17,578 research outputs found

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    Economic model predictive control for optimal operation of combined heat and power systems

    Get PDF
    © 2019. ElsevierThe use of decentralized Combined Heat and Power (CHP) plants is increasing since the high levels of efficiency they can achieve. Hence, to determine the optimal operation of these systems in the changing energy market, the time-varying price profiles for both electricity as well as the required resources and the energy-market constraints should be considered into the design of the control strategies. To solve these issues and maximize the profit during the operation of the CHP plant, this paper proposes an optimization-based controller, which will be designed according to the Economic Model Predictive Control (EMPC) approach. The proposed controller is designed considering a non-constant time step to get a high sampling frequency for the near instants and a lower resolution for the far instants. Besides, a soft constraint to met the market constraints for the sale of electric power is proposed. The proposed controller is developed based on a real CHP plant installed in the ETA research factory in Darmstadt, Germany. Simulation results show that lower computational time can be achieved if a non-constant step time is implemented while the market constraints are satisfied.Peer ReviewedPostprint (author's final draft

    Optimal operation of combined heat and power systems: an optimization-based control strategy

    Get PDF
    The use of decentralized Combined Heat and Power (CHP) plants is increasing since the high levels of efficiency they can achieve. Thus, to determine the optimal operation of these systems in dynamic energy-market scenarios, operational constraints and the time-varying price profiles for both electricity and the required resources should be taken into account. In order to maximize the profit during the operation of the CHP plant, this paper proposes an optimization-based controller designed according to the Economic Model Predictive Control (EMPC) approach, which uses a non-constant time step along the prediction horizon to get a shorter step size at the beginning of that horizon while a lower resolution for the far instants. Besides, a softening of related constraints to meet the market requirements related to the sale of electric power to the grid point is proposed. Simulation results show that the computational burden to solve optimization problems in real time is reduced while minimizing operational costs and satisfying the market constraints. The proposed controller is developed based on a real CHP plant installed at the ETA research factory in Darmstadt, Germany.Peer ReviewedPostprint (author's final draft

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape
    • …
    corecore