225 research outputs found

    Survey Paper Artificial and Computational Intelligence in the Internet of Things and Wireless Sensor Network

    Get PDF
    In this modern age, Internet of Things (IoT) and Wireless Sensor Network (WSN) as its derivatives have become one of the most popular and important technological advancements. In IoT, all things and services in the real world are digitalized and it continues to grow exponentially every year. This growth in number of IoT device in the end has created a tremendous amount of data and new data services such as big data systems. These new technologies can be managed to produce additional value to the existing business model. It also can provide a forecasting service and is capable to produce decision-making support using computational intelligence methods. In this survey paper, we provide detailed research activities concerning Computational Intelligence methods application in IoT WSN. To build a good understanding, in this paper we also present various challenges and issues for Computational Intelligence in IoT WSN. In the last presentation, we discuss the future direction of Computational Intelligence applications in IoT WSN such as Self-Organizing Network (dynamic network) concept

    Intelligent Energy Management with IoT Framework in Smart Cities Using Intelligent Analysis: An Application of Machine Learning Methods for Complex Networks and Systems

    Full text link
    Smart buildings are increasingly using Internet of Things (IoT)-based wireless sensing systems to reduce their energy consumption and environmental impact. As a result of their compact size and ability to sense, measure, and compute all electrical properties, Internet of Things devices have become increasingly important in our society. A major contribution of this study is the development of a comprehensive IoT-based framework for smart city energy management, incorporating multiple components of IoT architecture and framework. An IoT framework for intelligent energy management applications that employ intelligent analysis is an essential system component that collects and stores information. Additionally, it serves as a platform for the development of applications by other companies. Furthermore, we have studied intelligent energy management solutions based on intelligent mechanisms. The depletion of energy resources and the increase in energy demand have led to an increase in energy consumption and building maintenance. The data collected is used to monitor, control, and enhance the efficiency of the system

    Quality of experience aware network selection model for service provisioning in heterogeneous network

    Get PDF
    Heterogeneous wireless networks (HWNs) are capable of integrating the different radio access technologies that make it possible to connect mobile users based on the performance parameters. Further quality of service (QoS) is one of the major topics for HWNs, moreover existing radio access technology (RAT) methodology are designed to provide network QoS criteria. However, limited work has been carried out for the RAT selection mechanism considering user QoS preference and existing models are developed based on the multi-mode terminal under a given minimal density network. For overcoming research issues this paper present quality of experience (QoE) RAT (QOE-RAT) selection methodology, incorporating both network performance criteria and user preference considering multiple call and multi-mode HWNs environment. First, this paper presents fuzzy preference aware weight (FPAW) and multi-mode terminal preference aware TOPSIS (MMTPA-TOPSIS) for choosing the best RAT for gaining multi-services. Experiment outcomes show the QOE-RAT selection method achieves much superior packet transmission outcomes when compared with state-of-art Rat selection methodologies

    Adaptive learning-based resource management strategy in fog-to-cloud

    Get PDF
    Technology in the twenty-first century is rapidly developing and driving us into a new smart computing world, and emerging lots of new computing architectures. Fog-to-Cloud (F2C) is among one of them, which emerges to ensure the commitment for bringing the higher computing facilities near to the edge of the network and also help the large-scale computing system to be more intelligent. As the F2C is in its infantile state, therefore one of the biggest challenges for this computing paradigm is to efficiently manage the computing resources. Mainly, to address this challenge, in this work, we have given our sole interest for designing the initial architectural framework to build a proper, adaptive and efficient resource management mechanism in F2C. F2C has been proposed as a combined, coordinated and hierarchical computing platform, where a vast number of heterogeneous computing devices are participating. Notably, their versatility creates a massive challenge for effectively handling them. Even following any large-scale smart computing system, it can easily recognize that various kind of services is served for different purposes. Significantly, every service corresponds with the various tasks, which have different resource requirements. So, knowing the characteristics of participating devices and system offered services is giving advantages to build effective and resource management mechanism in F2C-enabled system. Considering these facts, initially, we have given our intense focus for identifying and defining the taxonomic model for all the participating devices and system involved services-tasks. In any F2C-enabled system consists of a large number of small Internet-of-Things (IoTs) and generating a continuous and colossal amount of sensing-data by capturing various environmental events. Notably, this sensing-data is one of the key ingredients for various smart services which have been offered by the F2C-enabled system. Besides that, resource statistical information is also playing a crucial role, for efficiently providing the services among the system consumers. Continuous monitoring of participating devices generates a massive amount of resource statistical information in the F2C-enabled system. Notably, having this information, it becomes much easier to know the device's availability and suitability for executing some tasks to offer some services. Therefore, ensuring better service facilities for any latency-sensitive services, it is essential to securely distribute the sensing-data and resource statistical information over the network. Considering these matters, we also proposed and designed a secure and distributed database framework for effectively and securely distribute the data over the network. To build an advanced and smarter system is necessarily required an effective mechanism for the utilization of system resources. Typically, the utilization and resource handling process mainly depend on the resource selection and allocation mechanism. The prediction of resources (e.g., RAM, CPU, Disk, etc.) usage and performance (i.e., in terms of task execution time) helps the selection and allocation process. Thus, adopting the machine learning (ML) techniques is much more useful for designing an advanced and sophisticated resource allocation mechanism in the F2C-enabled system. Adopting and performing the ML techniques in F2C-enabled system is a challenging task. Especially, the overall diversification and many other issues pose a massive challenge for successfully performing the ML techniques in any F2C-enabled system. Therefore, we have proposed and designed two different possible architectural schemas for performing the ML techniques in the F2C-enabled system to achieve an adaptive, advance and sophisticated resource management mechanism in the F2C-enabled system. Our proposals are the initial footmarks for designing the overall architectural framework for resource management mechanism in F2C-enabled system.La tecnologia del segle XXI avança ràpidament i ens condueix cap a un nou món intel·ligent, creant nous models d'arquitectures informàtiques. Fog-to-Cloud (F2C) és un d’ells, i sorgeix per garantir el compromís d’acostar les instal·lacions informàtiques a prop de la xarxa i també ajudar el sistema informàtic a gran escala a ser més intel·ligent. Com que el F2C es troba en un estat preliminar, un dels majors reptes d’aquest paradigma tecnològic és gestionar eficientment els recursos informàtics. Per fer front a aquest repte, en aquest treball hem centrat el nostre interès en dissenyar un marc arquitectònic per construir un mecanisme de gestió de recursos adequat, adaptatiu i eficient a F2C.F2C ha estat concebut com una plataforma informàtica combinada, coordinada i jeràrquica, on participen un gran nombre de dispositius heterogenis. La seva versatilitat planteja un gran repte per gestionar-los de manera eficaç. Els serveis que s'hi executen consten de diverses tasques, que tenen requisits de recursos diferents. Per tant, conèixer les característiques dels dispositius participants i dels serveis que ofereix el sistema és un requisit per dissenyar mecanismes eficaços i de gestió de recursos en un sistema habilitat per F2C. Tenint en compte aquests fets, inicialment ens hem centrat en identificar i definir el model taxonòmic per a tots els dispositius i sistemes implicats en l'execució de tasques de serveis. Qualsevol sistema habilitat per F2C inclou en un gran nombre de dispositius petits i connectats (conegut com a Internet of Things, o IoT) que generen una quantitat contínua i colossal de dades de detecció capturant diversos events ambientals. Aquestes dades són un dels ingredients clau per a diversos serveis intel·ligents que ofereix F2C. A més, el seguiment continu dels dispositius participants genera igualment una gran quantitat d'informació estadística. En particular, en tenir aquesta informació, es fa molt més fàcil conèixer la disponibilitat i la idoneïtat dels dispositius per executar algunes tasques i oferir alguns serveis. Per tant, per garantir millors serveis sensibles a la latència, és essencial distribuir de manera equilibrada i segura la informació estadística per la xarxa. Tenint en compte aquests assumptes, també hem proposat i dissenyat un entorn de base de dades segura i distribuïda per gestionar de manera eficaç i segura les dades a la xarxa. Per construir un sistema avançat i intel·ligent es necessita un mecanisme eficaç per a la gestió de l'ús dels recursos del sistema. Normalment, el procés d’utilització i manipulació de recursos depèn principalment del mecanisme de selecció i assignació de recursos. La predicció de l’ús i el rendiment de recursos (per exemple, RAM, CPU, disc, etc.) en termes de temps d’execució de tasques ajuda al procés de selecció i assignació. Adoptar les tècniques d’aprenentatge automàtic (conegut com a Machine Learning, o ML) és molt útil per dissenyar un mecanisme d’assignació de recursos avançat i sofisticat en el sistema habilitat per F2C. L’adopció i la realització de tècniques de ML en un sistema F2C és una tasca complexa. Especialment, la diversificació general i molts altres problemes plantegen un gran repte per realitzar amb èxit les tècniques de ML. Per tant, en aquesta recerca hem proposat i dissenyat dos possibles esquemes arquitectònics diferents per realitzar tècniques de ML en el sistema habilitat per F2C per aconseguir un mecanisme de gestió de recursos adaptatiu, avançat i sofisticat en un sistema F2C. Les nostres propostes són els primers passos per dissenyar un marc arquitectònic general per al mecanisme de gestió de recursos en un sistema habilitat per F2C.Postprint (published version

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    GIS-Based Forest Fire Susceptibility Zonation with IoT Sensor Network Support, Case Study—Nature Park Golija, Serbia

    Get PDF
    The territory of the Republic of Serbia is vulnerable to various natural disasters, among which forest fires stand out. In relation with climate changes, the number of forest fires in Serbia has been increasing from year to year. Protected natural areas are especially endangered by wildfires. For Nature Park Golija, as the second largest in Serbia, with an area of 75,183 ha, and with MaB Reserve Golija-Studenica on part of its territory (53,804 ha), more attention should be paid in terms of forest fire mitigation. GIS and multi-criteria decision analysis are indispensable when it comes to spatial analysis for the purpose of natural disaster risk management. Index-based and fuzzy AHP methods were used, together with TOPSIS method for forest fire susceptibility zonation. Very high and high forest fire susceptibility zone were recorded on 26.85% (Forest Fire Susceptibility Index) and 25.75% (fuzzy AHP). The additional support for forest fire prevention is realized through an additional Internet of Thing (IoT)-based sensor network that enables the continuous collection of local meteorological and environmental data, which enables low-cost and reliable real-time fire risk assessment and detection and the improved long-term and short-term forest fire susceptibility assessment. Obtained results can be applied for adequate forest fire risk management, improvement of the monitoring, and early warning systems in the Republic of Serbia, but are also important for relevant authorities at national, regional, and local level, which will be able to coordinate and intervene in a case of emergency events

    Trust-based energy efficient routing protocol for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) consist of a number of distributed sensor nodes that are connected within a specified area. Generally, WSN is used for monitoring purposes and can be applied in many fields including health, environmental and habitat monitoring, weather forecasting, home automation, and in the military. Similar, to traditional wired networks, WSNs require security measures to ensure a trustworthy environment for communication. However, due to deployment scenarios nodes are exposed to physical capture and inclusion of malicious node led to internal network attacks hence providing the reliable delivery of data and trustworthy communication environment is a real challenge. Also, malicious nodes intentionally dropping data packets, spreading false reporting, and degrading the network performance. Trust based security solutions are regarded as a significant measure to improve the sensor network security, integrity, and identification of malicious nodes. Another extremely important issue for WSNs is energy conversation and efficiency, as energy sources and battery capacity are often limited, meaning that the implementation of efficient, reliable data delivery is an equally important consideration that is made more challenging due to the unpredictable behaviour of sensor nodes. Thus, this research aims to develop a trust and energy efficient routing protocol that ensures a trustworthy environment for communication and reliable delivery of data. Firstly, a Belief based Trust Evaluation Scheme (BTES) is proposed that identifies malicious nodes and maintains a trustworthy environment among sensor nodes while reducing the impact of false reporting. Secondly, a State based Energy Calculation Scheme (SECS) is proposed which periodically evaluates node energy levels, leading to increased network lifetime. Finally, as an integrated outcome of these two schemes, a Trust and Energy Efficient Path Selection (TEEPS) protocol has been proposed. The proposed protocol is benchmarked with A Trust-based Neighbour selection system using activation function (AF-TNS), and with A Novel Trust of dynamic optimization (Trust-Doe). The experimental results show that the proposed protocol performs better as compared to existing schemes in terms of throughput (by 40.14%), packet delivery ratio (by 28.91%), and end-to-end delay (by 41.86%). In conclusion, the proposed routing protocol able to identify malicious nodes provides a trustworthy environment and improves network energy efficiency and lifetime

    A hybrid intelligent model for network selection in the industrial Internet of Things

    Get PDF
    Industrial Internet of Things (IIoT) plays an important role in increasing productivity and efficiency in heterogeneous wireless networks. However, different domains such as industrial wireless scenarios, small cell domains and vehicular ad hoc networks (VANET) require an efficient machine learning/intelligent algorithm to process the vertical handover decision that can maintain mobile terminals (MTs) in the preferable networks for a sufficient duration of time. The preferred quality of service parameters can be differentiated from all the other MTs. Hence, in this paper, the problem with the vertical handoff (VHO) decision is articulated as the process of the Markov decision aimed to maximize the anticipated total rewards as well as to minimize the handoffs’ average count. A rewards function is designed to evaluate the QoS at the point of when the connections take place, as that is where the policy decision for a stationary deterministic handoff can be established. The proposed hybrid model merges the biogeography-based optimization (BBO) with the Markov decision process (MDP). The MDP is utilized to establish the radio access technology (RAT) selection’s probability that behaves as an input to the BBO process. Therefore, the BBO determines the best RAT using the described multi-point algorithm in the heterogeneous network. The numerical findings display the superiority of this paper’s proposed schemes in comparison with other available algorithms. The findings shown that the MDP-BBO algorithm is able to outperform other algorithms in terms of number of handoffs, bandwidth availability, and decision delays. Our algorithm displayed better expected total rewards as well as a reduced average account of handoffs compared to current approaches. Simulation results obtained from Monte-Carlo experiments prove validity of the proposed model

    Integration of Data Driven Technologies in Smart Grids for Resilient and Sustainable Smart Cities: A Comprehensive Review

    Full text link
    A modern-day society demands resilient, reliable, and smart urban infrastructure for effective and in telligent operations and deployment. However, unexpected, high-impact, and low-probability events such as earthquakes, tsunamis, tornadoes, and hurricanes make the design of such robust infrastructure more complex. As a result of such events, a power system infrastructure can be severely affected, leading to unprecedented events, such as blackouts. Nevertheless, the integration of smart grids into the existing framework of smart cities adds to their resilience. Therefore, designing a resilient and reliable power system network is an inevitable requirement of modern smart city infras tructure. With the deployment of the Internet of Things (IoT), smart cities infrastructures have taken a transformational turn towards introducing technologies that do not only provide ease and comfort to the citizens but are also feasible in terms of sustainability and dependability. This paper presents a holistic view of a resilient and sustainable smart city architecture that utilizes IoT, big data analytics, unmanned aerial vehicles, and smart grids through intelligent integration of renew able energy resources. In addition, the impact of disasters on the power system infrastructure is investigated and different types of optimization techniques that can be used to sustain the power flow in the network during disturbances are compared and analyzed. Furthermore, a comparative review analysis of different data-driven machine learning techniques for sustainable smart cities is performed along with the discussion on open research issues and challenges
    corecore