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A B S T R A C T 

Industrial Internet of Things (IIoT) plays an important role in increasing productivity 
and efficiency in heterogeneous wireless networks. However, different domains such as 
industrial wireless scenarios, small cell domains and vehicular ad hoc networks 
(VANET) require an efficient machine learning/intelligent algorithm to process the 
vertical handover decision that can maintain mobile terminals (MTs) in the preferable 
networks for a sufficient duration of time. The preferred quality of service parameters 
can be differentiated from all the other MTs. Hence, in this paper, the problem with the 
vertical handoff (VHO) decision is articulated as the process of the Markov decision 
aimed to maximize the anticipated total rewards as well as to minimize the handoffs’ 
average count. A rewards function is designed to evaluate the QoS at the point of when 
the connections take place, as that is where the policy decision for a stationary 
deterministic handoff can be established. The proposed hybrid model merges the 
biogeography-based optimization (BBO) with the Markov decision process (MDP). The 
MDP is utilized to establish the radio access technology (RAT) selection’s probability 
that behaves as an input to the BBO process. Therefore, the BBO determines the best 
RAT using the described multi-point algorithm in the heterogeneous network. The 
numerical findings display the superiority of this paper’s proposed schemes in 
comparison with other available algorithms. The findings shown that the MDP-BBO 
algorithm is able to outperform other algorithms in terms of number of handoffs, 
bandwidth availability, and decision delays. Our algorithm displayed better expected 
total rewards as well as a reduced average account of handoffs compared to current 
approaches. Simulation results obtained from Monte-Carlo experiments prove validity of 
the proposed model. 

 

1. Introduction 

Heterogeneous wireless networks that are used for seamless mobility often face prominent problems in the industrial 
internet of things (IIoT), a system in which different networks and technologies are working together. This is because there 
are different factors that would significantly affect the various technologies used for accessing the network, such as the 
optimized handovers or vertical handovers. Some of these factors are congestion, load, strength of the signals, bandwidth, 
connection stability, battery life as well as other factors that are temporal and spatial. A mobile user in a heterogeneous 
wireless network might have to carry out the handovers over various network domains to sustain the connection of data and 
QoS. The VHO process can be categorized into 3 stages consisting of the information gathering handover, decision-making 
of the handoff, and the execution of the handoff. The information that is acquired is utilized to identify the present and most 
suitable networks for specific applications in the following stage which is known as the stage of handover decision-making. 
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The industrial IoT is an emerging application of IoT technologies in several situations such as automation, intelligence 
controls, smart buildings, intelligent transportations, and smart grids [1, 2]. Without the creation of an infrastructural 
network, the adoption of industrial IoT solutions will be impossible. It is important to consider specific IoT characteristics 
while adapting these techniques for wireless IoT networks. One of the important features of IoT networks is the 
collaboration among heterogeneous IoT devices. With rapid improvement in digital electronics and wireless 
communications, the application areas of the Internet of Things (IoT) have increased significantly. It now supports a wide 
range of applications including industrial automation, intelligent transportations, medical and eHealth care services [3]. 
Low-weight efficient communication between sensing devices and interoperability between different communications 
mechanisms are the critical problems faced by the IoT. 

Several challenges are present in the wireless multi-hop networks [4–7] as well as in the decision stage of the vertical 
handover while the handover procedure is going on. At certain times, the terminal is rapidly moving in its path. Thus in this 
type of robust scenarios, the algorithm that supports the VHO decision stage must also be quick and offer solutions as close 
to real-time as possible. In fact, in the future, mobility and ubiquitous network access are the main drivers for the Internet. 
However, the existing algorithms for decision making use many parameters for the loading-point mathematical 
measurements, and several parameters for the QoS or the discovered networks which are available during terminal 
movement. The high computations are in contrary to the low response time, especially in low performance processors that 
are found within most mobile devices. Thus, there is a need to design an efficient algorithm capable of performing 
intelligent decision-making and dynamic adaptation to different situations in a proper time frame due to rapid changes in 
the wireless environment. 

Existing algorithms for the vertical handover decision such as those that include computational intelligence methods 
were proposed in recent studies [8–13]. Wilson et al. [14] reported that certain algorithms are based on multiple criteria [15, 
16] which need assistance from artificial intelligence mechanisms including fuzzy logic [17], neural networks, as well as 
algorithms that genetically suffered from problems of modularity and scalability. These were not able to easily manage the 
increasing number of RATs as well as the criteria for heterogeneous wireless networks. This type of algorithms engage the 
entire input of the various RATs simultaneously to a single fuzzy logic block, which resulted in problems of modularity and 
scalability when RATs or functions of membership were increased given the tremendous rise of the amount of inference 
rules [14]. 

In addition, [18] suggested a mobile node (MN) prediction scheme that was mobile. In particular, they first utilized the 
probability as well as the process of the Dempster–Shafer to predict the tendency of the following destination for mobile 
network users that are arbitrary according to the habits of the users, such as locations that were often visited. Next, at every 
junction of the road, the chain process of the second-order Markov was applied to predict the tendency of the following 
road transition segment, based on the route of the original trip to that particular junction of the road as well as the 
destination direction. The proposed scheme was assessed based on actual mobility traces and the simulation’s findings 
showed that this proposed method outperformed other conventional methods. 

In this research, the Markov models are used to analyze the systems according to the real life system of actual behavior, 
which results in trustworthiness as well as cost-effective estimation for the prediction of performance and mobile system 
optimization.  In this work, we proposed an algorithm for decision making on vertical handoff for networks that are 
wireless and heterogeneous, and used MDP as a strong technique for making decisions in developing an adaptable 
algorithm. This issue is articulated as a process of the Markov decision that is integrated with the BBO. A link reward 
function is proposed to model the properties of the QoS. In addition, a cost function for the signaling overhead as well as 
the processing load during the occurrence of the vertical handoff is proposed. Moreover, the mobile QoS relates to the 
packet loss, delay in the VHO and the cost of signaling. The total cost for signaling is highly dependent on the information 
as well as the information gathering method. Hence, an analytical model which involves the metrics that describes the 
handoff as well as the cost of signaling, packet loss, and the VHO delay is presented to assess performance.  

The proposed technique for the dynamic handoff is based on the Markov decision process and is used to improve the 
network’s performance as inspired by [19]. It assists in finding the overall cost function. Furthermore, Markov models are 
analytical methodologies for the analysis of such systems based on actual real life system behaviors, leading to both 
credible and cost-effective approximations for performance prediction and optimization of mobile systems. Hence, the 
Markov process is utilized in the performance modeling of wireless and mobile communication systems.  

This study presents a vertical handover decision algorithm based on two main schemes, namely the BBO [20-22] as well 
as the MDP [23]. The process of the Markov decision formulates the problem. The Markov chain method is preferable 
when developing the cost model. The QoS optimal values can also be established in the wireless networks by utilizing the 
Markov process to minimize the cost function. Thus, this study’s objective is to propose a novel optimized algorithm with 
the benefit of two current approaches that address the requirements stated above. The novelty of our approach lies in the 
hybridization of Markov decision process and biogeography-based optimization algorithm. 
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There are recent relevant cases that can be adopted by our proposed hybrid model. The cases with utility potential can 
be categorized into four main classes namely industrial wireless scenarios, vehicular ad hoc network (VANET), wireless 
backhaul for small cell domains and unmanned aerial vehicles (UAV) deployment scenarios for disaster management. In 
industrial scenarios, the manufacturing cells and factories with multiple access points are serving multiple mobile robots. In 
these cases, mobile communications need to conduct vertical handovers to use robust links with low latency and higher 
mobility among multiple access points. Also, vehicular networks require seamless mobility designs because coverage is 
often incomplete with very short communication which needs high-speed transmission over heterogeneous networks that 
have different access technologies. Even though the backhaul is point-to-point, it requires a vertical handover to use the 
parallel radio links with low latency for 5G and the Internet-of-things (IoT). The usage of UAVs in disaster management 
has some networking-related research challenges such as handover among the UAVs. A handover consists of replicating 
the exact operational state in each UAV such as forwarding tables, packets in the buffer, and data fusion rules which 
increases messaging between the UAVs. Such limitations have motivated us to create intelligent algorithms that prevent 
slow and high computing linked to direct search methods thus lowering the time of computation. Motivated by these 
observations, we have proposed an efficient algorithm to perform intelligent decision-making during the vertical handover 
process. Since the importance of high latency, packet loss and signaling cost problems during handover process are 
undeniable, the lack of an effective vertical handover decision (VHD) algorithm, which could select the most optimal 
access network for handover, is sensible. The complexity of calculating the many parameters in VHD algorithms is another 
problem. Moreover, it has been shown that the use of adaptive behavior has not been fully investigated. Moreover, a well-
established algorithm for a VHD algorithm is critically required that would both create a hybrid VHD algorithm which uses 
forms of intelligence for making decisions via the utilization of mixed heuristic techniques and be able to robustly adapt to 
the various conditions when the need arises given the dynamic changes that keep occurring in the wireless environment.  
 

Compared with existing efforts, our main contributions can be summarized as follows: a) we use MDP to establish the 
radio access technology (RAT) selection’s probability; b) we use the BBO to determine the best RAT using the described 
multi-point algorithm in the heterogeneous network; c) we construct a simulation to evaluate our proposed method, and 
results show that our method can outperform mobile terminal VHO effectively in the heterogeneous network. 
Improvements in connectivity through our novel designed model serve users with a high level quality of service across 
different conditions. The proposed model can support different range of applications such as transportation safety 
applications, voice and data connections applications, conversational and streaming applications. The primary objective of 
Intelligent Transportation System (ITS) is to provide safety to human lives and improve the efficiency of the transportation 
system. To achieve this goal, ITS converges remote sensing and communication technologies. Moreover, demand for voice, 
data and multimedia servces, while moving in car, increase the importance of broadband wireless systems in ITS.  

 
The rest of the paper is organized as follows. The related work is carried out in Section 2. Section 3 describes the 

network model and Section 4 formulates the problem of the VHO as the Markov decision process.  Section 5 describes the 
process of biogeography based on optimization and presents the designed solution. Section 6 discusses the proposed 
scheme and the results obtained are expounded in this section. Finally, Section 7 will present the conclusion. 

2. Related work 

In most of the existing studies, a wireless environment is limited to a notebook or a mobile phone used over a pedestrian 
mobility scenario or a model with low mobility levels. In addition, many of these studies assess the VHO by just utilizing 
two technologies namely the WiFi and the UMTS, and only a few studies have even taken into consideration more than 
three technologies [24]. In the past decade, vehicular communication has been enhanced to include communication devices 
of short and long distances, the GPS, as well as vehicle sensing systems. The capabilities of communication utilize an 
extremely robust vehicular environment [25]. Using GPS information to enhance the process of handover and the selection 
of network within the parameter of a single wireless network has also been widely studied [26–28]. 

Existing algorithms in [29] take into account the service charges, information on received signal strength indicator 
(RSSI) and user preferences. As opposed to the conventional RSSI based algorithm, the algorithm that is proposed 
significantly improves the outcomes for users and the network due to the proposed fuzzy-based handover techniques. 
Furthermore, a fuzzy-based algorithm greatly lowers the number of handovers in comparison to a SAW-based algorithm. 
This algorithm is able to switch between GSM, WiFi, UMTS, and WiMAX. Nevertheless, this algorithm has several 
disadvantages caused by its high execution duration that could cause high handover latency. In addition, interface engine 
inputs could be become more accurate by utilizing artificial intelligence approaches, such as the neural network. The 
research excluded the effects of other environmentally linked determinants and findings in order to examine the mobile 
parameters of the QoS including the delays in handover as well as packet loss.  
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Given the emergence of new wireless technologies over the last decade, certain researches [31] have attempted to 
address the issue of VHO over various types of wireless technologies including WiFi, UMTS, LTE, ZigBee, wireless 
broadband, RFID, multimedia broadcast/multicast service, digital video broadcasting and low Earth orbit  (LEO) satellite 
[31].  Wang et al. [32] proposed a VHO approach, which utilizes certain factors including the data rate, RSS, the trend of 
movement, and the bit error rate (BER) that enables the selection of the best-suited network along with the parameter of the 
prioritized decisions. The decision tree is utilized in this approach according to the selected parameter at each node of the 
decision-making process, where it could stop or continue at that point accordingly. Moreover, this approach takes into 
consideration the underlying connecting technology including IEEE 802.11p, 3G, or WiMAX. 

Cross layer handover strategies can be projected to offer services that are seamless for mobile terminals within the 
heterogeneous networks that are wireless [33-35]. By intending to lower the delay period during handovers, the link layer 
ought to activate the handover protocols of the 3 layers in a timely manner. This would enable them to complete the 
handover processes before the present wireless link terminates. Due to the restricted power of computing within the mobile 
terminal as well as a bigger rate of packet loss in the vertical handover [36], a novel mechanism for triggering based on 
gray predictions was proposed. First, the duration needed to perform the handover was projected. Second, the time to 
trigger a Link_Going_Down was identified based on the convex optimization theory, where both the signal strength 
received from the presently linked network as well as the targeted access network was taken into account. Simulation 
findings proved that the mechanism could achieve more accurate predictions [30] using the similar prediction method [37]. 
Besides that, the rate of packet loss could be controlled to 5% where the moving speed of the terminal was 5m/s or less.  

In [38], Nadembega et al. proposed a novel dynamic access network selection algorithm which was capable of adapting 
to prevailing network conditions. Their algorithm was a dual stage estimation process where network selection was 
performed using the sequential Bayesian estimation which relied on the dynamic QoS parameters that were estimated 
through bootstrap approximation. Simulations demonstrated the effectiveness of the proposed algorithm which 
outperformed static optimization approaches in a highly efficient manner. However, this algorithm suffers from high 
computation times. Moreover, according to Ong et al. [39] the network selection problem in heterogeneous wireless 
networks with incomplete information was formulated as a Bayesian game. Every user has to decide on an optimal network 
selection based on only partial information about the preferences of other users. The dynamics of network selection were 
applied using the Bayesian best response dynamics and aggregated best response dynamics. The Bayesian Nash 
equilibrium was considered to be the solution of this game, and there was a one-to-one mapping between the Bayesian 
Nash equilibrium and the equilibrium distribution of the aggregate dynamics. The other dynamics of the network selection 
were applied using the maximization scoring function [40], designing an algorithm and protocol that takes into account the 
QoS parameters when the end user is receiving IPTV [41] and scheming depending on the requirements of the IPTV client 
[42].  Also, other proven algorithm types for the decision phase included multiple criteria decision-making (MCDM) 
algorithms, such as simple additive weighting (SAW) and technique for order preference by similarity to ideal solution 
(TOPSIS) [43]. There have been evaluations on the workings of the proposed scheme against the TOPSIS [44] and grey 
relational analysis (GRA) [45] decision-making models. 

Researchers in [46] developed an algorithm which could reduce computing time by preventing large and slow 
computing due to direct search techniques. The selection of an optimal wireless network to set the link required a metric, 
one that could relay the quality level of the network that was available within a fixed duration. The network quality was 
measured using certain weights allocated to the quality of service parameter based on user preferences. The function of 
fitness (F) was responsible for providing this measure as inputted in the phase for VHO decision making. Some of the 
algorithms in this research included the SA that was based on an adaptive method and GA which was based on an 
evolutionary method. The SEFISA is a heuristic proposition derived from the SEFI based on the Simulated Annealing (SA) 
algorithm. The algorithm for SA was instigated from the process of cooling metal, which includes searching for a final 
minimum energy structure. After going through several stages, the final structure which has a more cooled structure is 
achieved. Researchers in [46] introduced an algorithm using the Genetic Algorithms (GAs) to get a higher level of 
performance compared to the SEFISA. They managed to work through certain limitations including the generation of 
numbers, the emergence of the stop factor, overflow of limits for search space, stagnation in the optimized solution, etc. In 
the end, the Genetic Algorithms had the best performance in terms of computing time and precision even when compared 
against the better performing algorithms. 

The above related works show important results of comparison of artificial intelligence mechanisms as initial finding of 
this research. Based on comparison, hybrid approach reduces network selection time and improves mobile QoS. Ongoing 
research is required to build novel hybrid approach that is able to provide optimal outcomes but without too much 
complications with a certain level of intelligent and adaptive characteristics to manage uncertainties and to meet the robust 
mobile environment. 



d
e
h

3

n
i
m
s
d
b
n
l
s
i

s
t
o

a
T
a
m
s
c
w
a

4

T
p

In conclus
decision-maki
environment. 
handover proc

3. Network m

Wireless h
networks, wire
in this situatio
must be inter-
settings that d
demonstrates 
better, hence u
next setting de
lost as it is mo
setting demon
is better, utiliz

There are t
should aim to
that are not n
overloading th

All mobile
assumed that 
The informati
acceptable, wh
mobile establi
some other n
connectivity r
well as the pro
as the process

4. A Markov 

The subseque
process of a M

ion, based on
ing and it is ab
In the next se

cess in heterog

model 

heterogamous
eless wide are
on that are us
-linked optim
define handov
the signaling 
utilizing the A
enotes the sign
oving into a tu

nstrates the sig
zing the conce

two factors th
 maximize us

needed. This 
he network wi

e connectivity
the mobile ter
ion that is ad
hich the IETF
ishes whether 
network with 
re-routing inv
ocessing to go
ing [47]. 

decision proc

ent sections w
Markov decisi

n the literatur
ble to robustly
ection, we mai
geneous wirel

s networks co
ea (WWAN) n
sing both 3GP
ally in order 
er signaling t
in which the

ABC concept.
naling for a us
unnel or a sub
gnaling where
ept of ABC. F

hat should be 
sing a high ba
would preven
ith signaling tr

y would unde
rminal receive
dvertised from
F IP performa
the connectiv
a higher lev

olves a comp
o up. Therefo

cess used for 

will describe t
ion [48]. A de

re review, th
y adapt to situ
inly describe 
ess networks.

onsist of diff
networks, as w
PP (HSPA, ED
to ensure the 
o achieve inte

e MT is found
. Fig. 1. revea
ser who is obl
bway, as show
eby the MT is 
ig. 1. reveals t

Fig. 1.  Heter

taken into co
andwidth with
nt the degrada
raffic. 

ergo a certain
es information
m the networ
nce metrics p

vity should uti
vel of perform
plicated and ch
ore, a tradeoff 

the VHO dec

the methods u
ecision model

he hybrid VH
uations regular
the network m
 

ferent types o
well as Wirele
DGE, LTE, U
 Quality of S
egrated WiMA
d in the overl
als the MT in
liged to imple
wn in Fig. 1. t

found in the o
the MT in the

rogeneous wir

onsideration w
h a low netwo
ation of the Q

n amount of v
n from the ne
rks could eng
process is able
ilize the netwo
mance with r
hallenging pr

f occurs betwe

cision proble

used to desig
l using the Ma

HD algorithm 
rly due to the 
models involv

of networks 
ess Local Area
UMTS) as we
ervice provid
AX, WiFi, as 
lapping area a

n the overlapp
ment the hand
hrough the W
overlapping a

e overlapping 

reless network

when making a
ork access cos
QoS of the p

vertical hando
etworks that a
gage with usa
e to estimate. 
ork that has be
reduced cost 

rocess, which 
een the connec

em 

gn the decisio
arkov process

                               

utilizes certa
necessary dyn

ved in network

such as wire
a (WLAN) net
ll as non-3GP

ded to the user
well as UMT

and is able to
ing area betw

dover since th
WiMAX movem
area and is abl
area between 

ks. 

a decision on 
st while reduc
present commu

offs within it
re located wit

able bandwidt
At each point
een presently 

and a guara
would in turn
ction’s QoS a

on problem of
s has certain m

                                       

ain forms of 
namic change
k selection du

eless personal
tworks. The v
PP (WiFi, Wi

ers. This resea
TS networks. 
o select a con
ween WiFi and
he present conn
ment to the U
le to select a c
UMTS and W

 the handoff. 
cing the amou

munication as 

ts lifetime co
thin regular re
th with a del
t in time, the 
chosen or if it

antee of a hi
n cause the si
and the signal

f the vertical
main elements

                                      

intelligence f
s in the wirele

uring the vertic

l area (WPAN
various networ
iMax) standar
arch offers thr
The first setti

nnectivity that
d WiMAX. T
nectivity will 

UMTS. The thi
connectivity th

WiFi. 

Firstly, the M
unt of handove
well as preve

nnectivity. It 
eceiving rang
lay time that 
terminal for t
t should route
igher QoS. T
ignaling load 
ing load as w

handoff as t
s. These inclu

    5 

 

for 
ess 
cal 

N) 
rks 
rds 
ree 
ing 
t is 
The 

be 
ird 
hat 

MT 
ers 
ent 

is 
es. 
is 

the 
e to 
The 

as 
well 

the 
ude 



6  

 

the decision epoch, state, action, transition probabilities, and the rewards. The MT establishes the course of action when it 
has passed the particular time duration. As the MT velocity has physical property constraints and its future speed is not 
influenced by past speeds, this study has adopted the Gauss-markov model suggested by [49] to define the mobility model. 
Shadow fading as well as the mobility of the MT might result in signal attenuation in a wireless environment. The RSS is 
described in dBm in discrete time [50]: 

	 10 log  (1) 

Where  represents the discrete time index,  represents the power transmission of AP,  represents the pass loss that is 
fixed,  represents the pass loss factor,  represents the distance in the WLAN’s MT as well as the AP, and  represents 
the fading of the shadow. The MT is able to interact with the present network when the value of the RSS is above the 
threshold. The average RSS is defined as shown in the following: 

	 	 	
∑

 (2) 

Where  represents the average size of the window in the slope estimation and 	  represents the changing rate of the 
RSS. The threshold for handoff is a significant parameter that directly affects the performance of the network. As the 
threshold value of the handoff is fixed and not able to adapt to the network conditions that vary according to time, we have 
designed the relationship between the velocity of the MT and the threshold value of the handoff as: 

	 1 	 	 	 	  (3) 

Where  represents the basic threshold for the handoff,  represents the adjusting weight that is linked to the present state 
of the network,  represents the present MT velocity while  represents the original velocity. The sampling size of the 
window is considered when calculating the RSS average value and changes based on the mobility of the MT by using the 

equation  and  as  and 2  in [6]. 	and  represents the window’s average and the window’s 

slope distance, respectively. The probabilities of the transition are described in Table 1. 
The conditional probabilities of 	 / 	 [t + 1] depend on the decision approach. In line with [51], these 

probabilities are also defined as: 

	 / 		 1 	| 1  (4) 

Where | [t] represents MT’s probability of linking to the chosen network at the t instant as it is related to the past 
network at the t-1 time instant. The amount of handoffs, represented by , has an effect on the flow of the signaling, and 
it is the sum total of the Mobile’s input as well as output. Thus,  is represented by the instant probability of Mobile 
input and output as per Equation (4). The equation for  is: 

Mobile	input/output	 	 / t  (5) 

Where   represents the time instant as the MT reaches the edge, and it is represented by the velocity of the MT and the 
present network’s coverage. 	 /  represents the expected numbers of 	 / . 

	 	 1, 2, . . . ,  sequence demonstrates the moments of successful decision making time. , which is the random 
variable, represents the duration taken for the connection to terminate. The terminal that is mobile has to establish decisions 
at each point of time for the connection to utilize the network that is presently selected or it would face re-routing to other 
networks.  

 represents the sum of networks that are collocated. The  action 	 	 1, 2, 	 	 ,  as well as the  random 
variable represents the action selected during the decision epoch . The terminal that is mobile selects an action according 
to the present state of information as represented by . In every 	 ∈ 	  state, the state information involves the network’s 
number of identification or the address to which the terminal that is mobile is presently linked to the bandwidth that is 
available, the average delay and the probabilities of packet loss offered by all the available networks collocated in the area.  

The random  variable represents the state at which the  decision epoch is made. The present state is represented with 
an  while the action that is selected is represented by . Thus, the probability of the transition function for state at the next 
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state is represented with a 	 |	 , . This can be identified as  Markovian function as it relies solely on the present 
state as well as action. 

The function for the rate of transition at 	 , 	  represents the QoS that is offered by the network that is selected to 
connect at intervals of , 1 . Function of cost, which is 	 , 	  represents load for signaling as well as the processing 
that occurs during the time when the connectivity moves from one network to the other. If the connection maintains the 
utilization of a similar network over the duration of the intervals, , 1 , thus c ( , 	  would be equivalent to zero. It is 
defined as follows for easy interpretation: r ( , 	 ) = f ( , 	 ) - c ( , 	 ). 

The decision rules offer the process of choosing the actions at every state of particular decision epochs. Decision rules 
that are Markovian in nature are functions of  δ :  S → A, as it identifies the action choice while the system possesses the s 
state at the decision epoch of t. The policy of π	= (δ , δ , … , δ ) represents the sequence for the decision rule that is utilized 
at all the decision epochs. 

 

Table 1 Transition probabilities. 

Parameter Description 

 MT’s probability of connecting with the Wi-Fi at the  time instant. 

 MT’s probability of connecting with the WiMax at the  time instant. 

|  MT’s probability of connecting with the WiMax at the  time instant given that it is associated with the Wi-Fi at 1 time 

instant. 

1  | 1 1 | 1  

1  | 1 1 | 1

 MT’s probability of connecting with the WiMax at the  time instant. 

 MT’s probability of connecting with the LTE at the  time instant. 

|  MT’s probability of connecting with the LTE at the  time instant given that it is associated with the WiMAX at 1 time 

instant. 

1  | 1 1 | 1

1  | 1 1 | 1  

 MT’s probability of connecting with the LTE at the  time instant. 

 MT’s probability of connecting with the Wi-Fi at the  time instant. 

|  MT’s probability of connecting with the Wi-Fi at the  time instant given that it is associated with the LTE at 1 time 

instant. 

1  | 1 1 | 1  

1  | 1 1 | 1

 

If (s) denotes the total reward that is expected of the first decision epoch up until the conclusion of this connectivity 
while the  policy is utilized with the initial  state, the following is expected: 

	 	 ,  (6) 

Where 	represents the expectation in terms of policy  and the initial 	state and  represents the expectation in terms 
of random  variable. It should be noted that a different policy 	and the initial  state would change the selected  action. 
It could also lead to different probability functions for state transitions at 	 | , for utilization in the anticipated		 . 
The  random variable representing the termination point of the connectivity is presumed to have a geometric distribution 
with a mean of 1/ (1-λ). It can be written as follows based on [52]:  
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	 	 1	 ,

∞

1

 (7) 

Where  is inferred as the model’s discount factor at 0	 	 	 	1. 

The state space of  is described as follows in the proposed decision algorithm for vertical handoff: 

1,2, … ,
…  

(8) 

Where  is the quantity of available networks that are collocated and 	, ,  , , 	, 	, 	 	and 	 are 
the set of bandwidths, packet loss, delay, throughput, cost of bit error rate, security, and jitter that are available from the  
network 	 	1, 2, …	, , accordingly. Given the present s state as well as the selected  action, the function of the link 
reward 	 ,  is described as follows:    

, , , 	 , , , , , ,   (9) 

Where 	represents the factor of weight and 0	 	 	 	1,  suitable weight factor represents every parameter in the 
significance of the vertical handoff decision. Based on Equation [9], f ( ,  represents the function for bandwidth whereas 
f ( , represents the function of delay, ( ,  represents the function of packet loss, ( ,  represents the function of 
throughput, ( ,  represents the function of monetary cost, ( ,  represents the function of security, ( ,  represents 
the function of jitter, and ( ,  represents the function of bit error rate. The following is utilized for every 

	parameter: 

,

1,																												 																												 0

	– ,			
0,																												 																												

  (10) 

Where the constants  and  represent the minimum as well as the maximum e  rate needed by the connectivity. 
The reward function r ( ,  of the two continuous handoff decision epochs that are vertical can be described as follows: 

, , ,  (11) 

The total cost function is given by, 

, 	 , 	 ,  (12) 

and the factors of weighting fulfill +  =1. The ,  function for signaling cost is represented in the following: 

, 	 , ,								

0,										
 (13) 

Where	 ,  represents the switching cost (involving the signaling load as well as the re-routing operations) from the 
present i network to the new a network. Furthermore, 

, 	
,	 	 , 				⁄

1,																																 				 	 , 	

0,																																 						 								
 (14) 

Where and 	are the minimum and maximum velocity threshold, accordingly. A bigger velocity will lead to more 
call droppings while the process of vertical handoff is going on. Lastly, due to the present state,  [i, , 

, , , , , , ,…, , , , , , , , , ] as well as the chosen action , the probability function of 
the following state would be:         
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	 , , , , , , , , , … , , , , , , , ,  (15) 

is given by 

| , 	 , , , , , , , | , , , , , , ,

0,																									 																												

 (16) 

The issue of the decision with the VHO is defined as a Markov decision. Rewards that are appropriate as well as flexible 
with the functions of cost are determined to embody the trade-off among the resources of the network utilized by the 
connectivity (the QoS-based bandwidth that is available, packet loss, delay, bit error rate, as well as throughput) besides the 
processing load that takes place and the network signaling when executing the VHO. The goal of the formulation of the 
Markov decision is in maximizing every connection’s anticipated total reward. This kind of problem with the optimization 
is defined as: 

	 r s, a λ
́∈	

P	 s |	s, a 	
∈

 (17) 

Where  stands for the anticipated reward, 	stands for the set with the potential action (such as the network to utilize), 
r ,  stands for the function of reward, and P	 s |	s, a  stands for the state transition probability in various access 
technologies. Moreover,  [17] stands for the anticipated reward at 1 :  

	 	r s, a λ
́∈	

P	 s |	s, a 	 s
∈

 (18) 

The norm function contains several definitions. The norm function in this study can be described with 	 	  | | 
for ∈ 	 . According to the IEEE 802.21 standard [13], a terminal that is mobile and establishes this proposed decision 
algorithm for vertical handoff can regularly gain information about the networks that are collocated in its receiving path by 
utilizing the present network interface. The provided information by the MIIS from the MIHF is utilized to project the 
parameters of the linked reward functions as seen in Equation (11) as well as the cost function as in Equation (12). The 
information regarding the bandwidth available and the average network delay is calculated through standardized processes 
for performance metrics of the Internet service as described by the Internet Engineering Task Force IP Performance Metrics 
Working Group [53]. The processes are developed so that they could be introduced by the network operators to offer 
precise as well as non-biased quantitative measurements with this type of metrics. The standardized metrics’ examples 
include connectivity, packet loss and delay, variation of packet delay, as well as linked capacity of bandwidth. 

Thus,  framework is proposed here to integrate the vertical handoffs with the preferences of the user. Firstly, we 
categorize B 		,and D ,  P , and , and 	from the network  as QoS parameters that are network-based as well 
as parameters that are user-based, such as the cost of access and security. A screening phase is invoked if the mobile 
terminal discovers itself in the vicinity of the collocated coverage area due to information gathered from the IEEE 802.21 
MIIS. This phase is able to filter networks that are not appropriate for carrying out vertical handoff according to the user-
based QoS parameters. Only the appropriate candidate networks would be taken into consideration for the vertical handoff 
decision. 

A list of current and future available point of attachments (PoAs) was retrieved and locally stored to be used by the 
decision-making branch. This database contains information about the present neighborhoods in the units on board. The 
MIIS PoA information database offers information including the ID of the network, the ID of the PoA, location, coverage, 
monetary cost per MB, the offered nominal rate of data, achieved rate of data by the most current users and bandwidth 
offered. 

Every input in the neighborhood’s database keeps the properties for every PoA in the neighborhood and the PoA’s 
beneficial time of coverage. The beneficial time of coverage is the time spent by the mobile in the area of cell coverage 
with the ability to gain the peak rate of data from that particular cell. This time could differ based on certain factors 
including whether the itinerary crosses the area of coverage in a tangent or if there is an overlap in the area of coverage on 
the itinerary route. In addition, the beneficial time for coverage could also differ because of the fluctuations in the QoS at 
the cells edge that is linked to faulty wireless signals including fading and path loss. The cost function module will be 
utilized to measure the border cell of the QoS, which assures that the QoS is up to a certain distance along the route.  
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2012, research using BBO as a technique for choosing genes for data analysis of micro-array gene expression has not been 
reported.  

This study attempts to examine the BBO for selection and categorization of genes. There is an ecosystem or population 
in the BBO that possesses certain island habitats. Every habitat contains the index of habitat suitability that is the same as 
the fitness function and relies on most of the island’s traits or attributes. When a value is given to every trait, habitat H’s 
HSI is this value’s function. These variables that collectively characterize the suitability of the habitat formulate the 
‘suitability index variables’ (SIVs).  

Therefore, in terms of the issues related to the gene selection, a habitat’s SIVs (solution candidate) are the chosen subset 
of the genes derived from the grouping of the entire genes. Therefore, the ecosystem is a randomized group of gene 
candidate subsets. A proper solution is analogous to a proper HSI and vice versa. Proper solutions of HSI are likely to share 
the SIVs with weak solutions of HSI. This type of sharing, which is known as migration, is governed by the habitats’ rates 
of immigration and emigration. This model has been purposefully maintained to be uncomplicated as it follows the original 
simple linear migration model. 

The BBO algorithm [20, 61] contains two main stages, namely migration as well as mutation. A mechanism for 
mutation in the proposed MDP-BBO is engaged to improve the capability of investigating in the search location. A detailed 
algorithm for the BBO can be retrieved from [20]. The subsequent sub-sections report the proposed algorithm of the MDP-
BBO for optimization of the weight coefficients when choosing the best RAT in heterogeneous networks. 

In general, studies normally apply different ideas to generate a feasible solution by managing the quantity of diversity. 
The process of mutation in the BBO improves the population diversity. It should be realized that the rate of the mutation 
changes the SIV of the habitat in a randomized approach according to the rate of mutation. In addition, the rate of mutation 
is inversely in proportion to the species count probability. Therefore, in a fundamental BBO, if a solution is chosen for 
mutation, it will be replaced using a random method to develop a new set of solution. Thus, this randomized mutation has 
an effect on the investigation of the basic BBO capability. The process of mutation is modified to enhance the investigating 
ability of the BBO as detailed in Section 3 in order to refine the habitat and to reach an optimal solution using a better 
method. For the BBO algorithm, a short introduction is provided; then, the operation is explained with a pseudo code. 

The species selection (Ps) probability changes from one specific time to another as shown in Equation (16) in this paper. 
Changes are not performed in the migration potion of the proposed MDP-BBO algorithm to sustain the ability to exploit. 
The modification performed in the mutation section with the MDP improved the capability for investigation.  Therefore, 
the proposed MDP-BBO leads to a balanced investigation and the ability to exploit the algorithm. The proposed MDP-BBO 
algorithm’s pseudo code is presented in Table 2. The proposed MDP-BBO algorithm is used in this study to perform the 
optimization of weight in an algorithm with multi-point decision making and to choose the best RAT for the considered 
networks that are heterogeneous, where  and  represent the maximum rates of emigration as well as immigration, which 
are normally fixed at 1. Individual rates of immigration as well as emigration (  and μ, accordingly) are measured using a 
similar formula as the simple linear model suggested by [20]. 

In the MDP-BBO algorithm, the species’ geographic distribution of genes was mapped to determine the solution to the 
problem. The position of each gene represents a possible solution to the optimization problem and the habitats’ rates of 
immigration and emigration corresponds to the quality (cost) of the associated solution. Therefore, the deployment of the 
wireless networks in the sensed area (each solution of the deployment problem) refers to a habitat in the algorithm. The 
quality of the network, for example the total coverage area, corresponds to the cost value (habitat’ rate) of the solution. 
Table 3 shows the basic concepts of MDP-BBO. 

 

Table 3. Mapping table for the proposed MDP-BBO algorithm 
Concept Refers to

Available	network	 Available Habitats

Cost value of network Habitats’ rates of immigration and emigration	
Set	of	mobile	nodes	 Group	of	gene	candidate

Best	network	 Best	Habitat

Quality	of	network	 Quality	of	island	habitats
 

The proposed algorithm is applied over the multi-point decision making (MDP) module to optimize the weight 
coefficients, so that the best network is selected. The conventional biogeography based optimization consisted of major two 
steps namely migration and mutation. In traditional BBO, mutation is a varying operator that randomly changes the values 
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at one or more search positions of the selected species. We proposed a new mutation mechanism based on MDP process 
which is employed to increase the exploration ability in search space. In our proposed model no changes are made in the 
migration part so as to maintain the exploitation ability.  

 

 

 

 

 

Table 2. Pseudo code for the proposed MDP-BBO algorithm 

	 	 	 	 	

_ 	

_ // ……………………………………………….............................………………………………….by Eq. (12)	

_ _ _ _    

_ 	 	 	 	

If			termination	criteria	is	not	achieved 			then	 	

	 	 	← 	 	 	 	  

 	 	 	 	  

 	 	  

 	  // …………………………………………………………………………….by Eq. (16) 

 _ 	  

 _ _ _ _  

 	 	 	 	  

End	if	   

Best	Cost	 	Choose Best	Costs 	   

End	   

	   

Standard Pseudo Code for Migration  

For						i	 	1				to				NP				do	   

	 Select    with probability based on   

	 If    is selected  Then  

	  For    j	 	1				to				NP				do 

	  Select     with probability based on   

	  If    is selected  Then 

	  Randomly select a  SIV(s)  from   

	  Copy them   SIV(s)   in     

	  End if 
	 End for
	 End if 
End for 

 

Standard Pseudo Code for Mutation 

For						i	 	1				to				NP				do 

	 Use		 	and	 	to	compute	the	probability	 	
	 Select			SIV		 	with	probabi;lity		∝ 	 	
	 If							 		is	selected				Then
	 Replace	 		with	a	randomly	generated	SIV
	 End	if	
End	for	 	
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6. Results and discussion 

We utilized MATLAB and OMNET++ to evaluate network performance. We utilized MATLAB ++ to implement all 
algorithms in the pre-processing steps. OMNET++ is a well-designed, component-based, modular and open-architecture 
simulation environment with strong GUI support and an embeddable simulation kernel. OMNET++ is a general-purpose 
simulator capable of simulating any system composed of devices interacting with each other. Although the original 
implementation did not offer a great variety of protocols, it did provide a hierarchical nested architecture which enabled 
developers to model and modify all layers of the protocol stack accurately. The simulations were made in the OMNET++ 
simulator using the network address translation (NAT) add-on. Notice that the OMNET++/INET module, by default, does 
not provide make-before-break handover mechanisms but rather break-before-make. Therefore, modifications were made 
to the NAT module, such as support for network-side 802.21 entities and control of the link layer access technologies to 
obtain seamless handovers. A cross-layer module was implemented in OMNeT++ with NAT functionality to provide a 
seamless handover. It contributed to the INET framework of OMNeT++ by implementing the NAT operation in network 
layers with an update mechanism achieved through a cross layer module. 

Tables 4 and 5 show the parameters of the Markov-VHO. The average time for decision epochs that are continuous is set 
at 15 s. The unit for bandwidth is 16 kb/s, the unit for jitter is 2.5 ms, and the unit for traffic is 0.5 erl. The highest as well 
as the lowest velocities are 5 units and 1 unit respectively as suggested by [62-64].  The cellular area is 3 times bigger than 
the WLAN while the MTs’ special density in the cellular network is 8 times bigger than the WLAN. Rates of peak data in 
the Wimax are DL: 75 Mbps UL: 25 Mbps and in the LTE DL: 100 to 324.6 Mbps UL: 50 to 86.4 Mbps. The algorithm for 
the Markov-VHO that is proposed in this study is evaluated with other schemes in terms of average number of handoffs, 
available bandwidth, etc. Figures 4 to 10 show the performance of the network during the handoffs. The average time of the 
continuous decision epoch is 15 s. The unit of bandwidth is 16 kb/s, the unit of jitter is 2.5 ms and the unit of traffic is 0.5 
erl. The highest as well as the lowest velocities are 5 units and 1 unit as suggested by [23]. The cellular area is 3 times 
bigger than the WLAN and the MTs’ special density in the cellular network is 8 times bigger than the WLAN. The released 
signals propagate on the module hierarchy up to the root (network module). As a result of this, a radio listener registered at 
a compound module can receive signals from all modules in its sub-module tree. To record simulation results based on the 
signals mechanism in OMNET++, we have added one or more @statistic properties in a module’s NED definition. In terms 
of RSSI, we have considered the following declaration of a statistic by recording the average RSSI value measured by 
nodes in a wireless network: @statistic[statRSSI](source="rssiSignal";record=mean). However, placing the statement on 
network level would result in a single RSSI value averaged over all RSSI measurements made by the nodes in the network. 

Table 4. Parameters of Simulation for Markov-VHO 
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 Delay maximum in network i 8 units 8 units  Average window 0.5 m  

 Jitter maximum in network i 4 units 2 units  Slope distance window 5m 8m 

 Packet loss maximum in network i 6 units 4 units  Predefined threshold mobile input -85dbm - 

 Throughput maximum in network i 8 units 8units Predefined threshold mobile output - -80dbm 

 Bit error rate maximum in network i 4 units 2 units NRANs Number of RANs 5 

 Cost maximum in network i 2 units 4 units NMN Number of MNs (per SN) 10 100 

 Security maximum in network i 4 units 4 units λ 
Rate of VHO triggers per mobile 

node 
In range [0.01, 0.1] 

 
Cost of switching from network 1 to 

network 2 
0.3 - BWL Wired Link Bandwidth (Mbps) 1000 

 
Cost of switching from network 2 to 

network 1 
- 0.3 BWWL Wireless Link Bandwidth (Mbps)  10 

 Cost of access to network 1 1 - P Packet Length: (bits)  12000 (1500 × 8) 

 Cost of access to network 2 - 1 DIS Mean IS Delay: (sec)  0.01 

 Transmission power network 100 mW 120 mW DCN Mean Process Delay (CN): (sec) 0.030 0.300 

n Pass loss factor 3.3 3.3  
Cost of unit packet transmission for 

the wired links 
0.1 

 Average window 0.5 m   Cost of unit packet transmission for 3.84 x 106 
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the wireless links 

MiXiM, a simulation framework for OMNeT++ is able to simulate wireless networks, mobile networks and energy 
consumption. MiXiM can maintenance wireless and mobile simulations. It can provide several ready-to-use modules such 
as Log Normal Shadowing, Simple Path loss and Rayleigh-Fading using the Jakes-model. This model is applied by a 
maximum Doppler shift based on the carrier frequency and velocity  of the object with the highest level of velocity 
which can be applied in the propagation environment, e.g. a moving user. This model of fading is established by utilizing 
Rayleigh distributed signal domains that lead to rapidly expanding the distributed SNR , 	for the channel from mobile 
terminal  to mobile terminal  rapidly. We have investigated the path loss, the log-normal shadowing with standard 
deviation of 8 dB and Rayleigh fading. The path loss models between the base station and mobile station as well as 
between relay station and mobile station links, 31 + 40 log 10 d(dB), are acquired from the models in [65] which have the 
carrier frequency of 2.5 GHz, where d (meters) is the distance from the transmitter to the receiver. For shadowing, the 
correlation model in [66] is used with the decorrelation length of 50 m and the Rayleigh fading is applied using a Jakes 
spectrum model. 

 
Table 5. Reward function Parameters 

Notations Definition of Parameter  CBR FTP 

 Accessible minimum bandwidth 

required 

2 units 2 units 

 Accessible maximum bandwidth 

required 

4 units 16 units 

 Required Minimum delay  2 units 8 units 

 Required Maximum delay  4 units 16 units 

 Required Minimum packet loss  2 units 4 units 

 Maximum packet loss required 4 units 16 units 

 Minimum throughput required 2 units 4 units 

 Maximum throughput required 4 units 16 units 

 Required Minimum bit error rate  2 units 8 units 

 Required Maximum bit error rate  4 units 16 units 

 Minimum cost required 2 units 4 units 

 Maximum cost required 4 units 6 units 

 Minimum security required 2 units 4 units 

 Maximum security required 4 units 8 units 

 Minimum jitter required 2 units 8 units 

 Maximum jitter required 4 units 16 units 

 
We selected utility functions-based approaches for comparison such as TOPSIS, GRA, FMADM and SEFISA. Several 

assessments exist based on the workings of the proposed scheme versus the TOPSIS [41, 42] decision-making models. The 
proposed scheme performance is examined in different mobility settings based on TOPSIS and GRA. Both these 
techniques offer rankings to the networks that are available according to multiple parameters, such as the network traffic 
load, mobile speed and type of service. Based on these parameters, the highest-ranked network is chosen. In terms of 
mobile communications, these techniques could be utilized to consolidate the information received during the network 
discovery stage to rank all the available candidate networks wisely according to the present requirements of the application 
[68]. The basic concept of the TOPSIS method is that the chosen alternative should have the shortest distance from the 
positive ideal solution and the farthest distance from the negative ideal solution. The positive ideal solution is a solution 
that maximizes the benefit criteria and minimizes the cost criteria, whereas the negative ideal solution maximizes the cost 
criteria and minimizes the benefit criteria [67]. 

Table 6 provides the sample data set of considered users with the constraint parameters fixed namely bandwidths, packet 
loss, delay, throughput, cost of bit error rate, security, and jitter which are used for RAT selection process (1000 users were 
considered). Firstly, the entire proposed algorithmic approach was rum in MATLABR2014 environment and executed in 
Intel Core2 Duo Processor with 2.27 GHz speed and 2.00 GB RAM. Then, the codes and modules are programmed and 
translated into C++ code to implement into the OMNET++. 

Table 6. Sample dataset of mobile users for input parameters (B, P, D, TH, BER, S and J) 
S.

no 

WiMAX WiFi UMTS 

B P D TH BER S J B P D TH BER S J B P D TH BER S J 

1 4.5 0.8 5.8 6.6 1.7 0.9 5.4 0.9 1.2 9.6 5.7 1.7 0.7 6.7 8.9 1.6 8.5 7.3 1.8 0.8 8.7 
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2 3.8 0.9 5.5 6.1 1.6 0.8 4.2 0.8 1.4 8.9 5.5 1.4 0.8 6.4 8.3 1.5 7.6 6.9 1.7 0.9 9.1 

3 5.5 0.7 6.1 7.2 1.5 0.9 5.1 0.7 1.3 9.4 5.1 1.8 0.8 6.3 8.1 1.7 8.2 7.1 1.9 0.8 7.9 

4 4.3 0.8 5.9 6.8 1.8 0.7 5.5 0.8 1.2 9.1 4.9 1.7 0.9 5.9 7.9 1.6 8.5 7.5 1.5 0.9 8.1 

5 3.6 0.7 5.5 6.3 1.5 0.8 4.1 0.8 1.4 8.9 5.5 1.4 0.8 6.4 8.1 1.7 8.2 7.1 1.9 0.8 7.9 

6 3.8 0.9 5.5 6.6 1.7 0.9 4.2 0.6 0.8 1.4 8.9 5.5 1.4 0.8 8.9 1.6 8.5 7.3 1.8 0.8 8.7 

7 5.5 0.7 6.1 7.2 1.5 0.9 5.1 0.7 1.3 9.4 5.1 1.8 0.8 6.3 8.1 1.7 8.2 7.1 1.9 0.8 7.9 

8 4.3 0.8 5.9 6.8 1.8 0.7 5.5 0.8 1.2 9.1 4.9 1.7 0.9 5.9 7.9 1.6 8.5 7.5 1.5 0.9 8.1 

9 3.4 0.8 5.9 6.1 1.6 0.8 4.2 0.6 1.5 9.1 4.5 1.9 0.7 5.8 7.4 1.8 8.9 7.4 1.9 0.8 8.8 

10 3.8 0.9 5.5 6.6 1.7 0.9 4.2 0.8 1.4 8.9 5.5 1.8 0.8 6.3 8.1 1.7 8.2 7.1 1.9 0.8 7.9 

And so on up to 100 users 

For the considered data samples of 100 users with the sample data set as shown in Table 6, to start with proposed MDP 
process was applied and the MDP-BBO output for the respective input parameters are computed. The outputs from the 
MDP are sent to the BBO algorithm (MDP-BBO module) to select the best RAT for heterogeneous network. The proposed 
approach targets fast movement of the MN and solves the dynamic decision-making issues efficiently. The simulation 
parameters of three access networks are shown in Table 7. 

 
Table 7. Sample dataset of 

WLAN Access Point Parameters Value 
Transmission Power 0.027 W 
Receiving Threshold 1.17557e-10 W 

Throughput 0.3733550 
Carrier Sensing Threshold 1.05813 e-10 W 

Coverage Radius 150 meters 
Radio Propagation Model Two-Ray Ground 

Frequency 2.4 GHz 
WiMAX Parameters Value 
Transmission Power 30 W 
Receiving Threshold 3e-11 W 

Carrier Sensing Threshold 2.4 e-11 W 
Coverage Radius 1500 meters 

Radio Propagation Model Two-Ray Ground 
Antenna Type Omni Antenna 

Code Rate 1/2 
PHY Mode 256 OFDM 

Maximum Data Rate 1882 Kbps 
UMTS Parameters Value 

Coverage All Simulation Area 
Maximum Data Rate 384 Kbps 

 

The working of the proposed scheme is tested in both smaller and larger coverage area networks. The movement of 
different number of MTs have been considered ranging from 10 to 100 with variable speed in three different networks, i.e. 
cellular, WiMAX, and WiFi. The MT performed several handovers between these networks.  

We have conducted performance comparisons between our algorithm MDP-BBO and other algorithms structured in the 
literature, namely SEFISA [46] and FMADM [69]. In a study by Jaraiz-Simon et al. [46], the proposed algorithm was 
designed to decide on the best network to establish connection in a vertical handover process as the SEFISA is based on the 
simulated annealing (SA) algorithm. SEFISA is selected for comparison because it is a heuristic proposition based on the 
Simulated Annealing (SA) algorithm and SA is a probabilistic technique for approximating the global optimum of a given 
function. In addition, the FMADM is a multiple attribute decision making algorithm that selects a suitable wireless access 
network during the vertical handover process. The findings show that the proposed mechanism has better performance in 
comparison to the SEFISA, TOPSIS, GRA and FMCDM algorithms according to the metrics based on number of 
handover, failed HO, number of packets loss, throughput and handover latency.  

To show the limits of using previous models to select an access network and to motivate the need of optimized selection 
method to improve seamless handover, several experiments are simulated using OMNET++ that support the MIH modules 
implemented by INET/NAT. To compare MDP-BBO and original MIH results, the same topology of simulation is used 
which cited in Fig. 1. The traffic used has a constant bit rate (CBR), which allows for calculating the amount of packet loss. 
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Fig. 14. Average of computation time 

The computational time taken for determining the best networ for the given heterogeneous network is reduced to half 
the time in comparison with that of the methods available in the literature. 

Several comparisons were performed between the MDP-BBO, SEFISA, TOPSIS, GRA and FMADM. The FMADM 
has the highest rate of handovers as compared to other models. The TOPSIS and GRA have the same rates of handover and 
MDP-BBO has better performance in terms of handover rate which helps mobility management. Generally, SEFISA, 
TOPSIS, GRA and FMADM models have shortcomings: they are usually not possible to make right VHO decisions timely 
because of high packet loss, high latency and low throughput gains. Another unfortunate practical problem is the high 
volume of calculations for finding the criteria weight for evaluation. 

We compare the performance of our proposed model with the existing techniques using Monte-Carlo simulations [43]. 
In Monte-Carlo experimentation for a given velocity (v) and the given value of probability of handover failure (Pf) or 
probability of unnecessary handover (Pu) the threshold value (M or N) is obtained using the above threshold Eqs. (19 and 
21). 
 

,			0

0,																																																							
																	(19) 

 
 

We can achieve the value of M for an acceptable level of probability of failure by following formula (20): 
 

	

		,			0                   (20) 

 
 

,			0

0,																																																									
																			(21) 

 
We obtain the value of N to keep probability of unnecessary handover within desired bounds by following formula (22): 

 

2 tan	arctan
4 2

1
		,			0 					 22  

 
 

As per Monte-Carlo rule the experiment is repeated very large number of times and finally we obtain the experimental 
value of the probability of handover failure or unnecessary handover by dividing the failed or unnecessary attempts with 
the total number of handover attempts. For each value of  the experiment is repeated until the results are stabilized and a 
clear pattern has emerged. The threshold values for other models are obtained in exactly the same fashion using their 
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are obtained using this probabilistic model. This is because high mobility makes it difficult to maintain the connection 
between the MT and target network during the handover period and thus reduces the probability of a successful handover. 

 
Table 8 shows root mean square error (RMSE) for the models under consideration. The RMSE is a statistical tool that 

shows how the models deviate from the predefined benchmark value of 0.02. In both cases, the error for the proposed 
model of  and  was minimal. 
 
Table 8. Values of RMSE for the models 

Model FMADM GRA TOPSIS SEFISA MDP-BBO 

’s RMSE 0.01367 0.01243 0.00506 0.00460 0.00054 

’s RMSE 0.01784 0.01073 0.00729 0.00508 0.00152 

 
We can found that the efficiency of our model in accordance with the failure close to the benchmark value. The 

efficiency of the proposed model for a benchmark value of 0.02 was 98.85%. 
 
In summary, the simulation results prove the effectiveness of the proposed approach as follows: 
 
 This proposed algorithm reduces the call dropping probability as well as the signaling and processing cost by 

considering the velocity of the MT 
 Many unnecessary handoffs are prevented.  

 The rate of handoff  and signaling overhead have been decreased significantly and the packet loss is minimized  

 The throughput and performance in terms of precision and cost function. have been improved 

 The proposed work improves the QoS of real-time applications 

 

7. Conclusion 

Wireless communication systems in the future will encompass different forms of networks with wireless access. 
Accordingly, seamless vertical handoffs from various networks are a challenging issue for IIOT. Although several 
algorithms for vertical handoff decisions based on machine learning are being suggested, many of these do not take into 
account the effect of call drops that occur while the vertical handoff decision is taking place. Furthermore, many of the 
present multi-attributed vertical handoff algorithms are not able to dynamically project the circumstances of the MTs. To 
ensure the QoS of various MTs, this study has proposed a MDP-based algorithm for vertical handoff decisions in single and 
multi-attributed conditions, in order to maximize the anticipated total rewards and reduce the average amount of handoffs. 
Our work took into consideration the velocity of the MT, the cost of the network access, the cost of switching in the vertical 
handoff decision and developed a reward function that modeled the properties of the QoS. We applied the MDP to measure 
the weight of every QoS determinant in the reward function, and an iterative algorithm was adopted using the Markov 
decision procedure to gain the maximum value for total reward and the related optimal policy. Moreover, by considering 
the velocity of the MT, unnecessary handoffs were prevented. We also compared our algorithm with other recent related 
algorithms to evaluate the performance of the network. The findings revealed that the MDP-BBO algorithm is able to 
outperform other algorithms in terms of number of handoffs, throughput, and decision delays. The proposed algorithm 
displayed better expected total rewards as well as a reduced average account of handoffs compared to current approaches. 

With regards to future work, we are planning to conduct studies about the usability of the proposed work for vehicular 
ad hoc networks (VANET). First, we plan to improve the MDP-BBO optimized code for infrastructure-based VNs rather 
than VANET-based solutions. Then, we want to use car-to-car communications protocols such as DSRC and IEEE 
802.11pto deliver information to the MIIS databases. Furthermore, different types of available wireless access networks 
with their corresponding QoS values for mobile terminals will be identified and MDP-BBO will be used to evaluate 
performance, behaviors and other possibilities. As part of future work, we will further explore sophisticated methods of 
network selection based on fog computing. We will extend our mobility management framework to support more 
complicated use cases along with diverse devices in order to measure the effectiveness of our approach with more realistic 
test-beds in fog computing environments. 

As another consideration for the future, we aim to propose a hybrid model for handover management between the 
UAVs. Due to its good maneuverability, low cost and versatile preparation, remote-controlled UAVs have recently 
attracted significant interest in the field of wireless communication. 
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Highlights 

 

 This works proposes a hybrid intelligent model for network selection in Industrial 
Internet of Things.  

 The proposed model merges the biogeography-based optimization (BBO) with the 
markov decision process (MDP). 

 The MDP is utilized to establish the radio access technology (RAT) selection’s 
probability that behaves as the input to the BBO process 

 The BBO determines the best radio access technology (RAT) using the described 
multi-point algorithm in the heterogeneous networks. 


