl 

isothiocyanate release was similar in animals fed the Control or Inulin diets. Benzyl 

isothiocyanate decreased dramatically at t=12h to a residual level. This residual 

amount remained over the 24h period. 

6.4. Discussion 

The current experiment provides more evidence of the release of isothiocyanates 

from glucosinolates in the digestive tract in the absence of plant myrosinase activity. 

The release of isothiocyanates was very low proportionally to the amount of 

glucosinolate precursors administered. The amount, however, only represents an 

instantaneous measurement of isothiocyanate release and does not account for 

isothiocyanates released and absorbed by the intestinal mucosa. There was no 

evidence of an influence of diet on the extent of release of isothiocyanate although 

the fermentation of inulin led to an acidic conditions in the caecal compartment. This 

may have been because rates of hydrolysis were low or because isothiocyanates were 

further degraded by bacteria following their release. In a previous study, the addition 

of inulin to a rapeseed diet was shown to modulate the toxic symptoms induced by 

glucosinolates in rats harbouring a human faecal flora (Roland et al. 1996), 

suggesting that an enhancement of microbial fermentation may be accompanied by a 

change in the microbial breakdown of glucosinolates. The current experiment 

indicated, however, that the addition of a fermentable oligosaccharide to the diet did 

not significantly change the amount of isothiocyanate available for uptake by the 

colonic mucosa. The beneficial effect of dietary fibre may involve other mechanisms 

of action. A measurement of the microbial end-products of isothiocyanates, such as 

amines, may bring more precise information regarding the modulation of 

isothiocyanate release by n-ticroflora. 
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Release of isothiocyanate in the stomach may have resulted from a non-enzymic 
hydrolysis since myrosinase was inactivated in the plant cells. Non-enzymic 

hydrolysis of glucosinolates ha$ been described in vitro in the presence of pepsin and 
hydrochloric acid (Maskell & Smithard, 1994). The complex chemical interactions 

occurring in the stomach may favour the hydrolysis of glucosinolate. In vitro non- 

enzymic hydrolysis led, however, to a release of nitrile products but not to 

isothiocyanates as observed here. 

Gastric emptying was slow in the current experiment due to the large volume of 

Brussels sprouts which presumably caused distension of the stomach and delayed 

gastrýc emptying. This explained why six hours after the meal glucosinolates were 

still present in high amounts in the stomach and intestine. The disturbance in transit 

time generated by the large amount of digestive contents may also have exaggerated 

the extent of hydrolysis of glucosinolates in the stomach. In normal circumstances, 

release of isothiocyanates by non-enzymic hydrolysis may be less dramatic than the 

production of isothiocyanate observed here. 

The current experiment has demonstrated that, in the absence of plant myrosinase 

activity, several factors may contribute to the formation of isothiocyanates. Contrary 

to our hypothesis which would have predicted hydrolysis of glucosinolates mainly 

occur in the distal part of the intestinal tract when vegetables are cooked, the pattern 

of appearance of isothiocyanates'in the current experiment showed that release of 

isothiocyanate may occur to a significant extent in the proximal intestinal tract. In the 

absence of plant myrosinase, hydrolysis in the upper tract may occur, probably 

mainly as a consequence of gastric secretions. Dietary conditions, however, seemed 

to have little effect on the pattern of isothiocyanate release in the distal digestive 

tract. A more precise investigation of the balance between microbial release of 
isothiocyanate and subsequent utilisation of isothiocyanate is required to more fully 

understand the effect of dietary fibre on the fate of glucosinolates in the lower 

digestive tract. 
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CHAPTER 7: 

GENERAL DISCUSSION 

7.1. Introduction 

Until now, quantitative data on the breakdown products released from glucosinolates 
in vivo has been sparse. Glucosinolate breakdown products are a diverse group of 

chemicals with different metabolic fates and a range of biological effects. Their high 

reactivity makes their measurement in body fluids and tissues difficult. The uptake 

and the disposition of glucosinolate breakdown products has, therefore, not been well 

characterised. Crude measurements of human dietary exposure to glucosinolates have 

been made by assessing the glucosinolate composition and the likely hydrolysis 

products arising from consumed vegetable material (Sones et aL 1984). However, the 

importance of the hydrolysis environment in influencing the resulting hydrolysis 

products and recent findings on the involvement of the digestive microflora in 

glucosinolate breakdown have encouraged the development of more refined 

techniques. The approach chosen in the series of experiments reported here relies on 

the use of a'combination of methods. Quantitative methods were used to measure 

glucosinolate concentrations in the plant matrix as well as in digestive fluids and 

faecal material. By this means, an accurate measurement of the disappearance of 

glucosinolates was made. In parallel, the formation of hydrolysis products was 

measured by the use of urinary markers. Additionally, the use of rats with a 

controlled intestinal microflora. enabled the effect of vegetable myrosinase to be 

distinguished from the effect of the intrinsic microflora. With this comprehensive 

approach, the extent of hydrolysis was measured in several situations. Subsequently, 

direct comparisons between the major factors of influence were made. This gave an 

indication of the most favourable circumstance for optimum dietary exposure to 

potentially beneficial metabolites. 

The first part of this general discussion surnmarises the different experimental 
I 

approaches adopted and their advantages and limitations. From the experimental 

results, a general mechanism for digestive metabolism of glucosinolates is suggested 

and discussed in the second section. Finally, the unresolved issues deriving from the 

findings are considered and suggestions made for further research. 
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7.2. Experimental approach I 
7.2.1. Relevance of the use of urinary markers 

Interest in ý markers of glucosinolate metabolism and particularly in markers for the 

cancer-protective isothiocyanates has grown in the past few years. This research 
interest has been driven by the need to measure the uptake of isothiocyanates by the 

intestinal tract before assessing the efficacy of these compounds in protecting against 

cancer. The use of urinary markers as potential tools for non-invasive studies has 

been investigated in a number of human trials. Several studies have reported the 

successful measurement of mercapturic acids derived from isothiocyanates after 
feeding raw or cooked cruciferous vegetables to human volunteers (Chung et al. 
1992; Jiao et al. 1994; Shapiro et al. 1998; Getahun & Chung, 1999). The wide inter- 

individual variation in the data reported so far may have reflected variation in 

activities of detoxification enzymes rather than a variation in isothiocyanate uptake. 
The methods used in the series of experiments reported here demonstrate that 

administration of a homologous isothiocyanate concurrently to the test glucosinolates 

and isothiocyanates can standardise for the variability in the mercapturic acid 

recovery. This method was used in studies on rats prior to this work for the 

measurement of allyl isothiocyanate release from an oral single dose of sinigrin 
(Duncan et al. 1997; Elfoul, 1999). Experiments 1 and 2 of the current studies have 

shown that it can also be used successfully for the measurement of aromatic 
isothiocyanates in rats. The measurement of dietary glucosinolate hydrolysis can also 
be achieved, although in rats the continuous administration of a cruciferous diet 

reduced the accuracy of the estimates. The work, has validated the use of mercapturic 

acids as markers of isothiocyanate release in humans. 

7.2.2. Application of the approach to isothiocyanates 

Several assumptions underlie the use of mercapturic acids to estimate isothiocyanate 

release. The homologous compound used as an internal standard must follow the 

same metabolic pathway as the studied compound. To be a realistic estimate of the 

variation in post-absorptive metabolism, the internal standard must be affected by the 

variation in the glutathione conjugation to the same extent as the studied compound. 
The results presented here showed that this assumption is satisfied for aliphatic and 
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aromatic isothiocyanates. The unavailability of other isothiocyanates with 

demonstrated beneficial properties, such as sulphoraphane, has not allowed the 

validation of the method to a larger set of compounds during the course of the project 

but could now be considered in future experiments. On the other hand, 

isothiocyanates derived from indole glucosinolates, such as glucobrassicin, do not 

appear to be excreted by the same pathway as aliphatic and aromatic isothiocyanates. 

The technique is not, therefore, a suitable tool for their study. 

7.2.3. Investigation of the release of nitrile derivatives 

The attempt to detect urinary markers of nitrile derivatives has not been successful so 

far. Although knowledge on the disposition of nitrile derivatives is still rudimentary, 

the method established for isothiocyanates was duplicated for nitriles in Experiment 

1 with a view to extending the method to the measurement of nitrile production once 

their fate had been elucidated. The major problem with studying nitrile metabolism is 

that all attempts to detect their metabolic fate have been inconclusive except for non- 

glucosinolate derived nitriles, such as acrylonitrile and crotonitrile (Van Bladeren et 

al. 198 1). It is unknown whether they are not formed at all or whether their formation 

is followed by an immediate degradation to other compounds before their absorption. 

It has been hypothesised that the nitrilase activity of the microflora may break down 

nitriles immediately after their formation (Forss & BarTy, 1983). Disappearance of 

allyl cyanide under microbial action has been demonstrated in sheep rumen fluid 

(Duncan et al. 1992). 

7.2.4. Lin-tits of the approach 
The lipophilic nature of glucosinolate-derived isothiocyanates together with their 

small molecular weight mean that when they are administered in pure form, they are 

likely - to be absorbed in the upper part of the intestinal tract. The recovery of 

mercapturic acids from native isothiocyanates measured in this series of experiments 

represents, therefore, the efficiency of their absorption and detoxification from the 

proximal gut. In Experiments 2 and 3, it was assumed that measured recoveries were 

a good estimate of the efficiency of absorption and detoxification along the entire 

digestive tract. It appeared, however, that the site of isothiocyanate release influenced 

their absorption (Experiment 4). The conversion of isothiocyanates to mercapturic 
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acids was found to be significantly lower when isothiocyanates were released in the 

large bowel than in the upper intestine. Consequently, to achieve an accurate 

measurement of isothiocyanate release, it would be necessary to assume a priori, the 

site of isothiocyanate release and absorption. Ideally, the recovery of mercapturic 

acids from isothiocyanates must be measured in the portion of the gut from which the 

isothiocyanates are absorbed. Isothiocyanates released by plant myrosinase are likely 

to be absorbed mainly in the stomach and small intestine. The measurement of the 

recovery as carried out in this study by administering a single oral dose of 

isothiocyanate would then be adequate. The measurement of the recovery from the 

lower part of the digestive tract where the isothiocyanate release is likely to occur in 

the absence of plant myrosinase activity is less straightforward. This would require 

techniques such as encapsulation of isothiocyanates to bypass their absorption in the 

small intestine and the choice of a more suitable vehicle than oil which is normally 

absorbed in the proximal digestive tract. Such a mode of administration was not 

possible in the experiments described here. The recovery measured in the small 

intestine was used-to calculate isothiocyanate release regardless of their supposed site 

of release and absorption. Regarding results from Experiment 2, the use of higher 

recovery values than the actual ones may have led to an under-estimate of 

isothiocyanate release in the bowel. 

7.2.5. Altemative methods to the use of markers 
As Experiment 5 focused on isothiocyanate release in the bowel, a direct approach to 

the release of isothiocyanates in the digestive lumen seemed more appropriate than 

the mercapturic acid approach for the reasons mentioned above. Attempts to directly 

measure the formation of isothiocyanates in digestive contents have often been 

limited by the sensitivity of analytical techniques. The use of an intermediate step of 

micro-extraction on a solid phase can successfully improve the threshold of detection 

of isothiocyanates in complex digestive media. The results of Experiment 5 showed 
that this technique can be a useful complementary tool for investigating 
isothiocyanate release. As the amounts of isothiocyanates measured represented the 
instantaneous concentrations of compounds, the information given by this 

measurement was an integration of the production, degradation and absorption rates 

of isothiocyanates. This technique can only indicate a strong modification of the 
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nature of hydrolysis products released. As a first approach to the understanding of the 

influence of other nutrients, it brought useful qualitative information on the influence 

of dietary fibre on isothiocyanate release in the bowel. 

7.2.6. Relevance of rat studies 

The use of rodents as an adequate model for human consumption of vegetables has 

been questioned by other workers (Ratcliffe et A 2000). Since glucosinolate, 
hydrolysis occurs upon. cell disruption, the chewing pattern may be an important 

factor in determining the subsequent release of metabolites. The process of chewing 
is less complete in humans than in laboratory rodents and an unknown proportion of 

cruciferous material may be swallowed intact. Rodents, by gnawing their food, are 

probably more efficient at damaging plant cells than humans. The extent of 
hydrolysis observed in rats may be over-estimated in comparison to humans. 

Despite the constraints inherent in the feeding pattern of animals, the use of 

controlled-mi cro flora rats represents a useful model for the study of glucosinolate 

metabolism. The dynamics of bacterial degradation of glucosinolates may be 

different according to the microflora harboured by the host. Hence, human flora- 

associated animals are likely to give more relevant results for extrapolation to 

humans (Rumney & Rowland, 1992). Furthermore, the similarities in urinary 

products between rats and humans make the use of rats harbouring a human 

I microflora a good model (Mennicke et al. 1983; Mennicke et al. 1988). 

7.3. Fate of glucosinolates and their isothiocyanate derivatives in the digestive 

tract 

The series of experiments brought new insights to the understanding of glucosinolate 

metabolism. The data obtained contribute to a better knowledge of the sequence of 

events determining the fate of glucosinolates and their related isothiocyanates. The 

experiments provide an indication of the importance of each possible metabolic route 

when cruciferous vegetables are eaten raw or cooked. 
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7.3.1. Isothiocyanate release by plant myrosinase 

The action of plant myrosinase led to a conversion of around 80% of the ingested 

benzyl glucosinolates to benzyl isothiocyanate (Experiment 2). This value indicates 

that in the conditions of Experiment 2, the hydrolysis of glucosinolates in vivo is 

favourable to isothiocyanate production. 

It is not clear from the present series of experiments whether hydrolysis by plant 

myrosinase only occurs in the mouth or is continued in the stomach and distal 

digestive compartments. The low pH of gastric contents and the presence of gastric 

peptidases may denature and inactivate myrosinase. On the other hand, as the food 

gradually fills the stomach, the pH increases and may allow a favourable 

environment for the plant myrosinase-catalysed hydrolysis to occur. The chewing 

pattern and the time of transit may influence the amount of glucosinolates which 

avoid hydrolysis by plant myrosinase. 

Studies with labelled compounds have demonstrated that the small intestine is the 

primary site for isothiocyanate absorption (Conaway et al. 1999). Although the rate 

of isothiocyanate production is very high in the upper digestive tract, the total 

amount of isothiocyanates arising is not taken up by the intestinal mucosa. Results of 

Experiment 2 indicate that, in the physiological circumstances tested, when the host 

harbours a microflora, the proportion of isothiocyanates actually taken up by the 

intestinal tract is lower than when the microflora is absent. Isothiocyanates released 
in the upper digestive tract are thus likely to follow several metabolic routes. The 

rapid absorption of the isothiocyanates by the enterocytes is likely to be the major 

metabolic pathway. An alternative pathway for isothiocyanates is their passage into 

the bowel and subsequent metabolism by the resident microflora. 

7.3.2. The involvement of the microflora in isothiocyanate release 
The findings reported here on microbial myrosinase activity are in accordance with 

the results of previous studies (Elfoul, 1999). They confirm the ability of the 

microbial myrosinase to catalyse glucosinolate hydrolysis. This was shown by the 

absence of even trace amounts of glucosinolates in the facces of human flora rats fed 

Brussels sprouts (Experiment 2). Microbial hydrolysis resulted in a minor production 
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of isothiocyanates. For benzyl glucosinolate, this hydrolysis led to 5% of benzyl 

glucosinolate being converted to benzyl isothiocyanate in Experiment 2. Other 

studies have measured a higher release for allyl isothiocyanate derived from sinigrin 

with values ranging from 10% to 17% according to the type of diet and the 

microflora (Duncan et al. 1997; Elfoul, 1999). Despite the consistency of these 

results, it is surprising that the proportion of isothiocyanates released is much less 

efficient than that due to plant myrosinase. One explanation for this effect revealed 
by the current work is that the actual extent of isothiocyanate production by 

microbial myrosinase may be masked by the subsequent utilisation of isothiocyanates 

by the microflora. The hypothesis that the action of microbial activity is additive to 

the plant myrosinase hydrolysis was refuted in Experiment 2. Furthermore, 

isothiocyanates delivered to the bowel may be poorly taken up by the intestinal 

mucosa (Experiment 4). Consequently, the isothiocyanates arising in the bowel either 

after formation in the upper tract or after the action of the microbial myrosinase may 
be partially utilised by the microflora. Although more work would be necessary to 

provide direct evidence of this mechanism, in vitro studies indicate that this process 
is possible and would lead to the formation of amine derivatives (Tang et al. 1972, S. 

Rabot, personal communication). 

The question remains as to the fate of hydrolysed glucosinolates which do not form 

isothiocyanates. The microbial production of other metabolites, such as nitriles, is 

one possibility. There is little evidence, however, to support this route as a major 

pathway for glucosinolate degradation by microflora. A very high production of 

nitriles would be required to account for the 90% of the glucosinolate breakdown 

products unaccounted for by isothiocyanates. The relatively alkaline pH in the bowel 

is unlikely to favour nitrile production (assuming that the activity of microbial 

myrosinase in response to pH variation is similar to that of plant myrosinase). 
Moreover, allyl cyanide, the nitrile derivative of sinigrin was not found in the 
digestive contents of rats harbouring a human strain of glucosinolate-degrading 
bacterium after gavage with an oral dose of sinigrin (Elfoul, 1999). It may be that, in 

the latter case, nitriles are formed but are immediately broken down by the microflora 

as seems to occur with isothiocyanates. 
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To summanse, the outcome of this research suggests that the microflora may have a 

dual role in isothiocyanate release. It may catalyse release of isothiocyanates and then 

further degrade them to amines or other breakdown products. The activity of 

microbial myrosinase may thus be cancelled out by the ability of the microflora to 

further utilise the breakdown products. Assuming that isothiocyanates are the major 

hydrolysis product of microbial myrosinase, the following mechanisms may be 

occurring: 
1) When plant myrosinase is inactive, glucosinolates predominantly arise in the 

bowel. The amount of isothiocyanate release by the microbial myrosinase in these 

circumstances may exceed the capacity of the microflora to break down the 

isothiocyanates. The excess. of isothiocyanates can therefore be absorbed by the 

intestinal, mucosa. The overall result is a positive yield of isothiocyanates ranging 

from 5 to 10% of the glucosinolate dose. 

2) When plant myrosinase is active, the amount of glucosinolates reaching the bowel 

is minimal whereas a substantial proportion of pre-formed isothiocyanates enters the 

digestive tract. In these circumstances, the amount of isothiocyanates deriving from 

microbial hydrolysis is not sufficient to compensate for the microbial utilisation of 

isothiocyanates. The overall result may explain the 30% discrepancy observed 

between germ-free and human-flora animals fed raw Brussels sprouts in Experiment 

2. 

7.3.3. Metabolic fate of non-hydrolysed glucosinolates 
The fact that 66% of the benzyl glucosinolate was not recovered in the faeces of rats 

in the absence of myrosinase suggested that intact glucosinolates may be absorbed by 

the intestinal tract (Experiment 2). The evidence for such a phenomenon is still the 

subject of debate as discussed in Experiment 2. The presence of a small amount of 

sinigrin in the urine output of human flora rats in similar experiments indicate that it 

is nevertheless a pathway to iake into consideration (Elfoul, 1999). In the present 

experiments, the extent of urinary excretion of glucosinolates was not measured. 

Consequently, the actual amount of glucosinolates escaping hydrolysis cannot be 

accurately estimated. On the other hand, the amount of glucosinolates excreted in the 

faeces. of germ-free rats may give a reasonable estimate of the' amount of 

glucosinolates arriving in the bowel and available for microbial degradation. On the 
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basis of the recovery of benzyl glucosinolate in faeces of germ-free rats, it can be 

estimated that approximately 4% of ingested benzyl glucosinolate arrived intact in 

the bowel when plant myrosinase was active in the specific conditions of Experiment 

2. When plant myrosinase was inactive, the proportion of glucosinolates available for 

microbial degradation in the digestive tract of rats harbouring a human faecal flora 

was 34% (Experiment 2). A similar figure has been reported (28%) in a similar 

experiment studying the fate of sinigrin (Elfoul, 1999). There is consistent evidence 
from this work and previous studies that glucosinolates are not found in faeces when 

the host harbours a microflora, indicating a total degradation of glucosinolates by the 

microflora (Experiment 2) (Elfoul, 1999). This observation was true for animals 

harbouring a single strain of human bacterium or a whole human flora. Hence, the 

glucosinolate concentration in human stools were not measured in Experiment 3. 

7.3.4. Degradation of glucosinolates by non-enzymatic autolysis 

In Experiment 2, traces of benzyl mercapturic acid was found in the urine of rats in 

the absence of any source of myrosinase. A non-catalytic hydrolysis of benzyl 

glucosinolate was suspected. Direct evidence for glucosinolate autolysis was found in 

Experiment S. The formation of allyl isothiocyanate and benzyl isothiocyanate was 

measured in the stomach of rats immediately after administration of glucosinolates in 

the absence of myrosinase activity. The proportion of isothiocyanate formed 

represented a minor part of the dose (0.1% sinigrin and 2.5% benzyl glucosinolate). 

This mechanism may be due to the acidic content of the stomach. Other studies have 

shown that glucosinolates carrying an indolic side chain were also prone to autolysis 
(De Kruif et al. 1991). The non-enzymatic degradation of glucosinolates is therefore 

a possible source of isothiocyanates in the upper digestive tract when plant 

myrosinase is inactive. The extent of autolysis may vary according to the cooking 

procedure. A long cooking process may soften the plant cell walls and glucosinolates 

may then be more exposed to the chemical action of gastric fluids. In contrast, when 

plant myrosinase is active, enzymatic hydrolysis would predominate and the extent of 

autolysis is likely to be small. 
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7.3.5. Influence of other components of the diet 

The addition of ferrous ions reduced the proportion of isothiocyanate release when 

plant myrosinase was active. This was in agreement with findings in vitro where the 

isothiocyanate production by plant myrosinase was inhibited by ferrous ions (Uda et 

al. 1986). Owing to the lack of nitrile markers, it was not possible to verify whether 

the decrease in isothiocyanate uptake was reflected in an increase in nitrile 

compounds as observed in vitro (Uda -et al. 1986). It is thus difficult to draw 

conclusions on the mechanism of this inhibition. Iron metabolism is highly regulated 

and the capacity for absorption of iron is inversely related to the amount consumed 

(Fairweather-Tait, 1998). The administration of a continuous dose of ferrous ion may 

have led to general changes in the physiology of the host. These changes, in turn, 

may have affected isothiocyanate uptake. In dietary circumstances, changes in the 

ionic content of digestive contents are likely to be more subtle and may not induce 

direct effects on myrosinase hydrolysis in vivo. 

The manipulation of the fermentation in the caecum of human flora rats in 

Experiment 5 appeared to have relatively little influence on isothiocyanate 

production in the gut. It can be hypothesised that the increase in fermentative activity 

influenced the microbial myrosinase activity and the microbial utilisation of 

glucosinolate breakdown products to the same extent, resulting in no significant 

change. More detailed work using in vitro suspensions of human flora would help to 

elucidate the actual mechanism. 

There are a large number of other components of the diet which may affect the 

release of isothiocyanates. Protein content may, for instance, be a factor of influence. 

Isothiocyanates can form. chemical bonds with peptides or small proteins (Drobnica 

& Augustin, 1965). As isothiocyanates are then no longer in a free form, 

isothiocyanate uptake and disposition may be affected. Vitamin concentration, 

particularly of ascorbic acid, may also influence isothiocyanate release since vitamin 

C is an activator of plant myrosinase. 
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7.3.6. The post-absorptive fate of isothiocyanates 

In these experiments, mercapturic acid formation following ingestion of 

isothiocyanates has been measured in a variety of situations, giving a better insight 

into the fate of isothiocyanates after their release in the digestive tract. The variation 

in mercapturic acid recovery from isothiocyanates was high, ranging from 30 to 70 % 

of the initial dose. There are a number of potential causes of this variability: 

The nature of the side-chain may play a role, either at the stage of absorption by the 

intestinal mucosa, or at the stage of glutathione conjugation. This characteristic 

seems important in rats. Across all the studies, independently of individual variation, 

the extent of excretion of allyl and benzyl mercapturic acid was consistently higher 

than that of propyl, butyl and phenethyl mercapturic acid. In humans, these 

differences were less apparent. 

The site of absorption of isothiocyanates by the intestinal tract has an important 

influence as detailed in the discussion of the limits of the experimental approach 

(section 7.2.4) . 

The role of components of the diet on the efficiency of detoxification may also be 

important. Ferrous ions, for instance, significantly lowered the excretion rate of 

mercapturic acid perhaps by inhibiting xenobiotic-metaboli sing enzymes. All the 

mercapturic. acids were affected to the same extent by this treatment (Experiment 1). 

It has been speculated that the presence of glucosinolates in the diet may influence 

the conversion rate of isothiocyanate to mercapturic acids (Duncan et al. 1997). 

Evidence in these experiments does not support this hypothesis. The recovery of 
isothiocyanates administered as a single dose was not significantly different when 

rats were fed a glucosinolate-free or a glucosinolate-containing diet (Experiment 1). 

Similar observations held for the human experiment (Experiment 3). The excretion 

rate of the internal standard, namely phenethyl mercapturic acid, was not 

significantly different after three different cruciferous meals for the same subject. 
Additionally, the habitual consumption of a high or low amount of vegetables did not 
induce significant differences in recoveries of mercapturic acids. 
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A proportion of the isothiocyanates released by glucosinolates are not converted to 

mercapturic acids and presumably follow other excretory routes. These have not been 

measured in this series of experiments. Three minor pathways can be considered: 
1) The excretion of isothiocyanate in faeces. A minor proportion may not be 

metabolised at all and excreted in the faeces. Traces of faecal allyl isothiocyanate 

following its oral administration has been found in other studies (Conaway et al. 
1999; Elfoul, 1999). 

2) After conjugation in the liver a minor proportion of isothiocyanate breakdown 

products may enter the entero-hepatic circulation and be subsequently excreted in 

faeces as biliary salts (Bollard et al. 1997; Conaway et al. 1999). This process may 

explain the secondary peak in isothiocyanates in the digestive content of rats, 24h 

after the dose was given (Experiment 5). 
3) Isothiocyanates are metabolised by tissues which subsequently leads to the 

excretion Of C02 in exhaled air (Conaway et al. 1999). 

Figure 7.1 surnmarised the different pathways speculated for the fate of 

glucosinolates. 

7.3.7. Digestive metabolisM after ingestion of raw vegetables 

Data on the fate of glucosinolates after ingestion of raw vegetables have now been 

extended to three glucosinolates - namely sinigrin, benzyl glucosinolate and 

phenethyl. glucosinolate. When cruciferous vegetables are eaten raw, the plant 

myrosinase is active. In this circumstance, this series of experiment established that 

isothiocyanates available for intestinal uptake are released in significant quantities. 

Isothiocyanates released accounted for 60% of ingested phenethyl glucosinolate 
derived from watercress (Experiment 1), 50% of benzyl glucosinolate given as an 

oral dose (Experiment 2) and 37% of sinigrin derived from white cabbage 
(Experiment 3). Although these value relate closely to each experimental conditions, 
the fairly consistent results corroborate an earlier study where 41% of sinigrin was 
found to be converted into isothiocyanates (Duncan et al. 1997). This relatively high 

yield of isothiocyanates, compounds known for their beneficial effects, indicate that 

glucosinolate metabolism in vivo is a favourable mechanism for health protection. 
The proportion of isothiocyanates measured here presumably reflects primarily 
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glucosinolate degradation in the upper digestive tract and subsequent uptake in the 

small intestine (Figure 7.1). 

In addition to this main pathway, there is a proportion of isothiocyanates which may 

not cross the intestinal barrier and may serve as substrate for colonic microflora. In 

Experiment 2, the proportion of benzyl glucosinolate reaching the bowel intact was 

estimated around 30%. The microbial myrosinase, although active, may offer only a 
limited contribution to the overall metabolism of glucosinolates in these conditions. 

7.3.8. Digestive metabolism after ingestion of cooked vegetable 
In cooked vegetables, plant myrosinase is generally inactive. In these circumstances, 
the estimates of isothiocyanate release vary considerably with studies. The present 

studies and those by other authors have estimated that the release of isothiocyanates 
from glucosinolates varied from 5% for benzyl glucosinolate (Experiment 2) to 10- 

17% for sinigrin in rats harbouring a human flora (Duncan et al. 1997; Elfoul, 1999) 

(Figure 7.1). Animal experiments thus suggest that the release of isothiocyanates 

after ingestion of cooked vegetables occurs but it is limited in comparison with the 

proportion of isothiocyanates released from raw vegetables. This result would not be 

favourable for an enhancement of the effect of isothiocyanates in the bowel as 

previously hypothesised. In contrast to the studies in rats, release of allyl 
isothiocyanate averaged 53% in human volunteers after ingestion of cooked cabbage, 

suggesting a higher production of isothiocyanates in humans than expected from the 

findings using rat as animal model. The estimates found in the experiment on human 

subjects (Experiment 3), however, should be viewed with caution as the presence of 

a residual plant myrosinase activity in watercress may have exaggerated the extent of 

glucosinolate hydrolysis. 

The large variation among volunteers after ingestion of cooked cabbage would 

suggest that microflora may catalyse the hydrolysis or induce the breakdown of C) 
isothiocyanate to different extents according to individuals. The proportion of 
isothiocyanate, release may thus be less consistent than in the rat studies. The fact that 

intact glucosinolates pass through the stomach and upper digestive tract may have 
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Figure 7.1 Proposed metabolic fate of glucosinolates (GLS) and their isothiocyanate derivatives OTC) 

after ingestion of cruciferous vegetables. Plain lines indicate major pathways. Dotted lines indicate minor 

pathways. The hydrolysis of GLS by plant myrosinase releases primarily ITC (1) or nitriles (2)(Nugon- 

Baudon & Rabot, 1994). Alternatively, when plant myrosinase is denatured by cooking procedure, GLS 

may reach the stomach (3) and the small intestine (4) under their intact form as suggested by outcomes of 

experiment 2 and 5. Results of experiment 5 suggested that non-enzymatic hydrolysis of intact GLS to ITC 

may occur in the stomach (5). ITC are primarily absorbed In the intestinal tractus (6) as demonstrated by 

,,; tudies using radio-labelled compounds (Conaway et al, 1999). Activation of the xenobiotic metabolising 
enzymes by ITC (7) leads to formation of N-acetyl conjugates which are able to circulate to peripheral 

onty, ans (8) (Brasewitz et al, 1977). The major end-products of ITC metabolism are the mercapturic acids 
(9). The entero-hepatic circulation has been suggested as a rriýinor pathway of ITC excretion (10) (Conaway 

,, I al, 1999). A variable proportion of ITC (It) and non-degraded GLS (12) may transit to the large bowel. 
The quantitative ratio ITC: GLS entering the large bowel may dramatically change whether the vegetables 
are ingested raw or cooked (experiment 3,4 and 5). The endogenous microflora can breakdown the GLS 

arising in the bowel (13) (Campbell et al, 1995, experiment 5). Although a microbial production of ITC 
has been demonstrated (Elfoul, 1999), ITC seem to be poorly available for absorption by the colonic tractus 
(14)(experiment 4). The intestinal microflora may break-down ITC arising in the bowel into end-products 
such as amine derivatives and other unidentified metabolites subsequently excreted in faeces (15) (Rabot, 

personal corru-nunication, 2000). The possible absorption of intact glucosinolates in the upper intestinal 
tract following ingestion of cooked vegetables has been suggested from the outcome of experiment 3 (16), 

10 
although the post-absorptive fate of intact GLS remains unclear (17). 
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made them susceptible to other routes of metabolism. The release of isothiocyanates 

by autolysis and the digestive absorption of non-hydrolysed glucosinolate may 

therefore be an important mechanism for the metabolism of glucosinolates in these 

circumstances. 

These findings highlight an unexpected role for the microflora. Indeed, they suggest 

that the microflora could be an inhibitor of isothiocyanate absorption, instead of 

maximising the potential production of beneficial compounds for the host. This 

mechanism would however not be entirely detrimental. for the host. Isothiocyanates 

can have anti-bacterial effects at high doses (Brabban & Edwards, 1995). Intestinal 

bacteria may breakdown the isothiocyanates as a defence mechanism against toxicity. 

The level of isothiocyanate may thus remain low in the bowel. The production of 5% 

to 17% of isothiocyanates in the bowel would therefore correspond to the amount of 

free isothiocyanates that is able to cross the colonic mucosa before being exposed to 

microbial degradation. 

The low level of isothiocyanate production in the bowel would tend to weaken the 

hypothesis that isothiocyanates exert their anti-carcinogenic action on the 

colonocytes from the intestinal lumen. The isothiocyanates involved in tumour 

suppression and apoptosis may be transported to the colonocytes as their conjugates 

by the peripheral circulation (Figure 7.1). This hypothesis would be supported by 

recent studies where the level of isothiocyanates in the colonic lurnen was not 

correlated to the tumour-suppres sing effect in the colonic mucosa (T. K. Smith 

personal communication). 

7.4. Future work 

Since this work has extended the use of urinary markers to dietary glucosinolates and 

to humans, the application of the approach to realistic dietary situations is now 

possible in nutritional studies. The measurement of isothiocyanate release when 

glucosinolates are ingested concurrently with potential carcinogenic compounds, 

such as nitrosamines from cooked meat, would provide an interesting avenue for 

further work. As the use of markers is a non-invasive approach, the method can also 

provide useful information in studies on anti -carcino geni c mechanisms. Thus, it 
V 
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would be possible to directly relate isothiocyanate uptake to induction of 

detoxification enzymes in tissues, for instance, or to assess anti-mutagenic potential 

in relation to isothiocyanate formation in the digestive tract. Experiments where both 

food processing and biological end-points were quantified could potentially provide 

useful information to develop nutritional guidelines and health policy regarding 

consumption of cruciferous vegetables. 

Mercapturic acids may be less precise indicators of isothiocyanate release in the 

lower gut. Refinements of the technique would therefore be required for their 

effective use in this context. 

This series of experiments has also highlighted areas of glucosinolate metabolism 

which require more research. The route of post-absorptive metabolism for non- 

hydrolysed glucosinolates still remains unresolved. The formation of nitrile 

breakdown products has not been elucidated. The use of radio-labelled compounds 

could'considerably help investigation in these fields. 

Findings still remain unclear on the influence of the microflora on isothiocyanate 

release. More evidence on the ability of the microflora to degrade isothiocyanates 

would be required to clarify the hypothesis of a modulating role of the human 

microbial ecosystem. In this regard, the infusion of radio-labelled glucosinolates and 

isothiocyanates to suspensions of human microflora in vitro may allow identification 

of the end-products of microbial digestion. 

Finally, the present human trial highlighted a potential variation between subjects in 

the amount of isothiocyanate released in the lower digestive tract. More studies 

would be required to assess whether myrosinase hydrolysis and isothiocyanate 

digestion by the microflora have variable capacities among individuals. A 

confirmation of these observations would indeed suggest that the beneficial effects of 

consuming brassicas vary according to individuals. 
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7.5. Conclusion 

The successful use of urinary products as markers of isothiocyanates has allowed 

measurement of isothiocyanate release from glucosinolates as they would normally 

occur in human diet, that is, when they are present in their plant matrix. The research 

has also applied the method to humans. The investigation focussed on three 

glucosinolates, namely sinigrin, benzyl glucosinolate and phenethyl glucosinolate 

which occur naturally in cruciferous vegetables consumed in human diet. These 

experiments suggest that, at least for the three glucosinolates studied, the fon-nation, 

in vivo, of cancer-protective isothiocyanates is significant, thereby strengthening the 

evidence for a beneficial effect of cruciferous vegetables for health. Whether 

glucosinolate consumption for humans is entirely beneficial remains, however, to be 

seen since the extent of formation of detrimental nitriles is still unclear. 

From these results, it emerged that in a human type of diet the highest release of 

isothiocyanates is achieved when the plant myrosinase is intact, that is when the 

vegetables are eaten raw. The cooking process alters the plant myrosinase activity 

and the influence of the chemical environment and microbial activity may then 

become important. The involvement of the microflora acting as a secondary catalyst 

of hydrolysis has been confirmed but new findings revealed that microflora can also 

modulate the extent of isothiocyanate absorption. A new element must therefore be 

taken into account when assessing the potential of cruciferous vegetables for the 

release of beneficial isothiocyanates. The extent and rate of isothiocyanate 

disposition is not only determined by the hydrolysis step but also by the capacity of 

bacteria to degrade isothiocyanates. 

From a nutritional point of view, these results lead to two interpretations. If further 

research reveals that the most important factor for cancer protection is the global 

amount of isothiocyanates arising in the systemic circulation, then the amount of 

cruciferous vegetables that are eaten raw must be promoted. Focus on enhancing the 

glucosinolate-myrosinase system in cruciferous vegetables may therefore be of 

primary relevance. On the other hand, if it is confirmed that protection against 

colorectal cancer, one of the most widespread cancers, is best achieved by a delivery 

of isothiocyanates from the lumen of the gut, the emphasis on cooking guidelines for 
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cruciferous vegetables and increasing the frequency of consumption may achieve a 

small but regular supply of isothiocyanates to the colon. - 

This research highlights the difficulty in viewing plant secondary compounds which 

elicit beneficial effects as isolated rnýicro-constituents that could be used as 

nutraceuticals. As far as glucosinolates are concerned, this work has demonstrated 

that the beneficial properties of the compounds rely on a fragile association between 

the glucosinolate-myrosinase system of the plant and parameters directly associated 

with the host, among which are the dietary habits and the enzymatic capacities of the 

endogenous microflora. 

131 



REFERENCES 

Adesida, A., Edwards, L. G. & Thomalley, P. J. (1996). Inhibition of human leukaemia 

60 cell growth by mercapturic acid metabolites of phenylethyl isothiocyanate. Food and 
Chemical Toxicology 34,385-392. 

AFNOR. (1995). Graines de colza: dosage des glucosinolates. Normefrangaise, nonne 

europ6enne EN ISO 9167-1. Paris: AFNOR. 

Ames, B. N. & Gold, L. S. (1992). Animal cancer tests and cancer prevention. Journal of 

the National Cancer Institute 12,425-132. 

Betz, J. M. & Fox, W. D. (1994). High-performance liquid chromatographic 
determination of glucosinolates in Brassica vegetables. In Food phytochemicals for 

cancer prevention L Fruits and vegetables, pp. 18 1- 196 M. Huang, T. Osawa, C. Ho and 
R. T. Rosen, editors, Washington, D. C. American Chemical Society. 

Bjbrkman, R. & Janson, J. (1972). Studies on myrosinases: I. purification and 

characterization of a myrosinase from white mustard seed (Sinapis alba, L). Biochkica 

et Biophysica Acta 276,508-518. 

Bollard, M., Stribbling, S., Mitchell, S. & Caldwell, J. (1997). The disposition of allyl 
isothiocyanate in the rat and mouse. Food and Chemical Toxicology 35,933-943. 

Bones, A. M. (1990). Distribution of B-thioglucosidase activity in intact plants, cell and 
tissue cultures and regenerant plants of Brassica napus L. . Joumal of Experimental 

Botany 41,737-744. 

Bones, A. M. & Rossiter, J. T. (1996). The myrosinase-glucosinolate system, its 

organisation and biochemistry. Physiologia Plantarum 97,194-208. 

132 



Bones, A. M. & Slupphaug, G. (1989). Purification, characterization and partial amino 

acid sequencing of B-thioglucosidase from Brassica napus L. Journal of Plant 

Physiology 134,722-729. 

Botti, M. G., Taylor, M. G. & Botting, N. P. (1995). Studies on the mechanism of 

myrosinase - Investigation of the effect of glycosyl acceptors on enzyme activity. 

Journal of Biological Chemistry 270,20530-20535. 

Brabban, A. D. & Edwards, C. (1994). Isolation of glucosinolate degrading 

microorganisms and their potential for reducing the glucosinolate content of raperneal. 

FEMS Microbiology Letters 119,83-88. 

Brabban, A. D. & Edwards, C. (1995). The effects of glucosinolates and their hydrolysis 

products on microbial growth. Joumal ofApplied Bacteriology 79,171-177. 

Bradfield, C. A., Chang, Y. & Bjeldanes, L. F. (1985). Effects of commonly consumed 

vegetables on hepatic xenobiotic-metabolizing enzymes in the mouse. Food and 

Chemical Toxicology 23,899-904. 

Brocker, E. R., Benn, M. H., Luthy, J. & Vondaniken, A. (1984). Metabolism and 

distribution of 3,4-epithiobutanenitrile in the rat. Food and Chemical Toxicology 22, 

227-232. 

Bru I ggernan, I. M., Ternmink, J. H. M. & Van Bladeren, P. J. (1986). Glutathione- and 

cysteine-mediated cytotoxicity of allyl and benzyl isothiocyanate. Toxicology and 

Applied Pharmacology 83,349-359. 

133 



BrUsewitz, G., Cameron, B. D., Chasseaud, L. F., Gbrler, K., Hawkins, D. R., Koch, H. & 

Mennicke, W. H. (1977). The metabolism of benzyl isothiocyanate and its cysteine 

conjugate. Biochemical Journal 162,99-107. 

Campbell, L. D., Slominski, B. A., Nugon-Baudon, L., Rabot, S., Lory, S., Quinsac, A., 

Krouti, M. & Ribaillier, D. (1995). Studies on intestinal tract glucosinolate content, 

xenobiotic metabolizing enzymes and thyroid status in germ-free and conventional rats 
fed rapeseed meal. In Proceedings of the 9th International rapeseed congress, rapeseed 

today and tomorrow, pp. 209-211 D. Murphy, editor. Cambridge: Organising committee 

of the 9th international rapeseed congress. 

Carlson, D. G., Daxenbichler, M. E., VanEtten, C. H., Kwolek, W. F. & Williams, P. H. 

(1987). Glucosinolates. in crucifer vegetables: broccoli, Brussels sprouts, cauliflower, 

collards, kale, mustard greens, and kohlrabi. Journal of the AnIerican Society for 

Horticultural Science 112,173-178. 

Carlson, D. G., Daxenbichler, M. E., VanEtten, C. H., Tookey, H. L. & Williams, P. H. 

(1981). Glucosinolates in Crucifer Vegetables: Turnips and Rutabagas. Joumal of 

Agricultural and Food Chemistry 29,1235-1239. 

Carlsson, L., Mlingi, N., Jurna, A., Ronquist, G. & Rosling, H. (1999). Metabolic fates 

in humans of linamarin in cassava flour ingested as stiff porridge. Food and Chemical 

Toxicology 37,307-312. 

Carter, J. H., McLafferty, M. A. & Goldman, P. (1980). Role of the gastrointestinal 

microflora in arnygdalin (laetrile)-induced cyanide toxicity. Biochemical Pharmacology 

29,301-304. 

134 



Chiang, W. C. K., Pusateri; D. J. & Leitz, R. E. A. (1998). Gas chromatography/Mass 

spectrometry method for the determination of sulforaphane and sulforaphane nitrile in 

broccoli. Joumal ofAgricultural and Food Chemistry 46,1018-1021. 

Chung, F. (1992). Chernoprevention of lung carcinogenesis by aromatic isothiocyanates. 

In Cancer chemoprevention, pp. 227-245 L. Wattenberg, A Lipkin, C. W. Boone and G. 

I Kelloff, editors. Boca Raton: CRC Press. 

Chung, F., Morse, M. A., Eklind, K. I. & Lewis, J. (1992). Quantitation of human uptake 

of the anticarcinogen phenethyl isothiocyanate after a watercress meal. Cancer 

Epidemiology, Biomarkers'& Prevention 1,383-388. 

Chung, F. L., Rao, D., Conaway, C. C., Smith, T. J., Yang, C. S. & Yu, M. C. (1997). 

Chernopreventive potential of thiol conjugates of isothiocyanates for lung cancer and a 

urinary biomarker of dietary isothiocyanates. Joumal of Cellular Biochemistry 

supplement, 76-85. 

Ciska, E., Martyniak-Przybyszewska, B. & Kozlowska, H. (2000). Content of 

glucosinolates in cruciferous vegetables grown at the same site for two years under 

different climatic conditions. Journal of Agricultural and Food Chemistry 48,2862- 

2867. 

Cole, R. A. (1975). I-cyanoepithioalkanes: major products of alkenyl glucosinolate 

hydrolysis in certain cruciferae. Phytochemistry 14,2293-2294. 

Cole, R. A. (1976). Isothiocyanates, nitriles and thiocyanates as products of autolysis of 

glucosinolates in Cruciferae. Phytochemistry 15,759-762. 

135 



Conaway, C. C., Jiao, D., Kohri, T., Liebes, L. & Chung, F. (1999). Disposition and 

pharmacokinetics of phenethyl isothiocyanate and 6-phenylhexyl isothiocyanate in F344 

rats. Drug Metabolism and Disposition 27,13-20. 

Dawson, G. W., Hick, A. J., Bennett, R. N., Donald, A., Pickett, J. A. & Wallsgrove, R. M. 

(1993). Synthesis of glucosinolate precursors and investigations into the biosynthesis of 

phenylalkyl- and methylthioalkylglucosinolates. Journal of Biological Chemistry 268, 

27154-27159. 

Daxenbichler, M. E., VanEtten, C. H. & Spencer, G. F. (1977). Glucosinolates and 

derived products in cruciferous vegetables. Identification of organic nitriles from 

cabbage. Journal ofAgricultural and Food Chemistry 25,121-124. 

Daxenbichler, M. E., VanEtten, C. H., Tallent, W. H. & Wolff, I. A. (1967). Rapeseed 

meal autolysis. Formation of diastereomeric (2R)-l-cyano-2-hydroxy-3,4, -epithiobutanes 
from progoitrin. Canadian Journal of Chemistry 45,1971 

De Kruif, C. A., Marsman, J. W., Venekamp, J. C., Falke, H. E., Noordhoek, J., Blaauboer, 

B. J. & Wortelboer, H. M. (1991). Structure elucidation of acid reaction products of 

indole-3-carbinol: detection in vivo 'and enzyme induction in vitro. Chemico -Biological 
Interactions 80,303-315. 

de Vos, R. H. & Blijleven, G. H. (1988). The effect of processing conditions on 

glucosinolates in cruciferous vegetables. ZeitschriftfUr Lebensmittel Untersuchung und 

Forschung 187,525-529. 

Djouzi, Z. (1995). Influence des probiotiques et des pribiotiques sur la composition et le 

mitabolisme de la microflore humaine implant6e chez le rat h6tirox6nique. PhD thesis, 

Orsay: Universite Paris-Sud. 

136 



Drobnica, L. & Augustin, J. (1965). Reaction of isothiocyanates with amino acids, 

peptides and proteins. I. Kinetics of the reaction of aromatic isothiocyanates with 

glycine. Chemical Communications 30,99-104. 

Duncan, A. J. (1990). The physiological effects of glucosinolates and S-methyl cysteine 

sulphoxide on sheep consumingforage brassica crop. PhD thesis, Edinburgh: University 

of Edinburgh. 

Duncan, A. J. & Milne, J. A. (1989). Glucosinolates. Aspects of Applied Biology 19,75- 

92. 

Duncan, A. J. & Milne, J. A. (1992). Rumen microbial degradation of allyl cyanide as a 

possible explanation for the tolerance of sheep to brassica-derived glucosinolates. 

Journal of the Science of Food and Agriculture 58,15-19. 

Duncan, Al, Rabot, S. & Nugon-Baudon, L. (1995). Urinary mercapturic acids as 

markers for the estimation of isothiocyanate release from parent glucosinolates in the 

digestive tract of rats. In Proceedings of the 9th international rapeseed congress, 

rapeseed today and tomorrow, pp. 928-929 D. Murphy, editor. Cambridge: Organising 

committee of the 9th international rapeseed congress. 

Duncan, A. J., Rabot, S. & Nugon-Baudon, L. (1997). Urinary mercapturic acids as 

markers for the determination of isothiocyanate release from glucosinolates in rats fed a 

cauliflower diet. Journal of the Science of Food and Agriculture 214-220. 

Eklind, KI, Morse, M. A. & Chung, F. (1990). Distribution and metabolism of the 

natural anticarcinogen phenethyl isothiocyanate in A/J mice. Carcinogenesis 11,2033- 

2036. 

137 



Elfoul, L. (1999). Bioconversion de la sinigrine, microconstitutant des ldguines 

cruciferes, par une souche colique humaine de Bacteroides thetaiotaomicron. PhD 

thesis, Orsay: Universite de Paris-Sud. 

Elfoul, L., Rabot, S., Duncan, A. J. &Goddyn, L. (1999). Glucosinolate metabolism by a 

human intestinal bacterial strain of Bacteroides thetaiotaomicron in gnotobiotic rats. In 

Agri-Food quality II. Quality manageinent of fruits and vegetables, pp. 294-296 M. 

Hagg, R. Ahvenainen, A. M. Evers, & K. Tiilikk-ala, editors. Cambridge: Royal Society 

of Chemistry. 

Elfoul, L., Rabot, S., Duncan, Al, Goddyn, L., Khelifa, N. & Rimbault, A. (1998). 

Role of a human digestive strain of Bacteroides thetaiwaomicron in the metabolism of 

food-bome glucosinolates. Reproduction Nutrition Development 38,214-216. 

Elfving, S. (1980). Studies on the naturally occuring , goitrinogen 5-phenyl-2- 

thioxazolidone. Annals of Clinical Research 201,7-47. 

Fahey, J. W., Zhang, Y. & Talalay, P. (1997). Broccoli sprouts: an exceptionally rich 

source of inducers of enzymes that protect against chemical carcinogens. Proceedings of 

the National Academy of Sciences of the United States ofAmerica - Medical Sciences 94, 

10367-10372. 

Fairweather-Tait, S. J. (1998). Trace element bi oavai lability. In Role of trace elementsfor 

health promotion and disease prevention, pp. 29-39 B. Sandstrbm and P. Walter, editors. 
Basel: Karger. 

Falk, A., Xue, J., Lenman, M. & Rask, L. (1992). Sequence of cDNA clone encoding 

the enzyme myrosinase and expression of myrosinase in different tissues of Brassica 

napus. Plant Science 83,181-186. 

138 



Faulkner, K., Mithen, R. & Williamson, G. (1998). Selective increase of the potential 

anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis 19, 

605-609. 

Farooqui, M. Y. H., Ybarra, B. & Piper, J. (1993). Toxicokinetics of allyInitrile in rats. 

Drug Metabolism and Disposition 21,460-466. 

Fenwick, G. R. & Heaney, R. K. (1983). Glucosinolates and their breakdown products in 

cruciferous crops, foods and feedingstuffs. Food Chemistry 11,249-27 1. 

Fenwick, G. R., Heaney, RX & Mullin, W. J. (1983). Glucosinolates and their 
breakdown products in food and food plants. CRC Critical Reviews in Food Science and 
Nutrition 18,123-201. 

Forss, D. A. & Barry, T. N. (1983). Observations on nitrile production during autolysis of 

kale and swedes, and their stability during incubation with rumen fluid. Jounial of the 

Science of Food and Agriculture 34,1077-1084. 

Freig, A. A. H., Campbell, L. D. & Stanger, N. E. (1987). Fate of ingested glucosinolates 
in poultry. Nutrition Reports International 36,1337-1345. 

Getahun, S. M. & Chung, F. (1999). Conversion of glucosinolates to isothiocyanates in 

humans after ingestion of cooked watercress. Cancer Epidemiology, Biomarkers & 

Prevention 8,447-45 1. 

Gil, V. & MacLeod, A. J. (1980). The effects of pH on glucosinolate degradation by a 

thioglucoside glucohydrolase preparation. Phytochemistry 19,2547-2551. 

Goodman, I., Faits, J. R., Bresnick, E., Menegas, R. & Ifitchings, G. H. (1959). A 

mammalian thioglycosidase. Science 130,450-451. 

139 



Gbrlcr, K., Krumbiegel, G., Mennicke, W. H. & Siehl, H-U. (1982). The metabolism of 

benzyl isothiocyanate and its cysteine conjugate in guinea-pigs and rabbits. Xenobiotica 

12,535-542. 

Greer, M. A. (1962). The natura. 1 occurence of goitrogenic agents. Recent Progress in 

Honnonal Research 18,187-219. 

Grob, K.. & Matile, P. H. (1979). Vacuolar location of glucosinolates in horseradish root 

cells. Plant Science Letters 14,327-335. 

Hanley, A. B., Kwiatkowska, C. A. & Fenwick, G. R. (1990). Enzymic hydrolysis of 

glucosinolates in a low water system. Journal of the Science of Food and Agriculture 51, 

417-420. 

Harris, R. E., Bunch, A. W. & Knowles, C. J. (1987). Microbial cyanide and nitrile 

metabolism. Science Progress 71,293-304. 

Heaney, R. K. & Fenwick, G. R. (1980). Glucosinolates in Brassica vegetables. Analysis 

of 22 varieties of Brussels sprouts (Brassica oleracea var. geminifera). Journal of the 
Science of Food and Agriculture 31,785-793. 

Heaney, R. K. & Fenwick, G. R. (1981). A micro-column method for the rapid 

determination of total glucosinolate content of cruciferous material. Zeitschrift fUr 

Pflanzenziichtung - Journal of Plant Breeding 87,89-95. 

Hecht, S. S. (1995). Chemoprevention by isothiocyanates. Journal of Cellular 

Biochemistry supplement 22,195-209. 

140 



Hecht, S. S. (1999). Chernoprevention of cancer by isothiocyanates, modifiers of 

carcinogen metabolism. Journal of Nutrition 129,768S 774S. 

Helboe, P., Olsen, 0. & Sorensen, H. (1980). Separation of glucosinolates by high- 

performance liquid chromatography. Joumal of Chromatography 197,199-205. 

Holland, B., Unwin, I. D. & Buss, D. H. (199 1). Vegetables, herbs and spices. The fifth 

supplement to McCance and Widdowson's The Composition of Food. 4th ed., 

Cambridge, UK: Royal Society of Chemistry. 

Ioannou, Y. M., Burka, L. T. & Matthews, H. B. (1984). Allyl isothiocyanate: 

comparative disposition in rats and mice. Toxicology and Applied Phannacology 75, 

173-181. 

Iori, R., Rollin, P., Streicher, H., Thiem, J. & Palmieri, S. (1996). The myrosinase- 

glucosinolate interaction mechanism studied using some synthetic competitive 
inhibitors. FEBS Letters 385,87-90. 

Jacotot, B. & Le Parco, J. (1992). Nutrition et alimentation, Abrege ed., Paris: Masson. 

Jiao, D., Ho, C., Foiles, P. & Chung, F. (1994). Identification and quantification of the 

N-acetylcysteine conjugate of allyl isothiocyanate in human urine after ingestion of 

mustard. Cancer Epidemiology, Biomarkqrs & Prevention 3,4 87-492. 

Johnson, I. T., Williamson, G. & Musk, S. R. R. (1994). Anticarcinogenic factors in plant 

foods: a new class of nutrients? Nutrition Research Reviews 7,175-204. 

Kassie, F., Pool-Zobel, B., Parzefall, W. & KnasmUller, S. (1999). Genotoxic effects of 

benzyl isothiocyanate, a natural chemopreventive agent. Mutagenesis 14,595-603. 

f 

141 



Kassie, F., Qin, H. M., Rabot, S. & KnasmUller, S. (1999). Protection of organ specific 

genotoxic effects of 2-amino-3-methylimidazo [4,5-F] quinoline (IQ) by benzyl 

isothiocyanate (BITC), glucotropaeolin (GT) and garden cress juice in in vivo single cell 

gel electrophoresis (SCGE) assay with primary rat hepatocytes and colonocytes. 
Neoplasma 46 supplement, 41-43. 

Kirk, J. T. O. & MacDonald, C. G. (1974). 1-cyano-3,4-epithiobutane: a major product of 

glucosinolate hydrolysis in seeds from certain varieties of Brassica campestris. 

Phytochemistry 13,2611 * 

Kirlin, W. G., Cai, J., DeLong, M. J., Patten, E. J. & Jones, D. P. (1999). Dietary 

compounds that induce cancer preventive phase 2 enzymes activate apoptosis at 

comparable doses in HT29 colon carcinoma cells. Journal of Nutrition 129,1827-1835. 

Kushad, M. M., Brown, AR, Kurilich, A. C., Juvik, J. A., Klein, B. P., Wallig, M. A. & 

Jeffery, E. H. (1999). Variation of glucosinolates in vegetable crops of Brassica 

oleracea. Journal ofAgricultural and Food Chemistry 47,1541-1548. 

Langer, P., Michajlovskij, N., Sedlak, J. & Kukta, A (1971). Studies on the antithyroid 

activity of naturally occurring L-5-vinyl-2-thiooxazolidone. Canadian Journal of 
Chemistry 45,1971 

Lanzani, A., Piana, G., Cardillo, M., Rastelli, A. & Jacini, G. (1974). Changes in 

Brassica napus progoitrin induced by sheep rumen fluid. Journal of the American Oil 

Chemists'society 51,517-518. 

Lecerf, J. M. (1996). La nutrition, Paris: Edition Privat. 

142 



Leoni, 0., lori, R., Palmieri, S., Esposito, E., Menegatti, E., Cortesi, R. & Nastruzzi, C. 

(1997). Myrosinase-generated isothiocyanate from glucosinolates: isolation, 

characterization and in vitro anti proliferative studies. Bioorganic & Medicinal Chemistry 

5,1799-1806. 

Lo, M. T. & Hill, D. C. (1972). Glucosinolates and their hydrolytic products in intestinal 

contents, facces and blood and urine of rats dosed with rapeseed meals. Canadian 

Jounial of Pharmacology 50,962 

Ludikhuyze, L., Rodrigo, L. & Hendrickx, M. (2000). The activity of myrosinase from 

Broccoli (Briissica oleracea L. cv. italica): influence of intrinsic and extrinsic factors. 

Journal o Food Protection 63,400-403. f 

Lund, E. K., Smith, T. K., Latham, P., Clarke, R. & Johnson, I. T. (2000). Influence of 

biologically active food constituents on apoptosis and cell cycle in colorectal epithelia] 

cells. In Dietary anticarcinogens and antimutagens - chernical and biological aspects, 

pp. 333-337 1. T. Johnson and G. R. Fenwick, editors. Cambridge: Royal Society of 

Chemistry. 

Macfarlane, G. T. & Cummings, J. H. (1991). The colonic flora, fermentation and large 

bowel digestive function. In The large intestine: physiology, pathophysiology and 
disease, pp. 51-91 F. Philips, J. H. Pemberton and R. G. Shorter, editors. New York: 

Paven Press, Ltd. 

Macfarlane, G. T. & Gibson, G. R. (1994). Metabolic Activities of the normal colonic 
flora. In Human Health: the contribution of microorganisms, pp. 17-52 S. A. W. Gibson, 

editor. London: Springer Verlag. 

MacLeod, A. J. & Islam, R. (1975). Volatile flavour components of watercress. Joumal 

of the Science of Food and Agriculture 26,1545-1550. 

143 



MacLeod, A. J., Panesar, S. S. & Gil, V. (1981). Thermal degradation of glucosinolates. 

Phytochemistry 20,977-980. 

MacLeod, Al & Rossiter, J. T. (1985). The occurrence and activity of epithiospecifier 

protein in some Cruciferae seeds. Phytochemistry 24,1895-1898. 

Maisonneuve, S. (1995). M6tabolisme in vitro de deux glucosinolates par des souches 
bacteriennes "myrosinase +" isolees d'uneflore intestinale humaine. MSc thesis, Orsay: 

Universit6 Paris XI. 

Markus, B. & Kwon, C. (1994). In vitro metabolism of aromatic nitriles. Journal of 

Phannaccutical Sciences 83,1729-1734. 

Maskell, I. & Smithard, R. (1994). Degradation of glucosinolates during in vitro 
incubations of rapeseed meal with myrosinase (EC 3.2.3.1) and with pepsin (EC 

3.4.23.1)-hydrochloric acid, and contents of porcine small intestine and caecum. British 

Jounial offutrition 72,455-466. 

McDanell, R., McLean, A. E. M., Hanley, A. B., Heaney, R. K. & Fenwick, G. R. (1988). 

Chemical and biological properties of indole glucosinolates (glucobrassicins): a review. 

Food and Chemical Toxicology 26,59-70. 

McDannell, R., Maclean, A. E. M., Hanley, A. B., Heaney, R. K. & Fenwick, G. R. (1987). 

Differential induction of Mixed-Function Oxidase (MFO) activity in rat liver and 
intestine by diets containing processed cabbage: correlation with cabbage levels of 

glucosinolates and glucosinolate hydrolysis products. Food and Chemical Toxicology 

25,363-368. 

144 



McGregor, D. I., Mullin, W. J. & Fenwick, G. R. (1983). Review of analysis of 

glucosinolates- Analytical methodology for determining glucosinolate composition and 

content. Journal of the Association of Official Analytical Chemists 66,825-848. 

McMillan, M., Spinks, E. A. & Fenwick, G. R. (1986). Preliminary observations on the 

effect of dietary Brussels sprouts on thyroid function. Human Toxicology 5,15-19. 

Mennicke, W. H., Gbrler, K. & Krumbiegel, G. (1983). Metabolism of some naturally 

occuring isothiocyanates in the rat. Xenobiotica 13,203-207. 

Mennicke, W. H., G6rler, K., Krumbiegel, G., Lorenz, D. & Rittmann, N. (1988). 

Studies on the metabolism and excretion of benzyl isothiocyanate in man. Xenobiotica 

18,441-447. 

Mennicke, W. H., Kral, T., Krumbiegel, G. & Rittmann, N. (1987). Determination of N- 

acetyl-S-(N-alkylthiocarbamoyl)-L-cysteine, a principal metabolite of alkyl 
isothiocyanates, in rat urine. Journal of Chromatography - Biomedical Applications 414, 

19-24. 

Michaelsen, S., Otte, J., Simonsen, L. -O. & Sorensen, H. (1994). Absorption and 

degradation of individual intact glucosinolates in the digestive tract of rodents. Acta 

Agriculturae Scandinavica Section A Animal Science 44,25-37. 

Michajlovskij, N., Sedlak, J., Jusic, M. & Buzina, R. (1969). Goitrogenic substances of 
kale and their possible relations to the endemic goitre on the island of Krk (Yugoslavia). 

Endrocrinologia Experimentalis 3,65-72. 

Minchinton, I. R., Sang, J. P., Burke, D. & Truscott, R. J. W. (1982). Separation of 

desulphoglucosinolates by reversed-phase high-perfornance liquid chromatography. 

Journal of Chromatography 247,141-148. 

145 



Ministry of Agriculture, Fisheries and Food. (1998). National Food Survey 1998 - 
Annual report on food expenditure, consumption and nutrient intakes, London: The 

Stationery Office. 

Mithen, R. F., Dekker, M., Verkerk, R., Rabot, S. & Johnson, I. T. (2000). Review: The 

nutritional significance, biosynthesis and bioavailability of glucosinolates in human 

foods. Journal of the Science of Food and Agriculture 80,967-984. 

Monde, K., Takasugi, M., Lewis, J. A. & Fenwick, G. R. (1991). Time-course studies of 

phytoalexins and glucosinolates in UV-irradiated turnip tissue. Zeitschrift jWr 

Naturforschung (Section C Biosciences) 46,189-193. 

Musk, S. R. R. & Johnson, I. T. (1993). Allyl. isothiocyanate is selectively toxic to 

transformed cells of the human colorectal tumor line HT29. Carcinogenesis 14,2079- 

2083. 

Musk, S. R. R., Smith, T. K. & Johnson, I. T. (1995). On the cytotoxicity and genotoxicity 

of allyl and phenethyl isothiocyanates and their parent glucosinolates sinigrin and 

gluconasturtfin. Mutation Research 348,19-23. 

Nastruzzi, C., Cortesi, R., Esposito, E., Menegatti, E., Lconi, 0., Iori, R. & Palmieri, S. 

(1996). In vitro cylotoxic activity of some glUcoSinolate-derived products generated by 

myrosinase hydrolysis. Journal ofAgricultural and Food Chemistry 44,1014-102 1. 

Nastruzzi, C., Cortesi, R., Esposito, E., Menegatti, E., Leoni, 0., Iori, R. & Palmieri, S. 

(2000). In vitro antiproliferative activity of isothiocyanates and nitriles generated by 

myrosinase-mediated hydrolysis of glucosinolates from seeds of cruciferous vegetables. 

Journal ofAgricultural and Food Chemistry 48,3572-35ý5. 

146 



Negrusz, A., Moore, C. M., McDonagh, N. S., Woods, E. F., Crowell, J. A. & Levine, B. S. 

(1998). Determination of phenethylamine, a phenethyl isothiocyanate marker, in dog 

plasma using solid-phase extraction and gas chromatography-mass spectrometry with 

chemical ionization. Journal of Chromatography B. 718,193-198. 

Nijhoff, W. A., Grubben, J. A. L., Nagengast, F. M., Jansen, J. B. M. J., Verhagen, H., Van 

Poppel, G. & Peters, W. H. M. (1995). Effects of consumption of Brussels sprouts on 

intestinal and lymphocytic glutathione S-transferases in humans. Carcinogenesis 16, 

2125-2128. 

Nugon-Baudon, L. & Rabot, S. (1994). Glucosinolates and glucosinolate derivatives: 

implications for protection against chemical carcinogenesis. Nutrition Research Reviews 

205-231. 

Nugon-Baudon, L., Rabot, S., Wal, J. & Szylit, 0. (1990). Interactions of the intestinal 

microflora with glucosinolates in rapeseed meal toxicity: first evidence of an intestinal 

lactobacillus possessing a myrosinase-like activity in vivo. Journal of the Science of 

Food and Agriculture 52,547-559. 

Nugon-Baudon, L., Szylit, 0. & Raibaud, P. (1988). Production of toxic glucosinolate 
derivatives from rapeseed meal by intestinal microflora. of rat and chicken. Joumal of the 
Science of Food and Agriculture 43,299-308. 

Oginsky, E. L., Stein, A. E. & Greer, M. A. (1965). Myrosinase activity in bacteria as 

demonstrated by the conversion of progoitrin to goitrin. Proceedings of the Society for 

Experimental Biology and Medicine 119,360-365. 

Ohtsuru, M. & Hata, T. (1973). General characteristics of the intracellular myrosinase 
from Aspergillus niger. Agricultural and Biological Cheinistry 37,2543-2549. 

147 



Ohtsuru, A& Hata, T. (1979). The interaction of L-ascorbic acid with the active center 

of myrosinase. Biochinzica et Biophysica Acta 597,3 84-3 9 1. 

Ohtsuru, M., Tsuruo, I. & Hata, T. (1973). The production and stability of intracellular 

myrosinase of Aspergillus niger. Agricultural and Biological Chemistry 37,967-971. 

Palmieri, S., Iori, R. & Leoni, 0. (1987). Comparison of methods for determining 

myrosinase activity. Journal of the Science of Food and Agriculture 35,617-62 1. 

Palop, M. L., Smiths, J. P. & Ten Brink, B. (1995). Degradation of sinigrin by 

Lactobacillus agilis strain R16. International Journal of Food Microbiology 26,219- 

229. 

Petroski, R. J. & Tookey, H. L. (1982). Interaction of thioglucoside glucohydrolase and 

epithiospecifier -protein of cruciferous plants to fonn 1-cyanoepithioalkanes. 

Phytochemistry 21,1903-1905. 

Pihakaski, K. & Pihakaski, S. (1978). Myrosinase in Brassicaceae (Cruciferae); 

myrosinase activity in different organs of Sinapis alba L. - Journal of Experimental 

Botany 29,335-345. 

Pilon, D., Roberts, A. E. & Rickert, D. E. (1988). Effect of glutathione depletion on the 

irreversible association of acrylonitrile with tissue macromolecules after oral 

administration to rats. Toxicology andApplied Pharmacology 95,311-320. 

Pintao, A. M., Pais, M. S. S., Coley, H., Kelland, L. R. & Judson, I. R. (1995). In-vitro and 

in-vivo antitumor-activity of benzyl isothiocyanate: a natural product from Tropaeolum 

majus. Planta Medica 61,233-236. 

148 



Prestera, T., Fahey, J. W., Holtzclaw, W. D., Abeygunawardana, C., Kachinski, J. L. & 

Talalay, P. (1996). Comprehensive chromatographic and spectroscopic methods for the 

separation and identification of intact glucosinolates. Analytical Biochemistry 239,168- 

179. 

Rabot, S., Guerin, C., Nugon-Baudon, L. & Szylit, 0. (1995). Glucosinolate degradation 

by bacterial strains isolated from a human intestinal microflora. In Proceedings of the 

9th international rapeseed congress, rapeseed today and tomorrow, pp. 212-214 D. 

Murphy, editor. Cambridge: Organising committee of the 9th international rapeseed 

congress. 

Rabot, S., Nugon-Baudon, L., Raibaud, P. & Szylit, 0. (1993). Rape-seed meal toxicity 

in gnotobiotic rats: influence of a whole human faecal flora or single human strains of 
I 

Escherichia coli and Bacteroides vulgatus. British Journal of Nutrition 70,323-33 1. 

Rabot, S., Nugon-Baudon, L. & Szylit, 0. (1993). Alterations of the hepatic xenobiotic- 

metabolizing enzymes by a glucosinolate-rich diet in germ-free rats: influence of a pre- 

induction with phenobarbital. British Journal of Nutrition 70,347-354. 

Ratcliffe, B., Collins, A. R., Glass, H. J., Ifillman, K. & Kemble, R. J. T. (2000). The effect 

of cooking on the protective effect of broccoli against damage to DNA in colonocytes. In 

Dietary anticarcinogens and antimutagens - Chemical and biological aspects, pp. 161- 

164 1. T. Johnson and G. R. Fenwick, editors. Cambridge: Royal Society of Chemistry. 

Roland, N., Rabot, S. & Nugon-Baudon, L. (1996). Modulation of the biological effects 

of glucosinolates by inulin and oat fibre in gnotobiotic rats inoculated with a human 

whole faecal flora. Food and Chemical Toxicology 34,671-677. 

149 



Rose, P., Faulkner, K., Williamson, G. & Mithen, R. (2000). 7-methylsulfinylheptyl and 

8-methylsulfinyloctyl isothiocyanates from watercress are potent inducers of phase H 

enzymes. Carcinogenesis 21,1983-1988. 

Rosa, E. A. S., Heaney, R. K., Rego, F. C. & Fenwick, G. R. (1994). The variation of 

glucosinolate concentration during a single day in young plants of Brassica oleracea var. 

acephala and capitata. Journal of the Science of Food and Agriculture 66,457-463. 

Rowan, T. G., Lawrence, T. L. J. & Kershaw, S. J. (1991). Effects of dietary copper and a 

probiotic on glucosinolate concentrations in ileal digesta and in faeces of growing pigs 

given diets based on rapeseed meals. Animal Feed ýcience and Technology 35,247-258. 

Rumney, C. J. & Rowland, I. R. (1992). In vivo and In vitro models of the human colonic 

flora. Critical Reviews in Food Science and Nutrition 31,299-33 1. 

Sang, J. P., Minchinton, I. R., Johnstone, P. K. & Truscott, R. J. W. (1984). Glucosinolate 

profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. 

Canadian Journal o Plant Science 64,77-93. )f 

Seow, A., Shi, C. Y., Chung, F. L., Jiao, D., Hankin, J. H., Lee, H. P., Coetzee, G. A. & Yu, 

M. C. (1998). Urinary total isothiocyanate (ITC) in a population-based sample of 

middle-aged and older Chinese in Singapore: relationship with dietary total ITC and 

glutathione S-transferase MlMIPI genotypes. Cancer Epidemiology, Biomarkers & 

Prevention 7,775-781. 

Shapiro, T. A., Fahey, J. W., Wade, K. L., Stephenson, K. K. & Talalay, P. (1998). Human 

metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates 

of cruciferous vegetables. Cancer Epidemiology, Biomarkers & Prevention 7,1091- 

1100. 

150 



Silver, E. H., Kuttab, S. H., Hasan, T. & Hassan, M. (1982). Structural considerations in 

the metabolism of nitriles to cyanide in vivo. Drug Metabolism and Disposition 10,495- 

498. 

Slominski, B. A., Campbell, L. D. & Stanger, N. E. (1988). Extent of hydrolysis in the 

intestinal tract and potential absorption of intact glucosinolates in laying hens. Jounial of 

the Science of Food and Agriculture 42,305-3 14. 

Smith, T. K., Clarke, R., Scott, J. & Johnson, I. T. (2000). Raw Brussels sprouts block 

mitosis in colorectal cancer cells (HT29) and induce apoptosis in rat colonic mucosal 

crypts in vivo. In Dietary anticarcinogens and antimutagens - Chernical and biological 

aspects, pp. 338-341 1. T. Johnson and G. R. Fenwick, editors. Cambridge: Royal 

Society of Chemistry. 

Smith, T. K., Lund, E. K., Musk, S. R. R. & Johnson, I. T. (1998). Inhibition of DMH 

induced aberrant crypt foci and induction of apoptosis in rat colon, following oral 

administration of a naturally occurring glucosinolate. Carcinogenesis 19,967-973. 

Smits, J. P., Knol, W. & Bol, J. (1993). Glucosinolate degradation by Aspergillus 

clavatus and Fusarium oxysporun? in liquid and solid-state fermentation. Applied 

Microbiology and Biotechnology 38,696-70 1. 

Sones, K., Heaney, R. K. & Fenwick, G. R. (1984). An estimate of the mean daily intake 

of glucosinolates from cruciferous vegetables in the UK. Journal of the Science of Food 

and AgHculture 35,712-720. 

Spamins, V. L., Venegas, P. L. & Wattenberg, L. W. (1982). Glutathione S-transferase 

activity: enhancement by compounds inhibiting chemical carcinogenesis and by dietary 

constituents. Journal of the National Cancer Institute 68,493-496. 

151 



Spinks, E. A., Sones, K. & Fenwick, G. R. (1984). The quantitative analysis of 

glucosinolates in cruciferous vegetables, oilseeds and forage crops using high 

perfonnance liquid chromatography. Fette Seifen Anstrichmittel 6,228-23 1. 

Springett, M. B. & Adams, J. B. (1989). Properties of Brussels sprouts thioglucosidase. 

Food Chemistry 33,173-186. 

Steinkellner, H., Metsch, G., Sreerama, L., Haidinger, G., Gsur, A., Kundi, A& 

KnasmUller, S. (2000). Induction of glutathione-S-transferases in humans by vegetable 
diets. In Dietary anticarcinogens and antimutagens - Chemical and biological aspects, 

pp. 193-198 1. T. Johnson and G. R. Fenwick, editors. Cambridge: Royal Society of 
Chemistry. 

Steinmetz, K. A. & Potter, J. D. (1991). Vegetables, fruit, and cancer. 1. Epidemiology. 

Cancer Causes and Control 2,325-357. 

Stoewsand, G. S., Anderson, J. L. & Lisk, D. J. (1986). Changes in liver glutathione S- 

transferase activities in Cotumix quail fed municipal sludge-grown cabbage with 

reduced levels of glucosinolates. Proceedings of the Society for Experimental Biology 

and Medicine 182,95-99. 

Stoner, G. D., Adams, C., Kresty, LA., Amin, S. G., Desai, D., Hecht, S. S., Murphy, S. E. 

& Morse, M. A. (1998). Inhibition of Y-nitrosonomicotine-induced esophageal 

tumorigenesis by 3-phenylpropyl isothiocyanate. Carcinogenesis 19,2139-2143. 

Strugala, G. J., Stahl, R., Elsenhans, B., Rams, A. G. & Forth, W. (1995). Small- 

intestinal transfer mechanism of prunasin, the primary metabolite of the cyanogenic 

glycoside amygdalin. Human and Experimental Toxicology 14,895-901. 

152 



Szabo, S. & Reynolds, E. S. (1975). Structure-activity relationships for ulcerogenic and 

adrenocorticolytic effects of alkyl nitriles, amines and thiols. Environmental Health 

Perspectives 11,135-140. 

Tang, C., Bhothipaksa, K. & Frank, H. A. (1972). Bacterial degradation of benzyl 

isothiocyanate. Applied Microbiology 23,1145-1148. 

Tani, N., Ohtsuru, M. & Hata, T. (1974). Isolation of myrosinase producing 

microorganism. Agricultural and Biological Chemistry 38,1617-1622. 

Tanii, H., Hashimoto, K. & Harada, A. (1993). Effect of carbon tetrachloride on 

allylnitrile-induced head twitching. Environmental Research 61,140-149. 

Thangstad, O. P., Iversen, T., Slupphaug, G. & Bones, A. M. (1990). 

Immunocytochemical localization of myrosinase in Brassica napus L.. Planta 180,245- 

248. 

Tookey, H. L. & Wolff, I. A. (1970). Effect of organic reducing agents and ferrous ion on 

thioglucosidase activity of Crambe abyssinica seed. Canadian Journal of Biochemistry 

48,1024-1028. 

Uda, Y., Kurata, T. & Arakawa, N. (1986). Effects of pH and ferrous ion on the 

degradation of'glucosinolates by myrosinase. Agricultural and Biological Chemistry 50, 

2735-2740. 

Van B. 1aderen, P. J., Delbressine, L. P. C., Hoogeterp, U., Beaumont, A. H. G. M., Breimer, 

D. D., Seutter-Berlage, F. & Van der Gen, A. (1981). Formation of mercapturic acids 
from acrylonitrile, crotonitrile, and cinnamonitrile by direct conjugation and via an 
intermediate oxidation process. Drug Metabolism and Disposition 9,246-249. 

153 



Van Doom, H. E., Van Holst, G., Van der Kruk, G. C., Raaijmakers-Ruijs, N. C. M. E. & 

Potsma, E. (1998). Quantitative detennination of the glucosinolates sinigrin and 

progoitrin by specific antibody ELISA assays in Brussels sprouts. Joumal of 

Agricultural and Food Chemistry 46,793-800. 

Van Poppel, G., Verhoeven, D. T. H., Verhagen, H. & Goldbohm, R. A. (1999). Brassica 

vegetables and cancer prevention- epidemiology and mechanisms. In Advances in 

Nutrition and Cancer 2, pp. 159-169 Zappia, editor. New York: Kluwer Academic/ 

Plenum Publishers. 

VanEtten, C. H., Daxenbichler, M. E., Peters, J. E. & Tookey, H. L. (1966). Variation in 

enzymatic degradation products from the major thioglucosides in Crambe abyssinica and 

Brassica napus seed meals. Joun7al ofAgricultural and Food Chemistry 14,426-430. 

VanEtten, C. H., Daxenbichler, M. E., Williams, P. H. & Kwolek, W. F. (1976). 

Glucosinolates and derived products in cruciferous vegetables. Analysis of the edible 

part from twenty-two varieties of cabbage. Journal of Agricultural and Food Chemistry 

24,452-455. 

Verhagen, H., deVries, A., Nijhoff, W. A., Schouten, A., Van Poppel, G., Peters, W. H. M. 

& Van den Berg, H. (1997). Effect of Brussels sprouts on oxidative DNA-damage in 

man. Cancer Letters 114,127-130. 

Verhoeven, D. T. H., Goldbohm, R. A., Van Poppel, G., Verhagen, H. & Van den Brandt, 

P. A. (1996). Epidemiological studies on Brassica vegetables and cancer risk. Cancer 

Epidemiology, Biomarkers & Prevention 5,733-748. 

Verhoeven, D. T. H., Verhagen, H., Goldbohm, R. A., Van den Brandt, P. A. & Van 

Poppel, G. (1997). A review of mechanisms underlying anticarcinogenicity by brassica 

vegetables. Chemico-Biological Interactions 103,79-129. 

154 



Vermorel, A& Evrard, J. (1987). Valorization of rapeseed meal. 4. Effects of iodine, 

copper and ferrous salt supplementation in growing rats. Reproduction Nutrition 

Development 27,769-779. 

Wallsgrove, R., Bennett, R. N. & Doughty, K. (2000). Glucosinolates. In Plant amino 

acids - Biochemistry and biotechnology, pp. 523-561 B. K. Singh, editor. 

Wathelet, J. P., Marlier, M., Mayombo, A. P. & Istasse, L. (1995). Glucosinolate 

degradation of rapeseed meal in the rumen of bulls. In Proceedings of the 9th 

international rapeseed congress Rapeseed today and tomorrow, pp. 200-202 D. 

Murphy, editor. Cambridge: Organising committee of the 9th intemational rapeseed 

congress. 

Watson, S. H. & Kohlmeier, L. (1999). Crucifera, glucosinolates and colon cancer. 

FASEB Joumal 13, A919 

Wattenberg, L. W. (1977). Inhibition of carcinogenic effects of polycyclic hydrocarbons 

by benzyl isothiocyanate and related compounds. Journal of the National Cancer 

Institute 2,395-398. 

Westley, J. (1988). Mammalian cyanide detoxification with sulphane sulphur. In 

Cyanide compounds in biology (CIBA Foundation Symposium 140), pp. 201-218 D. 

Evered and S. Harnett, editors. Chichester: John Wiley & Sons. 

Wilkinson, A. P., Rhodes, M. J. C. & Fenwick, R. G. (1984). Myrosinase activity of 

cruciferous vegetables. Journal of the Science of Food and Agriculture 35,543-552. 

Willhite, C. C. & Smith, R. P. (1981). The role of cyanide liberation in the acute toxicity 

of aliphatic nitriles. Toxicology and Applied Pharmacology 59,5 89-602. 

155 



Yen, G. & Wei, Q. (1993). Myrosinase activity and total glucosinolate content of 

cruciferous vegetables, and some properties of cabbage myrosinase in Taiwan. Joumal 

of the Science of Food and Agriculture 61,471-475. 

Youngs, C. G. & Wetter, L. R. (1967). Microdetermination of the major individual 

isothiocyanates and oxazolidinethione in rapeseed. The Journal of the American Oil 

Chemists'society 44,551-554. 

Zhang, Y. & Talalay, P. (1994). Anticarcinogenic activities of organic isothiocyanates: 0 
chemistry and mechanisms. Cancer Research 54 supplement, 1976s- 198 1s. 

Zhang, Y., Talalay, P., Cho, C. & Posner, G. H. (1992). A major inducer of 

anti carcinogenic protective enzymes from broccoli: isolation and elucidation of 

structure. Proceedings of the National Academy of Sciences of the United States of 

America - Medical Sciences 89,2399-2403. 

156 



APPENDIX 1: 

Synthesis of 

N-acetyl-S-(N-alkyl thiocarbamoyl). L-cysteine, dicyclohexylamine salt. 
(adapted from Mennicke et al, 1983) 

I- Two grams N-acetyl cysteine are dissolved in 25 ml sterilised water 
2- Solution is adjusted to pH = 8-9 

3- Solution is mixed with 15 ml. pyridine and maintained at 401C in a water bath 

4- Four grams isothiocyanate are dissolved in 10 ml pyridine 
5- Isothiocyan ate-pyri dine solution is added to N-acetyl cysteine 
6- Excess of reactives are extracted in 50 ml toluene (5 extractions) 
7- Aqueous residue is adjusted to pH =3 
8- N-acetyl-cysteine conjugates are extracted with ethyl acetate (two extractions) 
9- Ethyl acetate extracts are pooled and washed free of acid with sterilised water 

10- Ethyl acetate extracts are dried over anhydrous Na2SO4 

11- Residues are washed with petroleum ether and dissolved in 3 ml ethyl acetate 

12- 0.5 ml dicyclohexylamine are added to residues 
13- Precipitate is crystallised at -20'C 
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APPENDIX 2: 

Preparation of urine samples for analysis of mercapturic acids by HPLC 

(adapted from Duncan et al, 1997) 

Standard mix and Internal standard solutions : 

The appropriate N-acetyl-S-(N-alkylthiocarbamoyl)-L-cysteine, dicyclohexylamine 

salt is dissolved in 500 ml. l" ethanol to a final concentration of 1.5 mM. 

Standard solutions are stored at 4'C and remain stable for 12 days 

Protocol: 

Samples are prepared in duplicate 

1.200, ul of urine or standard mix are added to screw-top test tube 

2.200 Al of internal standard solution are added 

3.600 Al of distilled water are added 

4. Thioureas are formed by addition of 50 Al butylamine to test-tubes 

5. Test tubes are capped and incubated at 60'C for 30 minutes 

6. After cooling (10 min), excess butyl amine is buffered by addition of 300 Al 25% 

sulfuric acid 

7. Thioureas are extracted in 5 ml diethyl ether 

& Ether phase is washed with 1 ml 1M NaOH and lml of distilled water (twice) 

9. Anti-bumping granules are added to test tube and diethyl ether is evaporated 

under vacuum at -5'C 
10. When evaporated, thioureas, are re-suspended in 700jul 50% acetonitrile before 

BPLC analysis. 
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APPENDIX 3: 

Sample of ANOVA table for Experiment 2 

General Analysis of Variance 
BLOCK isolator + isolator. rat + isolator. period + isolator. rat. period 
TREATMENTS (period*day)+(diet*dose*status) 
COVARIATE "No Covariate" 

Variate: butyl mercapturic acid 

Source of variation d. f. (m. v. ) S. S. m. s. V. r. F pr. 

isolator stratum 
status 1 
Residual 2 

isolator. rat stratum 12 

isolator. period stratum 
period 
diet 
diet. status 
Residual 

isolator. rat. period stratum 
12 

isolator. rat. period. *Units* stratum 
day I 
period. day 1 
dose 
diet. dose 
dose. status I 
diet. dose. status I 
Residual 25(l) 

Total 62(l) 
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APPENDIX 4a: 

Questionnaire addressed to applicants for the human study 

CONFIDENTIAL Volunteer no: ............ 
QUESTIONNAIRE 

This questionnaire is established to provide necessary information for the undertaking of the study 
entitled., Study on the effect offood processing on the release of anticancer derivativesfrom 
cabbage. Data provided by volunteer will remain confidential and will not be usedfor other purposes 
or studies. Ifyou do not wish to answer to some questions please specify so or refer to the investigator 

I-Personal Detail: 

1.1-Name: ............................................................ 
1.2-Address: ......................................................................... 
............................... -0 ....... o ........ 0 .... 0 ................................. o ........ 0 ............................... 
1.3-Contact no: home: .......................... oo ......... 

work:... ... 0 .................. 0 ...... 
1.4-Age: ..................... o ......... o ............................. o. 
1.5-Weight: .......... o ...... 0 .......... 0.0 ........ 0 ....... 0 .......... 
1.6-Height: .................................................... o ...... 
1.7-Are you a smoker?: (tick as appropriate) Yes No 

1.8- Have you been involved in human trial before? Yes = No = 

2-Health condition: 

Tick as appropriate : 

Yes No Don't 
know 

2.1- Do you consider yourself in a good health? 
2.2- Have you consulted a doctor in the past four weeks? 
2.3- Have you been admitted to the hospital in the past six 
months? 
2.3-Do you regularly take any medications ? 
2.4-Are you currently under medical treatment for infection 
or illness? 
2.5- Do yu suffer from these diseases? 
Diabetes 
Hypercholesterolaernia 
Crohn's disease 
Kidney insufficiency 
Ulcer 
Food allergy (please specijý) 
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3-Food consumption: 

3.1-Could you remember and list what you have eaten in the past 24 hours? 
(List is qualitative: for instance : baked potato, cheese and mixed salad, bag of 
crisps, chocolate bar) 

Breakfast: 

Lunchtime: 

Tea: 

Breaks: 

3.2-Are you vegetarian? 

3.3-What would you consider as a your main meal? 

Breakfast: 
Lunch: 
Tea: 

3.4-Do you regularly take food supplements: 
If yes, what sort?: (you may tick more than one box) 

Vitamin complement 
Minerals 
Yeast extract 

Yes = No = 

II 

II 

Yes = No = 

Cod liver oil= 
Vitamin C= 

Others: 
Sp ec ify: ............................................................................................................................ 
.............................................................................................................................. 
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3.5- What is your usual consumption of the vegetables below? 
Please, tick one box in the 'frequency of consumption " part to show how often you 
have each vegetables listed. 
For the "amount per day" box, look at the photographs indicated in brackets and 
write down the number of the photograph which most closely represents the amount 
you have a day when you eat thisfood. 
An example of how to complete the table is shown on the dark row: 
This person eats broccoli once a week and the portion is as big as picture 525, 

Food Eaten Frequency of consumption Amount per 
day eaten 

Never Once Once per Number of day per week Describe 
eaten per 

month 
or less 

fortnight 1 2 3 14 5 6 17 amount or 
photograph 

-, J 
Salad Picture 61 

Cooked 
vegetables 

Picture 62 

Coleslaw Picture 58 

Green Cabbage Picture 53 

White Cabbage Picture 54 

Cauliflower Picture 57 

Broccoli Picture 52 

Brussels sprouts 

Watercress 

Sauerkraut 

Mustard 

Horseradish 

Meat (chicken 
turkey, beef, pork-, 

_Iamb, 
etc.. 

Picture 41 

Fish Picture 42 

Eggs F 
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3.6-Have you any food aversion? 
Yes = No = Don't know = 

If yes specify: 
................................................................................................................... 

APPENDIX 4b: 

Determination of score for allocation of volunteers to block 

Score 
Portion size * Frequency of consumption 

Body Mass Index 

Portion size varies from 1 to 8 according to the eaten daily amount indicated by 

volunteer in the questionnaire 
Frequency of consumption varies from 1 to 28 time(s)/month 

Body Mass Index = Weight (kg)/ Height'(m) 
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APPENDIX 5: 

Sample of ANOVA table for Experiment 3 

General Analysis of Variance (with contrasts) adjusted for covariate 
BLOCK volunteer 

TREATMENTS vegetable*reg (meal; 2; mat)*day 
COVARIATE myrosinase activity 

Variate: log A/B 
Covariate: myrosinase activity 

Source of variation d. f. 
volunteer stratum 
vegetable 1 
meal. day 4 
contrastl. day 2 
contrast2. day 2 

vegetable. meal. clay 4 
vegetable. contrast Lday 2 
vegetable. contrast2. day 2 

Covariate 1 
Residual I 

volunteer. *Units* stratum 
meal 2 
contrastl 1 
contrast2 1 

day 2 
vegetable. meal 2 
vegetable. contrastl I 
vegetable. contrast2 I 

vegetable. day 2 
meal. day 4 
contrastl. day 2 
contrast2. day 2 

vegetables-meal. day 4 
vegetable-contrasti -day 2 
vegetable. contrast2. day 2 

Covariate I 
Residual 7 

Total 35 
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Appendix 6a: 
Sample of ANOVA table for Experiment 4 

General Analysis of Variance 
BLOCK animal/(day*product) 
TREATMENTS day*site*product 
COVARIATE no covariate 
ANOVA log excretion 

Variate: logexcretion 

Source of variation d. f. (m. v. ) 

animal stratum 
day. site 1 
Rýsidual 8 

animal. day stratum 
day I 
site 1 
Residual 8 

animal. product stratum 
product 1 
day. product. site 1 
Residual 8 

animal. day-product stratum 
day. product 1 
product. site 1 
Residual 8 

Total 39(l) 
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Appendix 6b: 

Sample of ANOVA table for Experiment 4 

General Analysis of Variance obtained using GENSTAT 5. 
BLOCK animal/day/time 
TREATMENTS day*site*product 
COVARIATE no Covariate 
ANOVA log excretion rate 

Variate: logexcr 
Source of variation d. f. (m. v. ) 
animal stratum 
day. site I 
Residual 8 
animal. day stratum 
day 1 
site I 
Residual 8 
animal. day. time stratum 

39(l) 
animal. day. time. *Un its* stratum 
product 1 
day. product I 
site. product I 
day. site. product 1 
Residual 54(2) 

Total 116(3) 

166 



COMMUNICATIONS 

Rouzaud, G., Duncan, A. J., Rabot, S., Ratcliffe, B., Durao, J., Garrido, S. & 

Young, S. (2000). Factors influencing the release of cancer-protective 
isothiocyanates in the digestive tract of rats following consumption of glucosinolate- 

rich brassica vegetables. In Dietary anticarcinogens and antimutagens - chemical 

and biological aspects, pp 92-95 I. T. Johnson and G. R. Fenwick, editors. 
Cambridge: Royal Society of Chemistry. 

Rouzaud, G., Duncan, Young, S. & Ratcliffe, B. (2000). Bioavailability of cancer- 

protective isothiocyanates following ingestion of cooked cabbage, coleslaw and 

mustard by healthy human subjects. Proceedings of the Summer Meeting of The 

Nutrition Society, Cork 27 -30 June (to be published). 

167 


	Rouzaud thesis coversheet
	Rouzaud thesis

