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 Heterogeneous wireless networks (HWNs) are capable of integrating the 

different radio access technologies that make it possible to connect mobile 

users based on the performance parameters. Further quality of service (QoS) 

is one of the major topics for HWNs, moreover existing radio access 

technology (RAT) methodology are designed to provide network QoS 

criteria. However, limited work has been carried out for the RAT selection 

mechanism considering user QoS preference and existing models are 

developed based on the multi-mode terminal under a given minimal density 

network. For overcoming research issues this paper present quality of 

experience (QoE) RAT (QOE-RAT) selection methodology, incorporating 

both network performance criteria and user preference considering multiple 

call and multi-mode HWNs environment. First, this paper presents fuzzy 

preference aware weight (FPAW) and multi-mode terminal preference aware 

TOPSIS (MMTPA-TOPSIS) for choosing the best RAT for gaining multi-

services. Experiment outcomes show the QOE-RAT selection method 

achieves much superior packet transmission outcomes when compared with 

state-of-art Rat selection methodologies. 
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1. INTRODUCTION  

In recent days, robots or autonomous driving vehicle has gained fine attention due to capability of 

information dissemination, efficiency, and traffic safety, most of the autonomous vehicle like Google car [1] 

is mainly based on the perception model which includes the several machine intelligence and onboard 

sensors for maneuvering on-street along with other vehicles. Moreover, autonomous vehicles (AV) are 

improvised through computing infrastructure and networking based on the intelligence transportation system 

(ITS). Since AV possesses many limitations of efficiency, perception sensors, and driving safety in a holistic 

approach mainly relies on low latency and reliability [2]. Furthermore, to support the requirement, several 

radio access technologies (RATs) have been developed along with the various transmission characteristics 

such as frequency, delay, bandwidth, and signal coverage. For instance, the universal mobile 

telecommunication (UMT)-model provides a huge range of lower bandwidth and signal coverage. further 

models such as comprehensive r archive network (CRAN) [3], worldwide interoperability for microwave 

access (WiMax), and long term evolution (LTE) uses transmission technologies like orthogonal  

frequency-division multiplexing (OFDM) and multiple in multiple out (MIMO) for improvising the data 

https://creativecommons.org/licenses/by-sa/4.0/
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transmission rate and spectral efficiency and provides a huge signal coverage range [4]. Furthermore, 

wireless local area network (WLAN) or local area network that is based on the IEEE standard of 801.1 

provides data transmission at high speed along with restricted coverage [5]. 

Moreover, considering the cellular network coverage, various networks are deployed which form 

heterogeneous wireless networks (HWNs) along with overlapping signal coverage area [6], further mutual 

integration and co-existence of the various wireless networks through the various access technologies has 

shown promising result. Since wireless network transmission possesses differences in diversity in user 

services and performance, it is more important to be dependent on the selection of algorithm for providing an 

efficient connection service for users, for instance multimode terminals (MT) in a heterogeneous wireless 

network environment [7]. Further, vertical handoff (VHO) has been one of the hottest decision algorithms in 

a heterogeneous wireless network. Moreover, while designing the access selection algorithm, few researchers 

have considered received signal strength (RSS) as one of the decision parameters for selecting the network. 

This decision parameter helps in choosing the access network that has the highest received signal strength. 

However, RSS based selection mechanism is easy to implementation and low complexity. This often causes 

the effect of serious Ping-Pong [8]. Some researchers focused on connecting the users to the network along 

with the least load to achieve the load balance. This type of algorithm does not consider the network link 

performance and the users are connected with low link quality thus, user requirements are not guaranteed [9]. 

Few researchers have considered the various decision parameters while designing the access 

selection algorithm such as energy consumption, service price, moving speed, packet loss ratio, jitter, delay, 

and network load, further it is modeled as the multiple attribute decision making (MADM)  

problem [10], [11]. Moreover, the MADM mechanism gathers data first for decision parameters and later it is 

normalized and all attributes are computed considering the decision parameters further candidate networks 

are ranked in order. It is observed that various users require various levels of satisfaction having the same 

decision parameter value with having various user diversity. Hence, few papers have used the utility theory 

for quantifying user satisfaction along with decision parameter [12]. Access selection mechanism based on 

the utility function, it is used for designing the various utility functions and absolute values are converted into 

the utility values for the given candidate network, rank in order and access network that has the highest value 

of utility. Also, few papers considered the game theory model [13], Markov Chain model [14], and optimized 

model [15] for developing the access selection algorithm. 

The above discussed selection mechanisms are mainly based on the utility theory, RSS and MADM, 

these mechanisms require absolute decision parameter description and these decision parameters are difficult 

to be modeled in a heterogeneous wireless network (HWN) environment. Moreover, for adopting the HWN 

dynamic environment algorithms need to correct the operating parameters which further results in the 

intervention process of humans and restrict discussed algorithms [16]. Moreover, most of the existing 

protocols of RAT (mechanism [17]–[20] are developed for achieving quality of service (QoS) a network. 

However, very few mechanisms considered the RAT selection method by considering the HWN  

environment [21]–[24]. In the case of the radio access technology (RAT) selection mechanism it fails to 

consider multiple applications at the same time, these phenomena are known as multi-service multi-mode 

terminals (MMT). Furthermore, to address this issue, existing methodologies either consider user preference 

or service requirement. Hence, it fails to achieve the tradeoff between the user preference and application 

requirement. For addressing the research issues, this work presents a quality of experience aware RAT 

selection method for a highly dense and dynamic heterogeneous communication environment. The quality of 

experience RAT (QoE-RAT) selection method considers network attributes (QoS) and multi-mode terminal 

service preference requirements for selecting the best RAT among accessible RAT's under HWNs. 

 

 

2. QoE-RAT SELECTION MODEL FOR MULTIPLE CALLS AND MULTIMODE 

HETEROGENEOUS COMMUNICATION NETWORK 

This section presents a QoE-RAT selection model for multiple calls and multi-mode heterogeneous 

communication networks. First, the system model of enhanced recovery after thoracic surgery (ERAT) is 

presented. The proposed QoE-RAT selection method combines fuzzy computing [6] and MADM method for 

selecting suitable RAT for future communication. The algorithm flow of the proposed QoE-RAT is described 

in Figure1. 

 

2.1.  System model for QoE-RAT 

This particular research considers the HWN which is described in Figure 2, in general HWN 

comprises long term evolution (LTE), WiMax, and universal mobile telecommunication (UMTS). The 

architecture of this model gives seamless mobility which is based on the environment of high mobile terminal 

density. Moreover, there are various scenarios for mobile users and further these users roam in different 
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directions in the given signal coverage also these users are considered as the MMT that has the capability of 

processing the entire wireless technologies and can access any. Further, the network selection process is 

divided into three distinct stages which include network discovery, network selection decision making, 

access execution and also, it is presumed that users are capable of detecting and gathering the attribute data in 

a given range of networks. These users are also capable of ranking the candidate networks by given data as 

well as by selection protocol. This completes the network connection by the wireless network protocol. 

Moreover, this research work focuses on the five distinctive performance attributes i.e., bandwidth/data rate, 

latency, jitter, packet failure probability and service cost. Along with, as different multi-mode mobile 

terminal services have diverse sensitivity within the same RAT attribute (i.e., for data based services) require 

larger bandwidth, for video based services, the resolution of video is adjusted by bandwidth availability and 

in audio based service (i.e., calls) requires minimal bandwidth assurance and so on). Thus, this work, 

segments the multimode mobile terminal application services into the following category by application 

service features such as perfect elasticity (i.e., data based application service), partially elasticity  

(i.e., video based application service), and in elasticity (i.e., audio based application services). Along with, in 

this paper considers that end multi-mode mobile terminal uses any of these application services. 

 

 

 
 

Figure 1. The flow diagram of proposed QoE-RAT selection method 

 

 

 
 

Figure 2. The architecture of heterogeneous wireless network 

 

 

The proposed QoE-RAT selection method is composed of two phases. First, the criteria are 

weighted according to the communication network and user applications preferences. Second,  

decision-making (DM) is carried out in accordance with criteria and accessible to the RAT organization. In 
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the first phase, the usefulness criteria are weighted in accordance with user application priority/selectivity is 

measured. The input pair-wise matrix (PM) is built in accordance with criteria with respect to criteria 

mapping using fuzzy preference aware weight [6], [25]. More detail of fuzzy preference-based weight 

evaluation is discussed in section 𝑎. Then, RAT ranking is carried out using the mapping of accessible RAT 

with respect to qualifying criteria that form the DM. Post that multi-mode terminal preference aware TOPSIS 

(MMTPA-TOPSIS) is modeled for obtaining ranking lists of RAT’s. The rank list structure describes the 

ideal RAT when selecting it in descending order. 

 

2.2.  Fuzzy preference aware weight evaluation method 

The mobile terminal contextual parameter of every service classes are represented as a weight that is 

given to respective network attributes. The mobile terminal context specific weight for different service can 

be described as (1), 

 

𝑋ℎ
𝑡,𝑉 = {𝑋ℎ,𝑘

𝑡,𝑉} (1) 

 

where, 𝑋ℎ,𝑘
𝑡,𝑉

 depicts mobile terminal context specific weights of attribute 𝑑𝑘 considering respective service 𝑡ℎ
𝑢 

and 𝑋ℎ,𝑘
𝑡,𝑉

 are defined in range of [0, 5], where 0 is given less importance and 5 is give higher importance. The 

mobile terminal defined selectivity parameter is represented as a vector for using (2), 

 

𝑄𝑢,𝑉 = {𝑞ℎ
𝑢,𝑉} (2) 

 

where, 𝑞ℎ
𝑢,𝑉

 defines selectivity level of respective service 𝑡ℎ
𝑢. 

The prerequisite of QoE aware attributes weights and selectivity of application service are computed 

and used for choosing best RATS for respective multimode mobile terminals. However, the multimode 

mobile terminals can optimize these preference weight as per its requirement in dynamic manner. The model 

can establish the multimode mobile terminal quantified weights of HWNs attributes for respective collection 

of service using quantified selectivity of each service and respective attributes weights. The steps for 

computing MMT-quantified RAT attributes weights for respective collections of services is described below.  

First normalization of mobile-terminal defined contextual weight vector 𝑋ℎ
𝑢,𝑉

 of service 𝑡ℎ
𝑢 using  

(4), (5). 𝑋ℎ
𝑢,𝑉

 defines the qualified importance of network attribute defined by mobile terminal for respective 

service 𝑡ℎ
𝑢 which can be mathematically represented as (3). 

 

𝑋ℎ
𝑢,𝑉 = {𝑥ℎ,1

𝑢,𝑉 , … 𝑥ℎ,𝑘
𝑢,𝑉 , … , 𝑥ℎ,𝑂

𝑢,𝑉}, ℎ = 1, … , 𝑍. (3) 

 

The normalization operation of 𝑋ℎ
𝑢,𝑉

 done using (4) and (5). 

 

�̅�ℎ
𝑢,𝑉 = {�̅�ℎ,1

𝑢,𝑉 , … �̅�ℎ,𝑘
𝑢,𝑉 , … , �̅�ℎ,𝑂

𝑢,𝑉} (4) 

 

�̅�ℎ
𝑢,𝑉 =

𝑥ℎ,𝑘
𝑢,𝑉

∑ 𝑥ℎ,𝑘
𝑢,𝑉𝑂

𝑘=1

 (5) 

 

Second, normalization of mobile terminal defined service selectivity vector 𝑄𝑢,𝑉 is done as (6). 

 

𝑄𝑢,𝑉 = {𝑞1
𝑢,𝑉 , … , 𝑞ℎ

𝑢,𝑉 , … , 𝑞𝑍
𝑢,𝑉},   ℎ = 1, … , 𝑍 (6) 

 

Normalize 𝑄𝑢,𝑉 for obtaining �̅�𝑢,𝑉 defined in (8). 

 

�̅�𝑢,𝑉 = {�̅�1
𝑢,𝑉 , … , �̅�ℎ

𝑢,𝑉 , … , �̅�𝑍
𝑢,𝑉} (7) 

 

�̅�𝑢,𝑉 =
𝑞ℎ

𝑢,𝑉

∑ 𝑞ℎ
𝑢,𝑉𝑍

ℎ=1

 (8) 

 

Third, this paper produces the normalization of weight vector �̅�ℎ
𝑢,𝑉

 with respect to network attributes 

of different service and normalized selectivity vector�̅�𝑢,𝑉. Lastly, the mobile terminal defined weight vector 

𝑋𝑉 of network attribute sets of respective service classes using (10). 
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𝑋𝑉 = {𝑥1
𝑉 , … , 𝑥𝑘

𝑉 , … , 𝑥𝑂
𝑉} (9) 

𝑋𝑉 = ∑ �̅�ℎ,𝑘
𝑢,𝑉𝑍

ℎ=1 ∗ �̅�ℎ
𝑢,𝑉

 (10) 

 

Where, �̅�ℎ
𝑢,𝑉

 defines the normalized selectivity outcomes of service 𝑡ℎ
𝑢, 𝑍 represent different kind service 

used by mobile terminal, and �̅�ℎ,𝑘
𝑢,𝑉

 defines normalized attribute weight 𝑑𝑘 for respective service 𝑡ℎ
𝑢. 𝑥𝑘

𝑉 

depicts attributes weight 𝑑𝑘 for service classes set defined by mobile terminal.  

The proposed fuzzy preference aware weight calculation methods can handle fuzziness and 

uncertainty among fuzzy number or rule sets. Thus, this work uses fuzzy preference aware weight for 

computing the service-specific weights of HWNs attributes. The fuzzy preference aware weight builds 

different criteria (i.e., (fuzzy rules) for decision making problems. For representing the fuzziness of 

preferences this work uses triangular fuzzy numbers (TFNs). The TFN are represented as 𝑁 = (1, 𝑛, 𝑣), 1 ≤
𝑛 ≤ 𝑣, where 1, 𝑛, 𝑣 represent the lower bounding parameter, the best promising parameter and the upper 

bounding parameter conveyed by the decision maker, respectively. The fuzzy rules will be a real number 

when 1 = 𝑛 = 𝑣. The association among the significance of the TFN and the attributes are defined using (11) 

[26]. 

 

𝜇�̃�(𝑦) = {

𝑦−1

𝑛−1
   𝑚 ≤ 𝑦 ≤ 𝑛

𝑣−1

𝑣−𝑛
   𝑛 ≤ 𝑦 ≤ 𝑣

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

 

The computation process of TFNs is described in (12), (13), and (14),  

 

𝑁1 + 𝑁2 = (𝑚1 + 𝑚2, 𝑛1 + 𝑛2, 𝑣1 + 𝑣2) (12) 

 

𝑁1⨂𝑁2 = (𝑚1 ∗ 𝑚2, 𝑛1 ∗ 𝑛2, 𝑣1 ∗ 𝑣2) (13) 

 
1

𝑁1
= (

1

𝑣1
,

1

𝑛1
,

1

𝑚1
) (14) 

 

where, 𝑁1 and 𝑁2 are two TFNs which is computed as (15). 

 

𝑁1 = (𝑚1, 𝑛1, 𝑣1) 

 (15) 

 

and 𝑁2 is computed as (16). 

 

𝑁2(𝑚2, 𝑛2, 𝑣2) (16) 

 

The independent selectivity vector of multiple service 𝑄𝑢,𝑇 is defined using (17),  

 

𝑄𝑢,𝑇 = {𝑞ℎ
𝑢,𝑇}, 𝑔 = (1, … , 𝑍) (17) 

 

where, 𝑞ℎ
𝑢,𝑇

 defines the selectivity parameter of service 𝑡ℎ
𝑢 among service classes established by service 

contextual features. For easiness in this work, it is assumed same as 𝑄𝑢,𝑉. Therefore, the selectivity vector 

after normalizing it can be established by service are described using (18).  

 

�̅�𝑢,𝑇 = {�̅�1
𝑢,𝑇 , … , �̅�ℎ

𝑢,𝑇 , … , �̅�𝑍
𝑢,𝑇} (18) 

 

The service-contextual attributes weight 𝑋ℎ
𝑢,𝑇

, (𝑔 = 1, … , 𝑍) of different service considered in 

HWNs can be computed using fuzzy preference aware weight, then fusion 𝑋ℎ
𝑢,𝑇

 and �̅�𝑢,𝑇  for obtaining 

service-contextual attributes weights of different service classes. The step involved for establishing service-

contextual attribute weight calculation fuzzy preference are as follows. First, build a structure of parameter of 

multi-terminal and multi-service HWNs selection problems. Second, build fuzzy assessment matrix 

𝐵ℎ(ℎ = 1, … 𝑍) for services 𝑡ℎ
𝑢 as stated in (19), 𝑍 different type of service used in mobile terminal, and 𝑜 

network attribute size considered (𝑜 = 𝑂), 

 

𝐵ℎ = (𝑏𝑗𝑘)
𝑜∗𝑜

 (19) 
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where, 𝑏𝑗𝑘 depicts significance of attribute 𝑑𝑗 with respect to 𝑑𝑘 considering service 𝑡ℎ
𝑢. The 𝑏𝑗𝑘 can be 

established as (20), 

 

𝑏𝑗𝑘 = (𝑚𝑗𝑘 , 𝑛𝑗𝑘, 𝑣𝑗𝑘) (20) 

 

when 𝑗 ≠ 𝑘, 𝑏𝑗𝑘 = 1
𝑏𝑗𝑘

⁄ , else 𝑏𝑗𝑘 = (1,1,1). Third, compute the fuzzy interpretation 𝑇𝑗 of respective attribute 

𝑑𝑗 with respect with (21); 

 

𝑆𝑗 = ∑ 𝛼𝑗𝑘 ⊗
1

[∑ ∑ 𝛼𝑗𝑘
𝑜
𝑘=1

𝑜
𝑗=1 ]

𝑜
𝑘=1  (21) 

 

where, 

 

[∑ 𝛼𝑗𝑘
𝑜
𝑘=1 ] = (∑ 𝑚𝑗𝑘

𝑜
𝑘=1 , ∑ 𝑛𝑗𝑘 , ∑ 𝑣𝑗𝑘

𝑜
𝑘=1

𝑜
𝑘=1 ) (22) 

 

and 

 
1

[∑ ∑ 𝛼𝑗𝑘
𝑜
𝑘=1

𝑜
𝑗=1 ]

=
1

∑ ∑ 𝑣𝑗𝑘
𝑜
𝑘=1

𝑜
𝑗=1

,
1

∑ ∑ 𝑛𝑗𝑘
𝑜
𝑘=1

𝑜
𝑗=1

,
1

∑ ∑ 𝑚𝑗𝑘
𝑜
𝑘=1

𝑜
𝑗=1

 (23) 

 

and 𝑇𝑗 represent a TNF where 𝑇𝑗 is expressed as (24). 

 

𝑇𝑗 = (𝑚𝑗, 𝑛𝑗 , 𝑣𝑗). (24) 

 

Then, compute likelihood 𝑊(𝑇𝑘 ≥ 𝑇𝑗) that fuzzy inference outcome 𝑇𝑘 is higher than 𝑇𝑗 as described in (25), 

 

𝑊(𝑇𝑘 ≥ 𝑇𝑗) = {

1                              𝑛𝑘 ≥ 𝑛𝑗
𝑚𝑘−𝑣𝑗

(𝑚𝑘−𝑣𝑗)−(𝑚𝑘−𝑣𝑗)
𝑛𝑘 ≤ 𝑛𝑗 , 𝑚𝑗 ≤ 𝑣𝑘

0                               𝑜𝑡ℎ𝑒𝑟𝑠

 (25) 

 

where, 𝑇𝑘 and 𝑇𝑗 represent fuzzy inference outcomes of the attribute 𝑑𝑘 and 𝑑𝑗, respectively and 𝑘 ≠ 𝑗. Then, 

weight outcome 𝑥ℎ,𝑘
𝑢,𝑇

 of HWNs attribute 𝑑𝑘 for respective service𝑡ℎ
𝑢. For that this work compute the 

preliminary weight 𝑥ℎ,𝑘
𝑢,𝑇′

 of attributes 𝑑𝑘 as described in (26).  

 

𝑥ℎ,𝑘
𝑢,𝑇′ = min 𝑊(𝑇𝑘 ≥ 𝑇𝑗) = min 𝑊(𝑇𝑘 ≥ 𝑇1, 𝑇2, … , 𝑇𝑂), 𝑘 = 1, … 𝑂 (26) 

 

After computing preliminary weights, it is normalized and 𝑑𝑘 is established by service 𝑡ℎ
𝑢 satisfying 

∑ 𝑥ℎ,𝑘
𝑢,𝑇 = 1𝑜

𝑘=1  using (27).  

 

𝑥ℎ,𝑘
𝑢,𝑇 =

𝑥ℎ,𝑘
𝑢,𝑇′

∑ 𝑥ℎ,𝑘
𝑢,𝑇′𝑜

𝑘=1

   𝑘 = 1, … , 𝑂 (27) 

 

The finalized HWN attribute weight vector 𝑥ℎ,𝑘
𝑢,𝑇 = {𝑥ℎ,1

𝑢,𝑇 , 𝑥ℎ,2
𝑢,𝑇 , … , 𝑥ℎ,𝑂

𝑢,𝑇} is established by service 𝑡ℎ
𝑢 are 

obtained.  

Lastly, fusion of HWNs attribute weight vector 𝑠ℎ
𝑢 of different service and service selectivity vectors 

�̅�𝑢,𝑇 for obtaining HWNs attributes weight vector 𝑋𝑇 are established using service in mobile terminal as 

described in (28) and (29), 

 

𝑋𝑡 = (𝑋1
𝑇 , … , 𝑋𝑘

𝑇 , … , 𝑋𝑂
𝑇) (28) 

 

𝑋𝑘
𝑇 = ∑ 𝑥ℎ,𝑘

𝑢,𝑇 ∗ �̅�ℎ
𝑢,𝑇𝑍

ℎ=1  (29) 
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where, 𝑥ℎ,𝑘
𝑢,𝑇

 represent attribute weights 𝑑𝑘 established by service 𝑡ℎ
𝑢 computed using (27), and �̅�ℎ

𝑢,𝑇
 represent 

normalized selective outcomes of 𝑡ℎ
𝑢, and 𝑥𝑘

𝑡  depicts the attributes weight 𝑑𝑗 for different service class 

established by service contextual features. After establishing weight vector 𝑋and the matrix 𝑉for a different 

service class, the function of establishing suitable target RAT using multimode terminal preference aware 

technique for order of preference by similarity to ideal solution (TOPSIS) [27]. The proposed quality of 

experienced aware RAT selection method attains superior result when compared with existing RAT selection 

method which is experimentally shown below. 

 

 

3. RESULTS AND DISCUSSION 

This section presents a performance evaluation of the proposed QoE-RAT over the existing RAT 

selection method. The implementation and simulation parameter considered are described [22], [23], [25]. 

The 𝐼𝐸𝐸𝐸 802.11 RAT is considered for UMTS, WiMAX, LTE, and WLAN. Three different kinds of 

services such as real-time polling service (RTPS), non-real-time polling service (NRTPS), and best effort 

service are considered for experiment analysis. Each access network is given equal priority, for evaluating 

the performance of QoE-RAT under a dynamic mobility environment. This work is used the 𝐼𝐸𝐸𝐸 802.11 

standard MAC designed in the society of infectious and tropical disease (SIMITS) simulator [28]. For 

modeling cellular network, the channel is composed of additive white Gaussian noise (AWGN). Then, 

multipath fading and log-normal shadowing models are used for modeling the path loss model. Lastly, power 

control is ideal. Then, IEEE 802.11 is used for modeling WLAN, Rayleigh channel model is used and 

bandwidth is set to 3-27 Mbps. The mobile subscriber is distributed uniformly random across the HWN 

environment. New mobile subscribers and HO subscribers will obey Poisson distribution. Finally, 3 types of 

services are considered which composed of 40% of NRTPS service, 30% of RTPS services, and 30% of BE 

services. The performance of QOE-RAT and the existing RAT selection method is evaluated in terms of 

throughput, the number of handovers, and packet loss rate. 

 

3.1.  Throughput performance of QoE-RAT over existing RAT selection method 

This section presents the throughput performance attained by the proposed QoE-RAT selection 

method over the existing RAT selection method. Figure 3 shows the throughput outcome attained using the 

proposed QoE-RAT selection method over the existing RAT selection method [22], [23] considering various 

mobile terminals. The QoE-RAT improves throughput by 10.36%, 20.501%, 26.17%, and 30.085% over the 

existing RAT selection method considering 50, 100, 150, and 200 mobile terminals respectively. As a result, 

it can be seen throughput increases with respect to an increase in mobile terminal size. This is because a 

greater number of packets are being transmitted in the network. An average throughput performance 

improvement of 21.78% is attained by the proposed QoE-RAT over the existing RAT selection method. 

 

3.2.  Packet loss rate performance of QOE-RAT over existing RAT selection method 

This section present packet loss rate performance attained of proposed QoE-RAT selection method 

over existing RAT selection method. Figure 4 shows the packet loss rate outcome attained be proposed  

QoE-RAT selection method over existing RAT selection method [22], [23] considering varied mobile 

terminals. The QoE-RAT reduce packet loss in network by 81.87%, 70.87% 69.59%, and 71.424% over 

existing RAT selection method considering 50, 100, 150, and 200 mobile terminals respectively. From result 

it can be seen packet loss rate increase with respect increase in mobile terminal size. This is because 

challenges exist in finding suitable substitute RAT for communication of dynamic mobile terminal. An 

average packet loss rate performance improvement of 73.44% is attained by proposed QoE-RAT over 

existing RAT selection method.  

 

3.3.  Number of Handover performance of QOE-RAT over existing RAT selection method 

This section present number of handover performance attained of proposed QOE-RAT selection 

method over existing RAT selection method. Figure 5 shows the number of handover outcome attained be 

proposed QOE-RAT selection method over existing RAT selection methods [22], [23] considering varied 

mobile terminal. The QoE-RAT reduce number of handovers in network by 77.78%, 62.069%, 60.46%, and 

64.2% over existing RAT selection methods considering 50, 100, 150, and 200 mobile terminals respectively. 

From result it can be seen number of handovers increase with respect increase in mobile terminal size. This is 

because challenges exist in finding suitable substitute RAT for communication of dynamic mobile terminal. 

An average number of handover performance improvement of 66.12% is attained by proposed QoE-RAT 

over existing RAT selection method.  

 

3.4.  Cost performance of QOE-RAT over existing RAT selection method 
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This section present number of cost performance attained of proposed QOE-RAT selection method 

over existing RAT selection method. Figure 6 shows the service provisioning cost outcome attained be 

proposed QoE-RAT selection method over existing RAT selection methods [22], [23] considering varied 

mobile terminals. The QoE-RAT achieves much better profit by 61.766, 68.89%, 72.13%, and 92.5% over 

existing RAT selection methods considering 50, 100, 150, and 200 mobile terminals respectively. From result 

it can be seen cost incurred increase with respect to increase in mobile terminal size. This is because 

challenges exist in finding suitable substitute RAT for communication of dynamic mobile terminal. An 

average profit performance improvement of 73.82% is attained by proposed QOE-RAT over existing RAT 

selection method. From overall result attained it can be seen the proposed RAT selection is robust and 

scalable with respect to mobile terminal size in attaining good throughput, packet loss rate, cost, and 

handover performance. 

 

 

  
 

Figure 3. Throughput performance evaluation 

considering varied iteration 

 

Figure 4. Packet loss rate performance evaluation 

considering varied mobile terminal 

 

 

  
 

Figure 5. The Number of handover performance 

evaluation considering varied mobile terminal 

 

Figure 6. Cost performance evaluation considering 

varied mobile terminal 

 

 

4. CONCLUSION 

This paper first studied various existing RAT selection for HWN. From survey it is seen MADM 

with combination of Fuzzy, Markov decision (i.e., reinforcement leaning), deep learning are some methods 

used for RAT selection in multi-service multi-terminal HWNs. Most of existing RAT selection methods are 

designed without considering user QoE and preferences. Further, very limited work is carried out considering 

provisioning user preference considering multi-service HWN environment. This work presented fuzzy 

preference aware weight using multi-objective parameter for selection RAT in HWN. First, a decision matrix 

is built using fuzzy preference aware weight. Then, ideal RAT is selected using multimode terminal 

preference aware TOPSIS for carrying out handover operation and communication. Experiments are carried 
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out to evaluate the performance of proposed QoE-RAT method over existing RAT selection method in terms 

of throughput, packet loss rate, cost, and number of handovers. From result attained it can be seen the  

QoE-RAT improves throughput performance by 21.78%, improves packet loss rate performance by 73.44%, 

improves handover performance by 66.12%, and improves profit by 73.82% over existing RAT selection 

method considering varied mobile terminals under multi service HWN environment. From result attained it 

can be the QOE-RAT selection method attain superior QoE outcome when compared with existing RAT 

selection method. Future work would further considering developing efficient resource provisioning 

algorithm considering channel state information of user to utilize HWN resource more efficiently and 

evaluate performance under more dynamic mobility environment. 
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