988 research outputs found

    Growth and Duplication of Public Source Code over Time: Provenance Tracking at Scale

    Get PDF
    We study the evolution of the largest known corpus of publicly available source code, i.e., the Software Heritage archive (4B unique source code files, 1B commits capturing their development histories across 50M software projects). On such corpus we quantify the growth rate of original, never-seen-before source code files and commits. We find the growth rates to be exponential over a period of more than 40 years.We then estimate the multiplication factor, i.e., how much the same artifacts (e.g., files or commits) appear in different contexts (e.g., commits or source code distribution places). We observe a combinatorial explosion in the multiplication of identical source code files across different commits.We discuss the implication of these findings for the problem of tracking the provenance of source code artifacts (e.g., where and when a given source code file or commit has been observed in the wild) for the entire body of publicly available source code. To that end we benchmark different data models for capturing software provenance information at this scale and growth rate. We identify a viable solution that is deployable on commodity hardware and appears to be maintainable for the foreseeable future

    Understanding the Evolution of Android App Vulnerabilities

    Get PDF
    The Android ecosystem today is a growing universe of a few billion devices, hundreds of millions of users and millions of applications targeting a wide range of activities where sensitive information is collected and processed. Security of communication and privacy of data are thus of utmost importance in application development. Yet, regularly, there are reports of successful attacks targeting Android users. While some of those attacks exploit vulnerabilities in the Android OS, others directly concern application-level code written by a large pool of developers with varying experience. Recently, a number of studies have investigated this phenomenon, focusing however only on a specific vulnerability type appearing in apps, and based on only a snapshot of the situation at a given time. Thus, the community is still lacking comprehensive studies exploring how vulnerabilities have evolved over time, and how they evolve in a single app across developer updates. Our work fills this gap by leveraging a data stream of 5 million app packages to re-construct versioned lineages of Android apps and finally obtained 28;564 app lineages (i.e., successive releases of the same Android apps) with more than 10 app versions each, corresponding to a total of 465;037 apks. Based on these app lineages, we apply state-of- the-art vulnerability-finding tools and investigate systematically the reports produced by each tool. In particular, we study which types of vulnerabilities are found, how they are introduced in the app code, where they are located, and whether they foreshadow malware. We provide insights based on the quantitative data as reported by the tools, but we further discuss the potential false positives. Our findings and study artifacts constitute a tangible knowledge to the community. It could be leveraged by developers to focus verification tasks, and by researchers to drive vulnerability discovery and repair research efforts

    TLS on Android – Evolution over the last decade

    Get PDF
    Mobile Geräte und mobile Plattformen sind omnipräsent. Android hat sich zum bedeutendsten mobilen Betriebssystem entwickelt und bietet Milliarden Benutzer:innen eine Plattform mit Millionen von Apps. Diese bieten zunehmend Lösungen für alltägliche Probleme und sind aus dem Alltag nicht mehr wegzudenken. Mobile Apps arbeiten dazu mehr und mehr mit persönlichen sensiblen Daten, sodass ihr Datenverkehr ein attraktives Angriffsziel für Man-in-the-Middle-attacks (MitMAs) ist. Schutz gegen solche Angriffe bieten Protokolle wie Transport Layer Security (TLS) und Hypertext Transfer Protocol Secure (HTTPS), deren fehlerhafter Einsatz jedoch zu ebenso gravierenden Unsicherheiten führen kann. Zahlreiche Ereignisse und frühere Forschungsergebnisse haben diesbezüglich Schwachstellen in Android Apps gezeigt. Diese Arbeit präsentiert eine Reihe von Forschungsbeiträgen, die sich mit der Sicherheit von Android befassen. Der Hauptfokus liegt dabei auf der Netzwerksicherheit von Android Apps. Hierbei untersucht diese Arbeit verschiedene Möglichkeiten zur Verbesserung der Netzwerksicherheit und deren Erfolg, wobei sie die Situation in Android auch mit der generellen Evolution von Netzwerksicherheit in Kontext setzt. Darüber hinaus schließt diese Arbeit mit einer Erhebung der aktuellen Situation und zeigt Möglichkeiten zur weiteren Verbesserung auf.Smart devices and mobile platforms are omnipresent. Android OS has evolved to become the most dominating mobile operating system on the market with billions of devices and a platform with millions of apps. Apps increasingly offer solutions to everyday problems and have become an indispensable part of people’s daily life. Due to this, mobile apps carry and handle more and more personal and privacy-sensitive data which also involves communication with backend or third party services. Due to this, their network traffic is an attractive target for Man-in-the-Middle-attacks (MitMAs). Protection against such attacks is provided by protocols such as Transport Layer Security (TLS) and Hypertext Transfer Protocol Secure (HTTPS). Incorrect use of these, however, can impose similar vulnerabilities lead to equally serious security issues. Numerous incidents and research efforts have featured such vulnerabilities in Android apps in this regard. This thesis presents a line of research addressing security on Android with a main focus on the network security of Android apps. This work covers various approaches for improving network security on Android and investigates their efficacy as well as it puts findings in context with the general evolution of network security in a larger perspective. Finally, this work concludes with a survey of the current state of network security in Android apps and envisions directions for further improvement
    • …
    corecore